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ABSTRACT

Quantitative Super�uid Helium-3 from Con�nement to Bulk

Joshua J. Wiman

Liquid 3He is a remarkable substance. Even prior to the discovery of super�uidity in

1972, liquid 3He was the paradigm of a strongly interacting Fermi liquid. At even lower

temperatures, liquid 3He undergoes a phase transition to a p-wave Fermi super�uid. Over

40 years since its discovery, super�uid 3He is still the only con�rmed p-wave super�uid.

One of the most striking features of this super�uid is the existence of two distinct

phases in the bulk liquid. These A and B phases are separated by a line of �rst order

transitions as a function of temperature and pressure. Shortly after the discovery of p-

wave super�uidity, it was realized that additional phases should be obtainable through

geometric con�nement. With more recent advances in materials design and fabrication,

the use of con�ning geometries to control the super�uid 3He phase diagram has grown to

encompass a number of ordered and disordered geometries.

In this thesis I �rst consider the con�nement problem in the Ginzburg-Landau regime,

focusing on novel super�uid phases in arrays of line impurities, thin �lms, and nanoscale

channels. In the last chapter I revisit the problem of precisely calculating bulk super-

�uid properties from a microscopic model. Using a quasiclassical free-energy functional

approach, with newly determined quasiparticle interactions, quantitative agreement with

the experimental speci�c heat and A-B phase boundary is achieved.
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p = 26 bar, temperatures T = 0.5− 0.8Tc, and maximal pairbreaking

with b′T = 0. The left panel shows the shifts for in-plane �eld

orientation ϕ = 0 (blue), and ϕ = π/2 (red). The right panel shows

the shifts for ϕ = π/4, which has the same functional form as that of

the ASO(2) phase. 96

5.15 Transverse frequency shifts for the BSO(2) phase at p = 10 bar,

temperatures T = 0.1Tc, 0.2Tc, 0.3Tc, 0.36Tc, and maximal

pair-breaking, b′T = 0. 98

6.1 Left: The chiral axis l̂(r) for the AC2 phase at p = 26 bar, T = 0.7Tc

with strong pairbreaking (b′T = 0.1). The chiral axis is con�ned in

the r − φ plane. The arrow color density is scaled by the amplitude,

(∆2
r+∆2

φ)1/2. The red and blue dots locate the two disgyrations, which

support supercurrents propagating along +z and −z, respectively.



16

Right: Supercurrent isosurfaces in the SA phase, calculated using the

full order parameter in Eq. 6.13 of the Appendix. 110

6.2 NG mode dispersion, ω−, as a function of Q and T and scaled

by the bulk A-phase amplitude at p = 26 bar and R = 100 nm.

Negative values denote imaginary values of ω−. The circles

indicate the most unstable mode, Q/Qc, for each temperature.

Qc ≈ π/674 nm = 4.66× 10−3nm−1 is the maximum value of the most

unstable mode at the SA-Pz transition. 113

6.3 (Left) The amplitudes ∆′z, (red); ∆′′r , (blue); and ∆′′z , (green) for the

SA order parameter phase, at p = 26 bar, R = 100nm and scaled by

the bulk A phase amplitude ∆A =
√
|α(T )|/4β245. The black vertical

lines denote the continuous phase transitions AC2-SA, SA-Pz, and

Pz-Normal with increasing temperature. (Right) The temperature

dependence of the half-period L. 115

6.4 Phase diagram for the cylindrical channel with R = 100nm and

strong pairbreaking, b′T = 0.1. The labels SA and SB correspond to

the helical and B-like stripe phases, respectively. The ASO(2) phase

appears at the highest pressures, and the AC2 phase is suppressed by

the more stable SA phase. The SB phase appears in a narrow region

at low pressure and low temperature. 117

6.5 Small tipping angle (β ≈ 0) transverse frequency shift for the SA

phase as a function of temperature. The SA phase order parameter

is that shown in Fig. 6.3. The SA and Pz frequency shifts are found

using Eq. 6.12, and the AC2 frequency shifts are given by Eqs. 36 and

37 in Ref. [104]. The grey shaded region denotes the region of the SA

phase where the half-period L exceeds ξD ≈ 10 µm. 120

6.6 Phase diagram for the cylindrical channel with R = 100nm and

b′T = 0 (maximal pairbreaking). The SA phase has displaced much of



17

the AC2 phase compared to the phase diagram calculated for only z

translationally invariant phases [104]. 122

6.7 Phase diagram: temperature versus radius for cylindrical channel at

p = 26 bar with strong pairbreaking. b′T = 0.1. All six phases we have

found are shown in this diagram, although the SB phase is stable in a

very narrow window of R and T . 123

7.1 (Left) Bulk phase diagram with lines showing the measured phase

transitions and shading showing the calculated regions of phase

stability based on GL theory. The ∆βsci coe�cients are from Choi et

al[23] and are plotted in the right panel. 129

7.2 (Left) Bulk phase diagram where the shaded regions represents the

phases calculated from GL theory with the ∆βsci of Sauls & Serene

[81]. These strong-coupling corrections are plotted in the right panel. 130

7.3 Comparison of the phase diagrams calculated within weak-coupling

quasiclassical theory (blue and orange lines), weak-coupling GL theory

(dashed lines), and weak-coupling GL theory with D rescaled by

ξGL(T )/ξ∆(T ) (solid black lines). 132

7.4 Stripe phase order parameter for specular surfaces as functions x

and z for D = 12ξ0, p = 3 bar, T = 0.5Tc, and calculated period

L ≈ 23.6ξ0. The amplitudes are scaled in units of the bulk B phase

order parameter, ∆B =
√
|α(T )|/6(β12 + 1/3β345). 134

7.5 Energy density of the Stripe phase with specular surfaces for

D = 12ξ0, p = 3 bar, T = 0.5Tc, and calculated period L ≈ 23.6ξ0.

The energy density f is scaled by the uncon�ned bulk energy density

fB = 1
2
α(T ) ∆B(T )2 < 0, and is also shown separated into bulk and

gradient contributions. 136



18

7.6 Temperature and pressure dependence of the wavenumber Q for �lm

thicknesses D = 11 ξ0, with no Stripe to B transition (left panel), and

D = 11.5 ξ0, with a Stripe to B transition (right panel). The onset

of the Stripe transition is based on the Planar-Stripe instability, i.e.

omitting the A phase. 139

7.7 Pressure-temperature-con�nement phase diagram for the �lm with

minimal pairbreaking boundaries and experimental strong-coupling

corrections. The A phase is stable everywhere not excluded by the

Stripe and B phases. 140

7.8 Pressure-temperature phase diagram for a �lm of thickness

D = 700 nm with minimal pairbreaking (specular) boundary

conditions. The A phase is stable everywhere in the white region

below the bulk transition temperature. The larger yellow circles are

data for the A-B transition based on NMR from Levitin et al obtained

with 4He preplating [50]. 141

7.9 Pressure-temperature phase diagram for a �lm of thickness

D = 1080 nm with minimal pairbreaking boundaries. The A phase is

stable everywhere not excluded by the Stripe and B phases. 143

7.10 Temperature-con�nement phase diagram for �lms at p = 3 bar with

the Choi et al. strong-coupling corrections. Results for three boundary

conditions are shown: minimal pairbreaking, b′T →∞ (solid); di�use,

b′T = 0.54 (dashed); and maximal pairbreaking, b′T = 0 (dotted). For

di�use and maximal pairbreaking, the suppression of the A to Normal

phase transitions are also shown. 146

7.11 Transverse NMR frequency shifts as a function of tipping angle β at

D = 12ξ0, p = 3 bar, and T = 0.5Tc, with minimal pairbreaking for

the B± and S± states. 148



19

8.1 Φ diagrams. Diagram (a) generates the usual BCS weak-coupling

theory, while diagrams (b) to (h) are next order corrections at (Tc/TF )3

which contribute to Φsc and are described further in Appendix A. 158

8.2 The relative order parameter amplitude for the bulk A and B phases

as a function of Matsubara index m. The red circles (B phase)

and blue squares (A phase) are calculated self-consistently and have

nearly identical frequency dependence. The dashed black line is the

Lorentzian function with width ωsf = 1.14ωff where ωff is the spectral

width of the pairing interaction. 161

8.3 The spin-dependent interaction potential j(q) and the spin-

independent potential v(q) at pressures from 0 to 34 bar. The

curvature variations of the potentials with pressure at small q appear

to largely be artifacts of the underconstrained functional forms. The

vertical dashed line is the value of q that corresponds to the solid
3Helattice constant at 34 bar. 163

8.4 Super�uid speci�c heat as a function of temperature at 34 bar,

for both A and B phases, as calculated self-consistently with the

strong-coupling free-energy functional (solid lines) and as a measured

by Greywall[39] (squares and circles). 165

8.5 Fractional di�erences between the calculated super�uid speci�c heat

and Greywall's measurements. For temperatures below the vertical

line at T ∼ 0.8 mK the temperature calibration for the experiment

becomes signi�cantly more uncertain. 166

8.6 Bulk phase diagram adapted from Greywall's measurements[39] and

including the self-consistently calculated TAB points. 167

8.7 Corrections to the fourth-order β coe�cients for the 3He Ginzburg-

Landau free-energy functoinal. These corrections are qualitatively

similar to those calculated by Sauls and Serene.[81] 168



20

C.1 Probability densities generated by Foam in comparison to the exact

function, two gaussians on a diagonal. Brighter points are higher

probability. 192

C.2 Probability densities generated by Foam in comparison to the exact

function, a Marr wavelet. Brighter points are higher probability. 193



21

CHAPTER 1

Introduction

Despite being almost solely produced as a byproduct of decaying nuclear weapons

stockpiles though the beta-decay of tritium, 3He has had a surprisingly large impact on

physics in the 20th and 21st centuries. As bulk quantities of puri�ed liquid 3He became

possible in the 1950s it became an exemplary experimental model for normal Fermi liquids.

In the 1960s, the �rst Helium dilution refrigerators were realized using 3He diluted into

4He, which became critical parts of ultra low temperature physics.[102] The super�uidity

of 3He was only �rst con�rmed in 1972 when Oshero�, Richardson, and Lee were able to

cool a sample below 2.7 mK.[68, 67] Since then, super�uid 3He has become the model

(and only con�rmed) p-wave Fermi super�uid, with unsurpassable purity and multiple

stable phases even in the bulk liquid, shown in Figure 1.1.

The stable A and B phases, as �rst named by Oshero� et al[68], can be understood

in terms of their symmetries. The bulk normal Fermi liquid has the maximal symmetry

group

(1.1) G = U(1)N × SO(3)S × SO(3)L × P× T ,

which is the product of global gauge rotations, spin rotations, orbital rotations, space

inversion, and time-reversal, respectively. This maximal symmetry group is spontaneously

broken by the super�uid transition, with distinct residual symmetries for each phase.
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Figure 1.1. Bulk phase diagram adapted from Greywall's measurements[39]
and including the self-consistently calculated TAB points from this thesis.

The lower temperature B phase was �rst described by Balian and Werthamer[13] and

has the residual symmetry group

(1.2) H = SO(3)L+S × T ,

consisting of joint spin and orbital rotations combined with time reversal symmetry. This

phase is also known as the �isotropic� phase and its order parameter belongs to a J = 0

representation.

The A phase appears only above pPCP ≈ 21.22 bar and near Tc. It was identi�ed with

the spin-triplet, p-wave phase �rst discussed by or Anderson together with Morel[8] and

later Brinkman[7]. Its residual symmetry group is

(1.3) H = SO(2)Sd
× Zspin

2 × SO(2)Lz−Φ
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which consists of spin rotations about an axis d̂ and a joint gauge and orbit symmetry

consisting of an orbital rotation of angle α ∈ SO(2)Lz about the angular momentum axis

l̂ combined with a gauge transformation −α ∈ U(1)N. This phase is S = 0 and L = 1,

meaning it carries a groundstate angular momentum.[77]

While it is remarkable enough that the bulk super�uid supports these two phases,

most of this thesis will be devoted to identifying potentially new phases by distorting

the bulk. In particular, placing 3He in a con�ning geometry reduces the maximal orbital

symmetry, eliminating the exact bulk phases and leading to novel phase diagrams. The

nature of the stabilized phases may be chosen by varying the con�ning geometry along

with the temperature and pressure.

Determining the precise nature of a novel phase requires a good understanding of the

basic interactions that lead to the bulk super�uid as well as a model for the con�ning

boundary. Although we have a good qualitative understanding of both of these, certain

quantitative aspects have evaded theorists. In particular, the bulk phase diagram itself

is quite di�cult to calculate within a microscopic model due to both uncertainties in

the underlying quasiparticle interactions and computational challenges. In Chapter 8 we

present the �rst precise microscopic calculation of the bulk super�uid 3He phase diagram.

In doing so, we �nd evidence that super�uid 3He is governed by competing ferromag-

netic and almost-localized antiferromagnetic exchange interactions. We also obtain new

evidence that 3He is an almost localized Fermi liquid in the sense of being near a Mott

transition.
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CHAPTER 2

Publication: Super�uid phases of 3He in a periodic con�ned

geometry

2.1. Abstract

Predictions and discoveries of new phases of super�uid 3He in con�ned geometries, as

well as novel topological excitations con�ned to surfaces and edges of near a bounding

surface of 3He, are driving the �elds of super�uid 3He infused into porous media, as well as

the fabrication of sub-micron to nano-scale devices for controlled studies of quantum �uids.

In this report we consider super�uid 3He con�ned in a periodic geometry, speci�cally a

two-dimensional lattice of square, sub-micron-scale boundaries (�posts�) with translational

invariance in the third dimension. The equilibrium phase(s) are inhomogeneous and

depend on the microscopic boundary conditions imposed by a periodic array of posts.

We present results for the order parameter and phase diagram based on strong pair

breaking at the boundaries. The ordered phases are obtained by numerically minimizing

the Ginzburg-Landau free energy functional. We report results for the weak-coupling

limit, appropriate at ambient pressure, as a function of temperature T , lattice spacing

L, and post edge dimension, d. For all d in which a super�uid transition occurs, we

�nd a transition from the normal state to a periodic, inhomogeneous �polar� phase with

Tc1 < Tc for bulk super�uid 3He. For �xed lattice spacing, L, there is a critical post

dimension, dc, above which only the periodic polar phase is stable. For d < dc we �nd a
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second, low-temperature phase onsetting at Tc2 < Tc from the polar phase to a periodic

�B-like� phase. The low-temperature phase is inhomogeneous, anisotropic and preserves

time-reversal symmetry, but unlike the bulk B-phase has only DL+S4h point symmetry.

2.2. Introduction

The p-wave, spin-triplet super�uid phases of 3He provide the paradigm for unconven-

tional BCS pairing in which spin and orbital rotation symmetries, SO(3)S × SO(3)L, are

spontaneously broken in conjunction with U(1)N gauge symmetry. It was realized soon

after the discovery that these broken symmetries, particularly parity and orbital rota-

tion symmetry, implied that interfaces, boundaries and impurities could have profound

e�ects on the super�uid phases.[5, 73] In the case of the bulk A-phase the e�ect of the

boundary is to lock the orbital quantization axis, l̂, normal to the boundary. The in-

�uence of boundaries can often extend to length scales much longer than the coherence

length, ξ0 = ~vf/2πkBTc ≈ 200 − 800Å depending on pressure, when there is competi-

tion between alignment e�ects from curved boundaries and/or super�ow.[26] In a long

cylinder with radius R � ξ0 the boundary condition on l̂ leads to a texture, i.e. a long-

wavelength spatial variation of the orbital quantization axis, l̂, which is also an equilibrium

current-carrying state.[57, 100, 46] At the coherence length scale near a boundary strong

pair-breaking typically occurs. The orbital component of the order parameter normal to

the surface is suppressed and a spectrum of Fermionic states are localized near the bound-

ary.[21, 62, 98] The de-pairing e�ect of the boundary is further enhanced if the surface is

rough on length scales comparable to or smaller than ξ0. If super�uid 3He is con�ned to

a region with dimensions of order a few coherence lengths then the geometry and surface
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structure on the boundaries can signi�cantly modify the equilibrium phase diagram, and

can even stabilize phases not realized in bulk super�uid 3He.[45, 62, 98, 99]

Several studies of super�uid 3He have been performed on thin �lms or within a slab

geometry.[34, 107, 84] In the case of strong one-dimensional con�nement, i.e. boundary

separation D < Dc2 ≈ 9 ξ0, the A phase is expected to be the stable phase even at pres-

sures well below the bulk critical pressure, pc ≈ 21 bar.[98] Nuclear magnetic resonance

(NMR) measurements strongly support this prediction.[50] This is in stark contrast to the

bulk 3He phase diagram in which the A phase is only stable at high temperature and pres-

sure. In weak-coupling theory the planar and axial (ABM) phases are degenerate even

with strong surface disorder.[98] Strong-coupling e�ects which stabilize the Anderson-

Brinkman-Morel (ABM) state at high pressures and high temperatures are poorly known

for inhomogeneous phases at low-temperatures, T � Tc, and low pressures, p → 0 bar.

For this reason the ground state of thin 3He �lms at the lowest pressures is still an open

question. At intermediate scales of con�nement, Dc2 < D < Dc1 ≈ 13 ξ0, the ground

state in the weak-coupling limit is predicted to be a �crystalline� phase with an order

parameter that spontaneously breaks translation symmetry in the plane of the �lm.[99]

A one-dimensional periodic phase (�striped phase�) with in-plane wavelength Q−1
⊥ ≈ 3 ξ0

has lower energy than any of the translationally invariant axial, planar or B-planar phases

over a wide range of �lm thicknesses and temperatures. The mechanism responsible for

spontaneously breaking translation symmetry for D . Dc1 is the energy cost of surface

pair-breaking compared to the energy cost for domain wall formation between degenerate

B-planar phases. For D < Dc1 it is energetically favorable for domain walls to enter

the �lm. Interactions between domain walls lead to the striped phase. This type of
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competition between surface pair-breaking, the formation of topological defects and the

stabilization of new phases not realized in bulk 3He is part of the motivation for develop-

ing sub-micron to nano-scale geometries for con�ning 3He.[50, 35] Of particular interest

for this study is the possibility of con�ning 3He in a periodic geometry such as a cavity

supported by a periodic array of sub-micron scale posts.[108]

We break translational symmetry externally by considering 3He infused into an in�nite

two-dimensional (x − y) periodic array of square posts, with translational invariance in

the third dimension (z). This geometry can also be viewed as a two-dimensional (2d)

grid formed of vertical (x) and horizontal (y) channels. The spatial region between the

corners of four adjacent posts, or alternatively where the x and y channels intersect is

particularly signi�cant, and we will refer to this region as the �center� of the 2d cell when

discussing super�uid 3He con�ned within this structure. We expect the results reported

here to be valid for con�nement lengths in the z dimension, satisfying Lz � 30ξ0.

The order parameter for super�uid 3He belongs to the manifold of spin-triplet, p-wave,

BCS pairing states represented by the 2× 2 �gap matrix�,

(2.1) ∆̂(p̂) =
∑
αi

(iσασy)Aαi p̂i ,

which is a function of the direction of relative momentum of the Cooper pair, p̂, and

is parametrized in its most general form by nine complex amplitudes, Aαi. The 3 × 3

matrix order parameter transforms as a vector under spin rotations, and separately as

a vector under orbital rotations. The maximal symmetry group for bulk 3He is G =

U(1)N×SO(3)S×SO(3)L×P×T, where P, T and U(1)N represent space inversion, time-reversal

and global gauge symmetries of the normal phase. The symmetry reduction resulting from
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the weak nuclear dipolar interaction is omitted here, but is important in resolving relative

spin-orbit rotational degeneracies, and in determining the NMR signatures of the phases

of con�ned 3He.

2.3. Ginzburg-Landau Theory

To determine the phase diagram and super�uid order parameter for 3He con�ned

within a 2d periodic structure we minimize the Ginzburg-Landau (GL) free energy for a

general spin-triplet, p-wave condensate de�ned as a functional of the 3 × 3 matrix order

parameter. A few atomic units away from a boundary the 3He-3He interactions responsible

for pairing are invariant under the maximal symmetry group of bulk 3He. Thus, the GL

functional takes its bulk form,[72, 93]

Ω[A] =

∫
V

d~R
{
α(T )Tr

(
AA†

)
+ β1

∣∣Tr(AAT )
∣∣2 + β2

[
Tr(AA†)

]2
+ β3 Tr

[
AAT (AAT )∗

]
+ β4 Tr

[
(AA†)2

]
+ β5 Tr

[
AA†(AA†)∗

]
(2.2)

+K1

(
∇kAαj∇kA

∗
αj

)
+K2 (∇jAαj∇kA

∗
αk) +K3 (∇kAαj∇jA

∗
αk)

}
.

The equilibrium order parameter is obtained from the stationarity condition for the

GL functional. Con�nement is introduced via boundary conditions of the order parameter

�eld, Aαi(~R). For 3He con�ned in a non-magnetic, periodic geometry with 4-fold rota-

tional, re�ection and inversion symmetries, the maximal symmetry group is reduced by

restricting the orbital rotations to the point group D4h (which includes space inversion),

i.e.

(2.3) G = U(1)N × SO(3)S × D4h × T .
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The domain, V , is a square unit cell with side length L. Periodic boundary conditions

are imposed on the order parameter �eld at the outer boundaries of this unit cell. In

the interior of the unit cell is an inner boundary representing the square post of side

length d. Typical boundary conditions for the order parameter on the inner boundary

are: (i) maximal pair-breaking in which all components of the order parameter vanish on

the inner boundary and (ii) minimal pair-breaking in which only the orbital component

normal to the surface of the inner boundary is forced to vanish, and the normal derivative

of the tangential orbital components vanishes on the inner boundary. This latter boundary

condition corresponds to surfaces with specular re�ection,[5] while the former boundary

condition corresponds to an atomically rough surface with strong backscattering.[77] Here

we report results based on maximal pair-breaking. We numerically minimize the GL

functional on this domain, and determine the stable (and in some cases meta-stable) order

parameter (phases) for super�uid 3He in this class of periodic con�ned geometries. We

also present results for the phase diagram as a function of temperature T , con�nement

length D ≡ L − d, and period L. The results reported here are appropriate for low

pressures in the GL regime. Thus, we assume weak-coupling values for the GL material

parameters:[72, 93]

α(T ) =
1

3
N(0)(T/Tc − 1) , 2β1 = −β2 = −β3 = −β4 = β5 ,

K1 = K2 = K3 =
3

5
N(0)ξ2

0 , β1 = − N(0)

(πkBTc)2

{
1

30

[
7

8
ζ(3)

]}
,(2.4)
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where Tc is the super�uid transition temperature for bulk 3He, ξ0 = ~vf/2πkBTc is the

zero-temperature correlation length, and N(0) = k3
f/2π

2 vfpf is the single-spin quasipar-

ticle density of states at the Fermi surface, de�ned in terms of the Fermi velocity, vf , and

Fermi momentum and wavenumbers, pf = ~kf . 1

In what follows we neglect the nuclear dipolar energy and choose aligned spin and

orbital coordinate axes, {x, y, z}, corresponding to the high symmetry directions of the

periodic channel. Thus, the order parameter is represented by,

A =


Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

 .(2.5)

For bulk 3He, the B-phase, de�ned by the Balian-Werthamer state,

(2.6) AB =
∆B√

3


1 0 0

0 1 0

0 0 1

 ,

with amplitude given by

(2.7) ∆2
B(T ) =

1

2

|α(T )|
β12 + 1

3
β345

,

is the equilibrium phase at low pressures with free energy density given by

(2.8) ΩB/V = −1

4

|α(T )|2
β12 + 1

3
β345

= −∆CB

2Tc
(T − Tc)2 ,

1This published de�nition of Ki is incorrect, it should be K1 = K2 = K3 = 7ζ(3)
60 N(0) ξ20
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where the notation refers to summation as βijk ≡ βi + βj + βk. The second term is the B-

phase condensation energy scaled in terms of the heat capacity jump, ∆CB, at the normal

to B-phase transition. For weak-coupling values of the material coe�cients this gives the

BCS result, ∆CB/CN = 12/ζ(3)7 ' 1.43, where CN = 2
3
π2N(0)Tc is the normal-state

heat capacity at Tc. These values for the bulk B-phase order parameter and free energy

are used as the scale for the order parameter and free energy of con�ned 3He.

We note that the boundary condition imposed by an interior post is expected to be

accurate only for post side lengths d & ξ0. For post dimensions, d � ξ0, the boundary

is more accurately treated microscopically as an �impurity� that scatters excitations and

breaks pairs.[73] The pair-breaking e�ect of an impurity with side dimension smaller than

a coherence length is reduced by d/ξ0 near the post. We avoid this limit and restrict our

analysis to post dimensions with d ≥ 1
2
ξ0. 2

Before discussing the numerical results we describe some of the possible phases with a

high degree of residual symmetry, i.e. sub-groups of the maximal symmetry group, that

may be realized by 3He in a con�ned D4h geometry.

2.4. Symmetry Classes of 3He in a con�ned D4h geometry

The e�ects of con�nement are enforced by the boundary conditions imposed on the

order parameter. The boundary conditions re�ect the point symmetry of the con�ning

boundaries. For the case of a periodic array of square posts the elementary symmetry

group of a square post, C4v, is the combined set of four-fold rotations, {E,C4, C
2
4 , C

3
4},

where E is the identity and Cn
4 = (C4)n is a rotation about the z axis by n× π/2, the set

of re�ections through four vertical planes, {Πzx,Πzy,Πzx′ ,Πzy′}, and the corresponding

2In Chapter 4 we consider a related model using line impurities with d� ξ0
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rotary re�ections, {Rzi ≡ C4Πzi | i = x, y, x′, y′}, where (x′, y′) are axes rotated from (x, y)

by π/4 about z. The addition of re�ection symmetry through the horizontal plane, Πxy,

and 180◦ rotations about the vertical plane symmetry axes, {C2x, C2y, C2x′ , C2y′}, de�nes

the point group, D4h, which includes space inversion, Ci = C2y · Πzx.

For any element g ∈ D4h a scalar function transforms as f(~R)
g−→ f(ĝT · ~R), where

ĝ is the 3 × 3 matrix representing the symmetry element g, ĝT = ĝ−1 is the matrix

inverse, and ~R = (x, y). Thus, the order parameter �eld, which is a vector under space

rotations and re�ections, transforms as Aαi(~R)
g−→ gijAαj(ĝ

T · ~R). Similarly, for any

rotation g ∈ SO(3)S we have, Aαi(~R)
g−→ gαβAβi(~R), and under a gauge transformation,

χ ∈ U(1)N, Aαi(~R)
χ−→ e−iχAαi(~R). Time-reversal, T, reduces to complex conjugation,

Aαi(~R)
T−→ A∗αi(~R).

2.4.1. Non-Equal Spin Pairing - The B� Phase

In the case of bulk 3He the maximal symmetry sub-group of joint spin and orbital rotations

combined with time-reversal, SO(3)L+S× T, is the symmetry class of the B-phase, i.e. the

Balian-Werthamer state with ABW
αi = ∆ δαi. The discrete analog of the bulk B-phase is

a state, which we refer to as the B�-phase, that is invariant under joint spin and orbital

elements of the maximal point group, D4h, and time-reversal, i.e. HB�
= DL+S4h × T. Note

that space inversion is broken, but space inversion combined with inversion in spin-space

is a symmetry of the B�-phase.
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The matrix structure of the B� order parameter di�ers substantially from the isotropic

B-phase. For all g ∈ HB�
, the order parameter satis�es,

(2.9) Aαi(~R)
g−→ gαβ Aβj(ĝ

T · ~R) gTji = Aαi(~R) .

It is then straightforward to show that

(2.10) AB� =


Axx Axy 0

Ayx Ayy 0

0 Azz

 ,

with Axx(x, y) = Ayy(y, x), Axy(x, y) = Ayx(y, x), Azz(x, y) = Azz(y, x) and all com-

ponents are real (T symmetry). The diagonal (o�-diagonal) components are even (odd)

under x→ −x or y → −y. The numerical results presented below show that the B�-phase

is the equilibrium state in the weak-coupling limit at low temperatures.

2.4.2. Equal Spin Pairing States

The super�uid phases with the highest degree of residual symmetry are those that preserve

a continuous rotation symmetry about an axis d̂ in spin space, i.e. SO(2)Sd . The direction

d̂ is a vector representing spontaneously broken spin-rotation symmetry. If d̂ is real, then

the broken symmetry phase is an equal-spin-pairing (ESP) state and d̂ is the direction in

which the Cooper pairs have zero spin projection. The residual symmetry group of the

class of ESP states includes SO(2)Sd × Z
spin
2 , where Z

spin
2 = {1, eiπ Rspin

πx̂ } is a two element

group of the identity and the combined operation of a gauge transformation, eiπ, and a

rotation of π about an axis x̂ ⊥ d̂ in spin space. Continuous U(1)N symmetry is broken,
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but elements of U(1)N may be combined with spin or orbital rotations and re�ections. In

particular, the point symmetry, D4h, is necessarily broken by any p-wave pairing state.

However, the residual symmetry of the z-aligned polar (Pz) phase contains all the elements

of D4h. In particular, the Pz phase can be expressed as APzαi = d̂α a(x, y) ẑi with a(x, y)

real (time-reversal symmetry) and invariant under the sub-group C4v: a(x, y) = a(y, x) =

a(−x, y) = a(x,−y). The Pz order parameter undergoes a sign change for any of the C2i

operations and re�ection in the xy plane since ẑ → −ẑ. Thus, combining these operations

with the gauge transformation, eiπ, and C4v yields the group, D
L,π
4h , which is isomorphic to

D4h. Thus, the residual symmetry group for the Pz phase is

(2.11) HPz = SO(2)Sd × Z
spin
2 × D

L,π
4h × T .

This state is the stable super�uid phase that onsets from the normal state at Tc1 .

The Pz phase retains the sub-group C4v of point symmetries, but is not the only ESP

state with this symmetry. If we omit the operations that transform z → −z, then we

obtain two possible symmetry classes. If time-reversal is preserved we obtain the residual

symmetry group is

(2.12) H3D = SO(2)Sd × Z
spin
2 × CL4v × T
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with an orbital order parameter �eld, ~a = axx̂ + ayŷ + az ẑ, that includes three real

components satisfying the re�ection symmetries,

ax(x, y) = −ax(−x, y) = +ax(x,−y)(2.13)

ay(x, y) = +ay(−x, y) = −ay(x,−y)(2.14)

ax(x, y) = ay(y, x)(2.15)

az(x, y) = az(y, x) = az(−x, y) = az(x,−y) .(2.16)

This phase is not found to be a local minimum of the GL functional for the weak-coupling

values of the β parameters.

Another ESP phase with CL4v symmetry is obtained if we break T symmetry, but

preserve Πxy · T. In this case the residual symmetry group is

(2.17) Hchiral−C4v = SO(2)Sd × Z
spin
2 × CL4v × {E , Πxy · T} .

The orbital vector, ~a± = ~a⊥ ± iaz ẑ, with ~a⊥ = axx̂ + ayŷ, is a complex vector �eld with

real amplitudes {ax, ay, az} satisfying the re�ection symmetries in Eqs. 2.13-2.16 required

by CL4v. The ± sign re�ects the two-fold degeneracy resulting from broken time-reversal

symmetry. These are chiral phases with a local chiral vector �eld given by

(2.18) ~l± = ±~a⊥ × az ẑ = ± az(~R)
[
ay(~R) x̂− ax(~R) ŷ

]
,

which is con�ned to the xy plane. For a unit cell centered on the post, the chiral vector

vanishes on the post boundaries and at the center of the two channels, where ax = ay = 0,

if the periodicity of the ordered phase is the same as that of the underlying geometry.
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Here the phase is locally the Pz phase. For chiral phases, and more generally current

carrying states, the periodicity of the ordered phase need not equal the underlying lattice

periodicity. Thus, a complete classi�cation of the residual symmetry sub-groups should

include the space-group operations. This is beyond the scope of this report, but under-

scores the complexity of the possible phases of 3He in a periodically con�ned geometry.

3 In the weak-coupling limit this chiral ESP phase is not energetically stable, but this

phase, or a closely related phase with period 2L, may emerge as a stable, or meta-stable,

low temperature phase at high pressures due to strong coupling e�ects.4 However at high

pressures, for very weak con�nement, L � 20ξ0, and small post dimensions, d . ξ0, the

chiral− CL4v phase is unlikely to be the equilibrium phase. In this limit we expect a chiral

ABM-like phase with ~l||ẑ in the center of the channels to be the equilibrium phase at

temperatures below a narrow region of stability of the Pz phase.

The residual symmetries that de�ne the bulk ABM phase, AABM
αi = dα (m̂± in̂)i, are

(i) chiral symmetry, Zchiral2 = {E, P2 · T}, where P2 is re�ection in a plane containing the

chiral axis l̂ = m̂ × n̂, and (ii) gauge-orbit symmetry, U(1)Lz−N, i.e. rotation by angle ϑ

about the chiral axis, combined with a gauge transformation, e±iϑ, by phase angle ∓ϑ.

A discrete analog of the ABM phase of bulk 3He is obtained by breaking CL4v rotational

symmetry, but restoring symmetry with appropriate elements from U(1)N. In addition,

T symmetry is broken, but chiral symmetry is present as invariance with respect to the

combined operation, T · Πzx. Thus, the discrete ABM phase is invariant with respect to

3In Chapter 3 we describe equilibrium phases which break the lattice translation symmetry.
4The in-plane chiral phase with period 2L is a periodic version of the texture obtained by Surovtsev and
Fomin [88] for a uniform distribution of rod-like impurities embedded in 3He-A.
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the group obtained from these generators,

C
L-N,T
4h =

{
E, eiπ/2C4, e

iπC2
4 , e

i3π/2C3
4 ,

TΠzx, e
iπ/2TΠzx′ , e

iπTΠzy, e
i3π/2TΠzy′

}
,(2.19)

and is isomorphic to CL4v. The full symmetry group is then

(2.20) HA� = SO(2)Sd × Z
spin
2 × C

L-N,T
4h ,

and the functional form of the discrete ABM phase is A±αi = a(x, y) d̂α (x̂± i ŷ)i, where

a(x, y) is real an obeys the CL4v re�ection symmetries in Eq. 2.16. The A�-phase is not

stable in the weak-coupling limit. However, several chiral phases are found to be stationary

points of the GL functional for strong-coupling values of the β-parameters appropriate

for high pressures. The phase diagram at high pressures will be discussed in a separate

report.5

2.5. Numerical Methods

To compute the order parameter which minimizes the GL functional we implement a

�nite element method (FEM).[110] We discretize the 3He unit cell with an unstructured

triangular mesh generated with the code Triangle.[87] This type of mesh permits spa-

tially varying triangular element sizes, which we use to provide �ner spatial resolution in

regions near boundaries and sharp corners as shown in the left panel of Fig. 2.1. Also, an

unstructured mesh does not enforce any point symmetry that a periodic mesh possesses.

Thus, the residual symmetries of the phases we �nd result from interaction terms in the

5See Chapter 3.
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Figure 2.1. Left panel: One-fourth of the unit cell showing the triangular
computational grid. The grey region de�nes the area occupied by the post.
Right panel: Order parameter amplitude, Azz(~R), of the z-aligned polar
phase for L = 20 ξ0, d = 8 ξ0, T = 0.9Tc, and d̂ = ẑ. The order parameter
is real and scaled in units of the bulk B-phase order parameter, ∆B(T ).

GL functional combined with pair-breaking and periodicity represented by the boundary

conditions.

For the FEM we represent the order parameter with quadratic Lagrange interpolating

functions de�ned on each element. The Lagrange interpolating functions are determined

by the values of the order parameter at six nodes corresponding to the vertices and

midpoints of edges of each element. The order parameter �eld de�ned at the nodes of

each element is continuous across the entire domain. The resulting integration over the

domain then separates into independent integrals over each element which we evaluate

numerically with Gauss-Legendre quadrature.[1]
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We minimize the discretized GL functional using an implementation of the conjugate

gradient algorithm, CG_DESCENT.[40] The gradient, G[A] ≡ δΩ/δA†(~R), is evaluated at

each node within the �nite element scheme and input as the gradient in the conjugate

gradient method. We set convergence as max {|Gi[A]|} < 10−7, for all i degrees of freedom

(i.e. all 9 complex components of A at each node) which we determined to yield no

signi�cant loss of accuracy compared to stricter tolerances.

2.6. Stable Phases - Maximal Pair-breaking

Figure 2.1 (right panel) shows the equilibrium order parameter for con�ned 3He with

period L = 20 ξ0 and post dimension d = 8 ξ0 at temperature T = 0.9Tc for the case of

maximal pair-breaking by the interior boundary. This is a spatially modulated z-aligned

polar (Pz) state in which only the z-orbital component, Azz, is non-vanishing. This phase

breaks spin- and orbital rotation symmetry, but preserves time-reversal symmetry. Note

that the polar amplitude is maximum in the center of the channel and decreases by

approximately 50 % into both x- and y channels. The Pz phase is an equal-spin pairing

state and thus the more general representation for this phase is Aαi = ∆(~R) d̂α ẑi, where

d̂ is a real unit vector that de�nes the broken rotational symmetry in spin space. The

Pz phase with only Azz 6= 0 corresponds to d̂ = ẑ, and is degenerate with respect to

the orientation of d̂ since we have neglected the nuclear dipole and Zeeman energies.

The Pz phase belongs to the symmetry class of pairing states de�ned by the sub-group,

HPz = SO(2)Sd × Z
spin
2 × D

L,π
4h × T, as discussed in Sec. 2.4

For the periods, L ≤ 30ξ0, and temperatures within the region of stability of the

Pz phase, we �nd a �nite polar amplitude everywhere within the 3He cavity, except at
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Figure 2.2. Order parameter components of the B� phase plotted in the
domain V for L = 20 ξ0, d = 12 ξ0, and T = 0.7Tc. All values are real and
scaled by the bulk B-phase order parameter ∆B(T ). Note the reduced scale
of the Axy amplitude.

the post boundaries. However for much larger periods, L, and the same channel width,

D = L−d, the amplitude of the Pz order parameter appears to vanish deep within the x-

and y channels far from the center, leaving a lattice of isolated islands of Pz condensate

in the center. This suggests there may be a regime in which de-coupled Pz condensates

nucleate in the center region, but are not phase coherent and do not exhibit super�uidity.

For the same period, post dimension and boundary conditions we also �nd a second

stable phase in the weak-coupling regime at a lower temperature. This phase (B�) also

preserves time-reversal symmetry, but has lower symmetry than that of the Pz phase. The

B� phase is similar to the bulk B-phase in that the order parameter is real, with diagonal
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elements, Axx, Ayy and Azz in the center of the channel as shown in Fig. 2.2. However,

the component Axx (Ayy) is strongly suppressed in the y-channel (x-channel), and o�-

diagonal components, Axy and Ayx, appear at the corners of the posts. It is also clear

from Fig. 2.2 that the components of the order parameter obey the re�ection symmetries:

Axx(x, y) = Ayy(y, x) and Axy(x, y) = Ayx(y, x), and that the diagonal components, Axx,

Ayy and Azz are even functions of x and y, while the o�-diagonal components, Axy and

Ayx, are odd under x → −x or y → −y. The remaining o�-diagonal components are all

zero: Azx = Axz = Azy = Ayz = 0. As discussed in Sec. 2.4 these are the conditions

imposed by the discrete sub-group, HB = DL+S4h × T. This is the maximal allowed point

symmetry and is the discrete analog of the maximal subgroup SO(3)L+S for the bulk B-

phase. Indeed, we recover the bulk B-phase for L → ∞ and d → 0, as indicated in

Fig. 2.3. Note that the o�-diagonal components are signi�cantly smaller in magnitude

than the diagonal components and become negligible far from the post corners, except

for D ≈ Dc(T ), the critical line separating the Pz and B� phases.

The phase transition from the Pz to B� phase is presented in Fig. 2.3, which shows

the maximal magnitudes for the components of the order parameter as a function of the

con�nement length D/ξ0 for �xed period, L, and temperature, T . The transition is 2nd

order, i.e. continuous as a function of D or T , with spontaneously broken symmetry from

HPz → HB� . For con�nement lengths onsetting at the critical value, Dc(T ) → 4.1ξ0 at

T = 0 and L = 20 ξ0, the x and y components, Axx, Ayy, Axy and Ayx, become �nite,

signaling the transition to the B� phase. Close to the transition the B� phase is locally a

�planar� phase deep within the channels due to the suppression of the orbital components

normal to the boundary. However in the central region the B� phase is de�ned by all
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Figure 2.3. Order parameter amplitude as a function of the con�nement
length, D, for L = 20ξ0 and T = 0.7Tc. The amplitudes are taken as the
maxima within the domain. Note that maxima for Axx and Ayy are equal,
as are the maxima for Axy and Ayx, but suppressed compared to Azz. The
dashed vertical line marks the 2nd order Pz to B� phase transition.

three diagonal components, as well as the o�-diagonal components, Axy and Ayx, allowed

by DL+S4h symmetry.

2.7. Weak-Coupling Phase Diagram

The phase diagram for super�uid 3He in the weak-coupling limit as a function of

reduced temperature, T/Tc, and con�nement length, D/ξ0, is shown in Fig. 2.4 for two

values of the periodicity, L = 5ξ0 (left panel) and L = 20ξ0 (right panel). These two

diagrams are qualitatively representative of the phase diagram for any 5 ≤ L/ξ0 ≤ 30.

In particular, we do not �nd any additional equilibrium phases as minima of the GL

functional with the weak-coupling material parameters.
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The transition lines are found by classifying the phases based on non-negligible order

parameter components, and then bracketing the location of both normal to Pz and the

Pz to B� transitions. These brackets are re�ned until their width drops below a speci�ed

tolerance, which we chose to be 0.025ξ0. Note that predicted phase boundaries are limited

by the restriction we place on the validity of the boundary condition for strong pair-

breaking, i.e. d ≥ ξ0/2.

The phase boundary for the normal to Pz transition is determined by a linear eigen-

value equation, obtained by solving the linearized GL equation for the Pz order parameter,

α(T )Azz −K1

(
∇2
x +∇2

y

)
Azz = 0, within the domain V , and with boundary condition,

Azz|∂V = 0, for maximal pair-breaking. The eigenfunction, Azz ≡ a1(x, y), corresponding

to the highest instability temperature, Tc1 , de�nes the spatial pro�le of the �rst unsta-

ble mode of the Pz phase. If we knew the exact functional form of the �rst unstable

mode, a1(x, y), we could obtain the phase boundary, Tc1(D,L), from the equality in the

Rayleigh-Ritz inequality,

(2.21) α(Tc1) ≥
−
∫
V

d~R
{
K1|∇a(x, y)|2

}
∫
V

d~R
{
|a(x, y)|2

} .

In the absence of a1(x, y) we can obtain a lower bound on the N to Pz transition tem-

perature with a good approximation to the eigenfunction a1(x, y). Consider the following
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approximation to the most unstable mode,

a(x, y) =

[
C(x) + C(y)

1 + C(x)C(y)

]
Θ(D/2− |x|)Θ(D/2− |y|)

+ C(x)Θ(D/2− |x|) [Θ(−D/2− y) + Θ(−D/2 + y)]

+ C(y)Θ(D/2− |y|) [Θ(−D/2− x) + Θ(−D/2 + x)] ,(2.22)

where C(x) = cos(πx/D), Θ(x) is the Heaviside step function, and x and y are de�ned

on the domain [−L/2, L/2]. This function is piece-wise continuous at the interfaces be-

tween the central region and the x- and y channels, and satis�es the strong pair-breaking

boundary condition, a|∂V = 0. The variational result T varc1
, is shown in comparison to the

exact numerical result for the N − Pz phase boundary, Tc1 in Fig. 2.4.

For the range of L ≤ 30ξ0 that we consider, and for all D ≥ Dc(T ) that gives a super-

�uid transition, the Pz phase is stable for a temperature range below Tc1 . Furthermore,

for a given L there is a narrow range of con�nement lengths, D, in which only the Pz

phase is stable. This is in sharp contrast to one-dimensional con�nement in an in�nite

slab where the axial or planar phases are stable under strong con�nement. The absence

of these phases in the periodic con�ned geometry here is due to pair-breaking within the

two orthogonal x and y channels, the large cost in gradient energy for x- and y orbital

components for strong con�nement and the weak-coupling β-parameters. Chiral phases,

such as the A�-phase and the chiral-C4v phase will be discussed in a separate report on

GL theory of con�ned phases in the strong-coupling limit.
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Figure 2.4. Phase diagrams for L = 5ξ0 and L = 20ξ0. The dashed curve is
the normal to Pz transition obtained by the variational method. The solid
curves are �ts of the transition data points to the functional form of the
variational curve. Note that there is a range of con�nement lengths, D, for
which only the Pz phase is realized.

2.8. Conclusions

We have investigated the inhomogeneous phases of super�uid 3He con�ned to a two-

dimensional lattice of square, sub-micron-scale boundaries (�posts�) with translational

invariance in the third dimension. In the weak-coupling limit, and strong pair-breaking

by the boundary post, we �nd an instability from the normal state, at Tc1 < Tc for bulk

super�uid 3He, to an equal-spin pairing state with z-aligned polar orbital order. For �xed

lattice spacing, L, there is a critical post dimension, dc, above which only the periodic

polar phase is stable. For d < dc we �nd a second, low-temperature phase onsetting at

Tc2 < Tc1 from the polar phase to a periodic �B-like� phase. The low temperature phase
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is inhomogeneous, anisotropic and preserves time-reversal symmetry, but unlike the bulk

B-phase has only DL+S4h point symmetry. This or similar geometries may be realizable

with current nano-fabrication processes, and could therefore provide a potential avenue

for experimental studies of the polar phase in 3He in well de�ned geometries.[108] Further

studies of 3He in geometries with periodic con�nement are expected to yield a large number

of tunable phases with unique broken symmetries and topological properties that are not

realized in bulk super�uid 3He.
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CHAPTER 3

Strong-coupling GL theory of 3He in a periodic con�ned geometry

3.1. Strong-coupling Corrections

One of the main weaknesses of weak-coupling Ginzburg-Landau theory is revealed by

considering the pressure dependence, or lack thereof, of the free energy functional. The

condensation energy density for a bulk homogeneous phase is given by

(3.1) f∗ =
−α(T )2

4β∗
,

where β∗ represents the characteristic sum of βis for a given stationary phase. The ratio of

condensation energies for any two phases is therefore pressure independent, which means

that the B phase is the sole stable phase even at high pressures. Furthermore, that ratio is

also temperature independent, so that even if there were some pressure where the A phase

became stable, there would still be no transition as a function of temperature between the

homogeneous A and B phases. These two results obviously contradict the experimental

super�uid 3He phase diagram and must be considered when interpreting weak-coupling

phase diagrams.

The weak-coupling material parameters are derived from the leading-order contribu-

tion to the full GL free-energy in an expansion in the small parameter T/TF , in which

∆Ωwc ∼ (Tc/TF )2EN and EN is the ground state energy of the normal Fermi liquid. The

next-to-leading-order corrections to the weak-coupling GL functional enter as corrections
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to the weak-coupling material coe�cients. These are of order ∆βsci ≈ βwci (T/TF )〈wi|A|2〉,

where 〈wi|A|2〉 is a weighted average of the square of the scattering amplitude for binary

collisions between quasiparticles on the Fermi surface.[72] At high pressures, these scat-

tering amplitudes largely compensate the small parameter T/TF , resulting in signi�cant

strong-coupling corrections.

Although we later calculated the ∆βsci s through a model of the quasiparticle scat-

tering amplitude, detailed in Chapter 8, for this work we used the most current values

available, inferred from experiment by Choi et al.[23] These experimentally determined

beta parameters by design �t the heat capacity jumps for the A and B transitions, which

should make them reasonably accurate when considering the energetics of A and B-like

phases at Tc. The A phase correctly appears as a stable phase above the polycritical point

pPCP = 21.22 bar; however, in the standard formulation of fourth-order GL theory it is

the only stable phase at all temperatures above that point.

The presence of a tricritical points at pPCP tells us that we may break the degener-

acy between the A and B free energies around that point by retaining the leading-order

temperature dependence of the ∆βsci s which determine the tricritical point. Near Tc,

the leading strong-coupling corrections scale as ∆βsci ∼ (T/TF )|βwc1 |, where the linear

scaling with T originates from the phase space for binary collisions of quasiparticles at

low temperatures. This is applied to the experimental βis by �rst subtracting o� the

weak-coupling contribution and then scaling the remaining strong-coupling piece as

∆βsci = βsci − βwci ,

βi(p, T ) = βwci +
T

Tc
∆βsci (p) .(3.2)
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Figure 3.1. (Left) Experimental strong-coupling ∆βscs estimated by Choi
et al[23] and plotted relative to their weak-coupling values. (Right) The
bulk phase diagram showing the regions of stability of the A (green) and B
(red) phases using the experimental βs with linear T scaling. The dashed
line is the experimental A-B transition line terminating at the experimental
PCP point.

When we extrapolate this linear T dependence for all temperatures and pressures, we �nd

that the resulting Ginzburg-Landau bulk phase diagram largely reproduces the experi-

mental TAB line as shown in Fig. 3.1. This modi�cation greatly enhances the region in

which GL theory is useful.
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3.1.1. Boundary Conditions

When dealing with con�ned geometries, appropriate boundary conditions are essential.

For planar surfaces there are two well-de�ned boundary conditions within Ginzburg-

Landau theory: maximal pairbreaking, representing quasiparticle retrore�ection, and min-

imal pairbreaking, representing quasiparticle specular re�ection.[5] If we take the surface

to lie along the x− y plane with 3He occupying z > 0, then maximal pairbreaking is the

condition

Aαi
∣∣
z=0

= 0 ∀i ∈ {x, y, z} ,(3.3)

while minimal pairbreaking corresponds to the boundary conditions

Aαz
∣∣
z=0

= 0 ,

∇zAαx
∣∣
z=0

= ∇zAαy
∣∣
z=0

= 0 .(3.4)

In many cases it would be useful to go beyond these boundary conditions which rep-

resent the two extremes of surface Cooper pair suppression. Some geometries may be

highly sensitive to surface conditions, and interesting physics could be hidden between

these two limits. Additional control over the boundary conditions would also provide a

test of whether a geometry might be sensitive to small variations in experimental surface

conditions. Ambegaokar, de Gennes, and Rainer[5] introduced the idea of a transverse

extrapolation length bT to describe the e�ect of an atomically rough surface on the or-

der parameter, where the order parameter components with relative momenta normal to

the surface were calculated to decrease to zero linearly past the boundary at a distance
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bT ≈ 0.54ξ0 for such a surface with di�use scattering. This idea can be turned into a more

general boundary condition in GL theory as

Aαz
∣∣
z=0

= 0 ,

∇zAαx
∣∣
z=0

=
1

bT
Aαx

∣∣
z=0

,

∇zAαy
∣∣
z=0

=
1

bT
Aαy

∣∣
z=0

,(3.5)

where bT = b
′
T ξ0 can be treated as a parameter that varies between the maximal pair-

breaking (b
′
T = 0) and minimal pairbreaking (b

′
T = ∞) limits. This �AdGR� boundary

condition is thus a useful extension of the typical Ginzburg-Landau boundary conditions.

3.2. Strong-coupling phase diagram

3.2.1. Stable phases

L

D

d

y

x

Figure 3.2. (Left) Diagram for the array of posts showing its relevant di-
mensions: the post size d, the con�nement length D, and the post spacing
L. (Right) For purposes of plotting the super�uid order parameter, we shift
the origin of the unit cell.
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We return to the periodic geometry discussed in Chapter 2 and diagrammed in Fig.

3.2[103]. While previously we only considered the equilibrium Pz and SB phases in weak-

coupling, now we consider a broader range of possible phases, including A-like phases

with chiral symmetry. To minimize the free-energy functional we switch to a simpler set of

algorithms for this system and the remaining Ginzburg-Landau work in this thesis. Spatial

discretization is done using a simple �nite di�erence scheme on a regular rectangular

lattice. We use a Quasi-Newton method, Limited-memory BFGS, as our numerical solver.

The details of L-BFGS are given in Appendix B.

In particular, the AC2 phase is an ESP phase which can be locally identi�ed with the

polar distorted bulk A phase. Like the A phase it breaks time-reversal symmetry and

has a local chiral axis l̂ which will spatially average to point along one of the four [110]

directions. It has the residual symmetry group

(3.6) H = SO(2)Sd
× Zspin

2 × DL,T,π
2h ,

where DL,T,π
2h consists of combined orbital, gauge, and time reversal operations. The AC2

order parameter is plotted in Fig. 3.3 along with its chiral axis. This phase is closely

related to a phase found in quasi-1D cylindrical pores described in Chapter 5.

Additional stable phases are possible through the formation of energetically favorable

domain walls which spontaneously break the lattice translation symmetry, and we describe

two which we know to be stable. These SA and SB phases consist of domains of the AC2 and

SB phases, respectively, separated by domain walls. The mechanism that stabilizes these

domain walls is the same that stabilizes the �stripe� phase[99] of super�uid 3He con�ned

in slabs discussed in Chapter 7. Both domain wall phases have the same organization,
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Figure 3.3. The AC2 order parameter for T = 0, P = 30 bar, L = 80 nm,
and D = 50 nm in units of the bulk amplitude ∆2

A = −α(T )/(4β245). The
l̂ vector is overlaid on the plot for the polar amplitude <Azz

shown in Fig. 3.4, and these phases may be calculated with a periodic unit cell of size

2L× 2L.

Both of these translational symmetry breaking phases have unique experimental sig-

natures. Unlike the AC2 phase, in the SA phase the l̂ vector spatially averages to zero over

a single unit cell. This means that its NMR signatures will be similar to that of the Polar

phase, and not the AC2 phase. In the SB phase, the spatial averages of AxxAyy, AxxAzz,

and AyyAzz will likewise be zero, greatly modifying the tipping angle dependence of its

NMR frequency shifts relative to the SB phase.

3.2.2. Phase Diagram

Figure 3.5 shows the regions of stability of all �ve super�uid phases. The Pz phase occurs

at the highest temperatures due to its Cooper pair relative momentum being solely along

the uncon�ned direction. All transitions involving the Pz phase are second order. All

phase transitions not involving the Pz or normal phase are �rst order, including the SA

and SB phases. The energetic advantage of the domain walls is highly dependent on the

relative values of L and D, and the energy separating SA from AC2 and SB from SB is
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Figure 3.4. The domain structure for both the SA and SB phases. For SA,
∆x = =Azx and ∆y = =Azy, while for SB, ∆x = <Axx and ∆y = <Ayy.
The domain walls are analogous those of the stripe B phase in the slab
geometry.

very small. Despite this, the tetracritical point separating those four phases is resolved

consistently for the dimensions of Fig. 3.5. These results suggest that ordered periodic

con�ning geometries could provide an extreme wealth of di�erent super�uid phases.
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Figure 3.5. Phase diagram for the periodic geometry as a function of T
and D with P = 30 bar, L = 80 nm, and maximal pairbreaking boundary
conditions. These values of P and L were chosen to cleanly separate the
�ve super�uid phases.
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CHAPTER 4

Line impurities and Nafen aerogels

4.1. Introduction

While the periodic post geometries may in principle by fabricated, there are similar

systems that are already being studied with 3He. Silica aerogels have porosities reaching

above 98%, can be produced with high homogeneity, and provide con�nement on the

order of the super�uid coherence length ξ0.[28, 70] Silica aerogels can be made globally

anisotropic through mechanical compression or chemical processing with uniaxial strains

up to ±30% .[71]

Another class of high porosity random solids are materials composed of amorphous alu-

minum oxide or aluminum hydroxide.[11] These �nematic� aerogels, which are extremely

anisotropic, consist of slender strands aligned along a common axis, with characteristic

diameters of ≈ 9 nm and interstrand spacing on the order of ξ0.[10] While several dif-

ferent varieties of these nematic aerogels have been studied, the the best studied are the

�nafen� aerogels, which lead to the �rst experimental observations of the polar phase in

super�uid 3He and the discovery of half-quantum vortices stabilized in the polar phase

under rotation.[29, 12]

The array of strands, aligned on average along the z direction, can be reasonably

mapped onto the model of a periodic array of posts. However, their small≈ 9 nm diameter

makes them too small relative to ξ0 to be treated as macroscopic objects with boundary
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conditions in the GL theory. To explicitly study these nematic aerogels, we replace the

�nite-diameter posts with line impurities described by an anisotropic scattering cross-

section.[73]

4.2. Ginzburg-Landau Theory

The same strong-coupling Ginzburg-Landau theory developed in Chapter 3 is em-

ployed here, with the posts and their boundary conditions being replaced with a new

impurity term in the free-energy functional.

Pair-breaking due to the line impurities is incorporated into the GL theory by extend-

ing the microscopic calculation of the correction to the free energy for isotropic impurities

to line impurities.[90] In the GL regime the impurity contribution to the free energy

density for line impurities with density nimp(r) is

(4.1) fimp = nimp(r)
k2
f

48πkBTc
Tr
(
A$A†

)
,

where $ is a second-rank tensor de�ned by the transport cross-section for a line impurity,

(4.2) $ij = 3〈 |n̂× k̂|ki
[
$(k̂)k̂j − 4π〈d$

dΩ′
(k̂, k̂′)k̂

′
j|n̂× k̂′|〉k̂′

]
〉k̂ ,

where d$/dΩ is the di�erential scattering cross-section, n̂ the nematic axis of the line

impurity and $(k̂) = 4π〈(d$/dΩ′)(k̂, k̂′)|n̂×k̂′|〉k̂′ is the total scattering cross-section. In

particular, for a line impurity with only isotropic in-plane scattering d$
dΩ

(k̂, k̂′) = ω0/π
2,

which gives $(k̂) = ω0 and $ij = 9π
32
ω0(δij − 1

3
n̂in̂j). For line impurities with larger radii
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we may parametrize the tensor as

(4.3) $ =


ω⊥ 0 0

0 ω⊥ 0

0 0 ω||

 ,

where ω|| corresponds to scattering principally along pz = p · n and ω⊥ to scattering

principally in the px − py plane.[78]

4.3. Impurity Lattice

The simplest model of nafen is a periodic square lattice of line impurities with lattice

spacing, L, determined by the mean distance between nafen strands. The resulting GL

functional reduces to that for 3He con�ned within a unit cell with a single line impurity

at the origin. The impurity contribution to the free energy density of 3He in the primitive

unit cell is then

fimp =
k2
f

48πkBTc

∑
α

{
ω‖|Aαz(0, 0)|2

+ ω⊥
(
|Aαx(0, 0)|2 + |Aαy(0, 0)|2

)}
.(4.4)

The values of ω‖ and ω⊥ depend on the quasiparticle-impurity potential and the quasipar-

ticle density of states at the Fermi energy.[78] We �t them based on the observed phase

transitions.
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ρ
(
g/cm3

)
r (nm) L (nm) ω⊥ (nm) ω‖ (nm)

nafen-72 72 4.0 52.8 4.25 0.704
nafen-90 90 4.0 47.8 4.25 1.073
nafen-243 243 4.5 32.3 4.25 0.667

Table 4.1. Experimental parameters for the nafen aerogels with corre-
sponding model parameters. The density, ρ, and the mean strand radius,
r, are from Asadchikov et al.[10]

The Normal-Polar transition, Tc0 , can be accurately determined from linear instability

analysis with a uniform order parameter as

Tc0
Tc

= 1− π2

4

ξ0(p)ω‖
L2

,(4.5)

where Tc is the transition temperature for pure bulk 3He. Table 4.1 shows the experimental

and �t values of ω‖ corresponding to three di�erent nafen samples measured by Dmitriev

et al.[29]

The in-plane cross-section, ω⊥, is more di�cult to �x, as it is a transition between

two inhomogeneous phases. For nafen-72 and nafen-90, we choose ω⊥ = 4.25 nm on the

basis of its agreement with experiment across most pressures. This is not possible with

nafen-243, since no phases were observed experimentally beyond the Polar phase. For

this reason, we use the same value of ω⊥ = 4.25 nm as a point of comparison. These

model parameters as well as the relevant experimental measurements are summarized in

Table 4.1. Figure 4.1 shows the spatial dependence of the polar phase order parameter in

the square lattice for both nafen-90 and nafen-243. As T approaches Tc0 from below, the

order parameter becomes increasingly uniform.
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Figure 4.1. Polar order parameter at p = 15 bar and T = 0.95Tc for the
square lattice models of both nafen-90, left, and nafen-243, right, in units
of ∆P =

√
|α|/2β12345.

4.4. Phase Diagram

The calculated phase diagrams for all three Nafen samples are shown in Figure 4.2.

The Normal-Polar phase transition is in excellent with experiment across all samples and

pressures. Similarly, the calculated Polar-A transition matches the Polar-A transition

reported by Dmitriev et al in both nafen-72 and nafen-90[29]; in nafen-243, this transition

was not seen by Dmitriev et al. Few experimental data points are available for the B-A

transition on warming, and only in Nafen-90; however, the calculated transition curve is

still largely consistent with the available points at moderate pressure reported by Dmitriev

et al.[29]

4.5. Disorder in the Lattice

The strands that make up the nafen aerogels do not form a perfect lattice, and this

is expected to lead to inhomogeneities in the sample with varying degrees of con�nement

and in-plane anisotropy. We can model this disorder by considering larger �supercells�
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Figure 4.2. Phase diagrams for nafen-72, nafen-90, and nafen-243, with
points denoting the phase transitions observed by Dmitriev et al. The lines
show the calculated transitions on the square lattice using the parameters
in Table 4.1.

containing many impurity sites. To generate relatively large spatial inhomogeneities,

we �x the porosity of the supercell and place the impurities in space selected from a

uniform probability distribution. An example of such a supercell is shown in Fig. 4.3,

which illustrates how the suppression of the order parameter varies together with the local

impurity density.

The dashed lines in Figure 4.4 are the phase transitions calculated for the supercell

in Fig. 4.3, using the same values for ω‖ and ω⊥ as with the regular nafen-90 lattice.
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Although the inhomogeneous regions do shift the transition temperatures higher towards

Tc, the magnitude of the shift is small and the pressure dependence of the transitions

remains largely the same. This would suggest that the square lattice model is adequate

to predict phase transitions in the nafen aerogels even in the presence of strong in-plane

disorder. However, upon checking the predicted NMR frequency for both disordered and

periodic models, we found substantial discrepancies with experiment.

4.6. NMR and further models

The experiments by Dmitriev et al [29] to determine the phase diagram of super�uid

3He in nafen aerogels were done using NMR frequency shifts to detect the spin and orbital

correlations of the super�uid phases. These shifts are calculated theoretically from the

inhomogeneous solutions of the order parameter obtained from GL theory based on the

theory of the NMR frequency shifts described in Chapter 5. The GL frequency shifts
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shown in Figure 4.5 for both the periodic lattice and disordered supercell model of nafen

are very similar to each other and signi�cantly larger than that found in experiment.

A possible reason for the discrepancy would be the presence of substantial correlated

disorder. To generate a more correlated disorder in the supercell we start as before by

�rst �xing the number of impurities based on the nafen porosity. A relatively small

initial number of nucleation sites are randomly placed. Starting from each nucleation

site, additional sites are chosen by taking steps sampled from a Lévy distribution with

median corresponding to the average interstrand spacing and placing an impurity at each

step. Figure 4.6 shows a representative of the modi�ed Lévy distribution. For the NMR

calculations, the value of ω‖ was tuned to match the apparent experimental Tc while the

value of ω⊥ was tuned to roughly match the initial NMR slope. This new model produced

remarkably better agreement with the experimental NMR data.

One thing lost with the modi�ed Lévy model is a well-de�ned Polar-A transition.

Figure 4.7 shows the relatively broad temperature range in which the supercell contains
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text.

both polar distorted A phase regions alongside regions of pure polar phase. The two-

phase mixture is due to large �uctuations in the impurity density, with rare�ed regions

favoring the chiral phase interspersed with denser regions of polar phase. At this time it

is not clear if nafen aerogels exhibit the large �uctuations in local density suggested by

the modi�ed Lévy distribution.
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66

CHAPTER 5

Publication: Super�uid phases of 3He in nanoscale channels

5.1. Abstract

Con�nement of super�uid 3He on length scales comparable to the radial size of the

p-wave Cooper pairs can greatly alter the phase diagram by stabilizing broken symmetry

phases not observed in bulk 3He. We consider super�uid 3He con�ned within long cylindri-

cal channels of radius 100 nm, and report new theoretical predictions for the equilibrium

super�uid phases under strong con�nement. The results are based on the strong-coupling

formulation of Ginzburg-Landau theory with precise numerical minimization of the free

energy functional to identify the equilibrium phases and their regions of stability. We in-

troduce an extension of the standard GL strong-coupling theory that accurately accounts

for the phase diagram at high pressures, including the tri-crital point and TAB(p) line

de�ning the region of stability for the bulk A-phase. We also introduce tuneable bound-

ary conditions that allow us to explore boundary scattering ranging from maximal to

minimal pairbreaking, and report results for the phase diagram as a function of pressure,

temperature, and boundary conditions. Four stable phases are found: a polar phase stable

in the vicinity of Tc, a strongly anisotropic, cylindrical analog of the bulk B phase stable

at su�ciently low temperatures, and two chiral A-like phases with distinctly di�erent

orbital symmetry, one of which spontaneously breaks rotation symmetry about the axis

of the cylindrical channel. The relative stability of these phases depends sensitively on
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pressure and the degree of pairbreaking by boundary scattering. The broken symmetries

exhibited by these phases give rise to distinct signatures in transverse NMR resonance

spectroscopy. We present theoretical results for the transverse NMR frequency shifts as

functions of temperature, the rf pulse tipping angle and the static NMR �eld orientation.

5.2. Introduction

Super�uid 3He is a spin-triplet, p-wave Fermi super�uid, where not only is symmetry

spontaneously broken but also spin and orbital rotation symmetries SO(3)S × SO(3)L.

There are a myriad of ways to break these symmetries, leading to many potential su-

per�uid phases. In bulk 3He, in the absence of a magnetic �eld, only two stable phases

are observed: the A phase and the B phase. However, other phases may be stabilized by

introducing symmetry breaking terms, such as a magnetic �eld, impurities, or boundaries,

which couple to the spin and orbital degrees of freedom of the Cooper pairs. In particular,

con�ning surfaces suppress Cooper pairs with relative momentum normal to the surface,

which leads to a long-range orienting e�ect on the orbital order parameter.[5] When con-

�ned within distances comparable to the Cooper pair coherence length, ξ0 ≈ 160− 770Å

depending on pressure, the in�uence of the con�ning surfaces can stabilize phases much

di�erent than those of bulk super�uid 3He.

Advances in nanoscale fabrication techniques,[50] as well as the production of porous

materials with interesting structure on the coherence length scale,[71, 11] have made

studies of the e�ects of strong con�nement on broken symmetry phases of topological

quantum materials feasible, and have brought a surge of research on the e�ects of con�ne-

ment on super�uid 3He.[25, 66, 59, 58, 106] One of the simplest con�ning geometries is

the pore, a long, small radius cylinder. The pore has long been of theoretical interest due
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to the number of di�erent A-phase textures that might be stabilized,[54] as well the e�ects

of radial con�nement on the super�uid phase diagram.[32, 89, 53] Nuclear magnetic res-

onance (NMR) experiments in 2µm diameter pores have observed A-like textures,[37, 83]

but have had di�culty de�nitively identifying the textures present.[19] New fabrication

techniques for porous membranes[55] have made available pores with diameters below

1µm, which, coupled with an array of new experimental techniques,[35, 109, 50, 75]

open new windows into super�uid 3He under strong con�nement.

In this paper we consider an in�nitely long cylindrical pore of radius R = 100 nm,

and we study the equilibrium phases in Ginzburg-Landau (GL) theory and identify their

signatures in nonlinear NMR spectroscopy. By incorporating pressure dependent strong-

coupling corrections to the GL material coe�cients, and a tuneable pairbreaking boundary

condition, we obtain phase diagrams as functions of temperature, pressure, and surface

condition. Finally, we derive expressions for the transverse NMR frequency shifts of the

equilibrium phases of 3He con�ned in the pore as functions of rf pulse driven tipping

angle, and show how they vary with order parameter symmetry and orientation of the

static magnetic �eld.

5.3. Ginzburg-Landau Theory

We use Ginzburg-Landau theory calculations of the super�uid 3He order parameter

and free energy to determine the stable phases present in the pore. The order parameter

for super�uid 3He, given by the manifold of spin-triplet, p-wave BCS pairing states, may

be represented by the 2× 2 gap matrix,

(5.1) ∆̂(p̂) =
∑
αi

Aαi (iσασy) p̂i ,
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which depends on the direction of the relative momentum p̂ of the Cooper pairs, and is

parameterized by the 3× 3 complex matrix order parameter A. The matrix A transforms

as a vector under spin rotations, and separately as a vector under orbital rotations. In

cylindrical coordinates Aαi can be represented as

(5.2) A =


Arr Arφ Arz

Aφr Aφφ Aφz

Azr Azφ Azz

 ,

where we have chosen aligned spin and orbital coordinate axes.

The presence of boundaries reduces the possible residual orbital symmetries of the

super�uid phases to be elements of the point group of the con�ning cylindrical geome-

try. However, this reduction in symmetry is due to interactions atomically close to the

boundary surface; away from the surface, the 3He particle-particle interactions are still

invariant under the maximal symmetry group of bulk 3He. Thus, the Ginzburg-Landau

free energy functional is given by the invariants of the bulk 3He symmetry group,

(5.3) Gbulk = U(1)× SO(3)S × SO(3)L × P× T ,

which is the product of global gauge rotations, spin rotations, orbital rotations, space

inversion, and time-reversal, respectively. The resulting free energy functional is

(5.4) Ω[A] =

∫
V

d3r (fbulk[A] + fgrad[A]) .
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The terms fbulk and fgrad are given by

fbulk[A] = α(T )Tr
(
AA†

)
+ β1

∣∣Tr(AAT )
∣∣2 + β2

[
Tr(AA†)

]2
+ β3 Tr

[
AAT (AAT )∗

]
+ β4 Tr

[
(AA†)2

]
+ β5 Tr

[
AA†(AA†)∗

]
,(5.5)

fgrad[A] = K1A
∗
αj,kAαj,k +K2A

∗
αj,jAαk,k +K3A

∗
αj,kAαk,j

+
2

r
Re
{
K1

(
A∗rjAφj,j − A∗φjArj,φ + A∗irAiφ,φ − A∗iφAir,φ

)
+K2

(
A∗rφAφj,j − A∗φφArj,j + A∗irAij,j

)
+K3

(
A∗rjAφφ,j − A∗φjArφ,j + A∗irAiφ,φ − A∗iφAiφ,r

)}
+

1

r2

{
K1

[
A∗rjArj + A∗φjAφj + A∗irAir + A∗iφAiφ + 4Re(A∗rφArφ − A∗rrAφφ)

]
+(K2 +K3)

[
|Arφ|2 + |Aφφ|2 + A∗irAir + 2Re(A∗rφAφr − A∗rrAφφ)

]}
,(5.6)

where A† (AT ) is the adjoint (transpose) of A, and

(5.7) Aαi,j ≡
{
∂Aαi
∂r

,
1

r

∂Aαi
∂φ

,
∂Aαi
∂z

}
j

.

The term fbulk holds for any orthogonal coordinate system, whereas fgrad is coordinate

speci�c and given in the form derived by Buchholtz and Fetter.[20] In the weak-coupling
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BCS limit the material parameters,

αwc(T ) =
1

3
N(0)(T/Tc − 1) ,(5.8)

2βwc1 = −βwc2 = −βwc3 = −βwc4 = βwc5 ,(5.9)

βwc1 = − N(0)

(πkBTc)2

{
1

30

[
7

8
ζ(3)

]}
,(5.10)

Kwc
1 = Kwc

2 = Kwc
3 =

7ζ(3)

60
N(0) ξ2

0 ,(5.11)

are determined by the normal-state (single-spin) density of states at the Fermi energy,

N(0), the bulk super�uid transition temperature, Tc, and the Fermi velocity, vf . Note

that ξ0 = ~vf/2πkBTc is the Cooper pair correlation length, which varies from ξ0 ' 770Å

at p = 0 bar to ξ0 ' 160Å at p = 34 bar. The equilibrium order parameter is obtained

from minimization of the free energy functional by solving the Euler-Lagrange equations

obtained from the functional gradient δΩ[A]/δA† = 0.

5.3.1. Strong-coupling Corrections

The weak-coupling GL material parameters are derived from the leading order contri-

bution to the full Luttinger-Ward free energy functional as an expansion in the small

parameter T/TF , where TF = EF/kB ≈ 1K is the Fermi temperature. In particular,

Ωwc ∼ (Tc/TF )2EN , where EN is the ground-state energy of the normal Fermi liquid.

The next-to-leading corrections to the weak-coupling GL functional enter as corrections

to the fourth-order weak-coupling material coe�cients. These corrections are of order

∆βsci ≈ βwci (T/TF )〈wi|A|2〉, where 〈wi|A|2〉 is a weighted average of the square of the

scattering amplitude for binary collisions between quasiparticles on the Fermi surface.[72]
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Figure 5.1. The bulk phase diagram showing the regions of stability of the
A (blue) and B (red) phases using the experimental βs with linear T scaling.
The dashed line is the experimental A-B transition line terminating at the
experimental PCP point.

At high pressures, scattering due to ferromagnetic spin �uctuations largely compensates

the small parameter T/TF , resulting in substantial strong-coupling corrections.[81]

While the ∆βsci 's may be calculated theoretically through a model of the quasiparticle

scattering amplitude[81], the most current determinations come from comparison with

experiment.[23] 1 In the main analysis presented here we use the set of {βi} reported by

Choi et al.[23] These β-parameters reproduce the heat capacity jumps for the A and B

transitions, which is essential when considering the energetics of A and B-like phases. In

particular, the A phase correctly appears as a stable phase above the polycritical point

pPCP = 21.22 bar; however, in fourth-order GL theory it is the only stable phase at all

temperatures above the PCP, i.e. the standard fourth-order GL theory fails to account

for the A-B transition line, TAB(p). The missing transition line is traced to the omission

of the temperature dependence of the fourth-order β parameters in the neighborhood

of a tri-critical point. In particular, the tri-critical point is de�ned by the intersection

1This is no longer true. We report more accurate strong-coupling beta parameters in Chapter 8.
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of the second-order transition line given by α(Tc, p) = 0, and the �rst-order boundary

line separating the A- and B-phases given by ∆βAB(TAB, p) ≡ βA − βB = 0. Note that

βA ≡ β245 and βB ≡ β12+ 1
3
β345 where we use the stanadard notation, βijk... = βi+βj+βk+

. . ..[72] At the PCP we have TAB(pPCP) = Tc(pPCP). But, for p > pPCP the lines separate

and we must retain both the temperature and pressure dependences of ∆βAB(T, p) to

account for TAB(p) in the vicinity of pPCP. This is achieved with remarkable success by

making a single correction to the standard treatment of strong-coupling corrections within

GL theory. Near Tc the leading-order strong-coupling corrections to the weak-coupling β

parameters scale as ∆βsci ∼ (T/TF )|βwc1 |, where the linear scaling with T/TF originates

from the limited phase space for binary collisions of quasiparticles at low temperatures.

Resolving the degeneracy between the A- and B-phases near pPCP is achieved by retaining

the linear T dependence of the strong-coupling corrections to the β parameters. Thus, we

separate the β parameters determined at p and Tc(p) into the weak- and strong-coupling

parts using Eq. 5.9, and then scale the strong-coupling corrections, ∆βsci , determined at

Tc(p) in Ref. [23] and listed in Tables 5.1 and 5.2,

βi(T, p) = βwci (p, Tc(p)) +
T

Tc
∆βsci (p) ,(5.12)

with ∆βsci (p) = βi(p, Tc(p))− βwci (p, Tc(p)) .(5.13)

The resulting bulk phase diagram predicted by these GL parameters accounts remark-

ably well for the experimental A-B transition line, TAB(p), as shown in Fig. 5.1, as well as

the heat capacity jumps and the PCP along Tc(p). This result for the bulk phase diagram

gives us con�dence in our predictions for the equilibrium phases of con�ned 3He based on
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strong-coupling GL theory. The main analysis and predictions for inhomogeneous phases

of super�uid 3He reported here are based on the strong-coupling material parameters from

Ref. [23] combined with the known pressure-dependent material parameters, vf , Tc, and

ξ0 as listed in Table 5.1, and the temperature scaling in Eq. 5.12 that accounts for the

relative reduction of strong-coupling e�ects below Tc.[82]

5.3.2. Sauls-Serene β parameters

The individual ∆βsci parameters reported by Choi et al.[23] di�er from those calculated

from leading order strong-coupling theory, or those obtained from the analysis of di�erent

experiments, even though the di�erent sets predict the same bulk phase diagram.

As a test of the sensitivity of our GL predictions for new phases in con�ned geometries

to the details of the model for the strong-coupling GL β parameters we also calculated

the phase diagram based on the {βi} predicted by the leading order strong-coupling

theory.[72, 81] The theoretical values for the strong-coupling β parameters are determined

by angular averages of the normal-state quasiparticle scattering rate. The analysis of

Sauls and Serene is based on a quasiparticle scattering amplitude that accounts for the

e�ective mass, the ferromagnetic enhancement of the spin susceptibility and the normal-

state transport coe�cients.[81] The Sauls-Serene β-parameters, summarized in Tables

5.3 and 5.4, reproduce the relative stability of the bulk A and B phases, albeit with an

elevated polycrital pressure of pPCP ' 28 bar.

The results for the phase diagram with these two di�erent sets of ∆βsci , discussed in

Sec. 5.5, give robust predictions for the relative stabilty of new inhomogeneous phases of

3He con�ned in cylindrical pores.
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5.3.3. Boundary Conditions

For planar surfaces there are two limiting boundary conditions applicable within GL

theory: maximal pairbreaking, resulting from retro-re�ection of quasiparticles,[77] and

minimal pairbreaking, resulting from specular re�ection.[5] If we use cartesian coordinates

and take the surface to lie along the x− y plane with 3He occupying z > 0, then maximal

pairbreaking is de�ned by the condition

Aαi
∣∣
z=0

= 0 ∀i ∈ {x, y, z} ,(5.14)

while minimal pairbreaking is de�ned by the conditions

Aαz
∣∣
z=0

= 0 ,

∇zAαx
∣∣
z=0

= ∇zAαy
∣∣
z=0

= 0 .(5.15)

In a cylindrical pore, additional care needs to be given to the boundary conditions

due to the presence of curvature on scales comparable to the coherence length. While

the boundary condition for maximal pairbreaking is not modi�ed, the curved surface of

the pore modi�es the minimal pairbreaking boundary condition for the azimuthal orbital

components of the order parameter, Aαφ. Fetter and Buchholtz proposed a minimal

pairbreaking boundary condition in GL theory based on the Euler-Lagrange boundary

term of the GL equations with a cylindrical surface,[20]

∂Aαz
∂r

∣∣∣
r=R

= 0 , Aαr|r=R = 0 ,(5.16)

∂Aαφ
∂r

∣∣∣
r=R

=
1

R
Aαφ|r=R .(5.17)
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We introduce an extension of these boundary conditions which interpolates between the

two extremes of minimal and maximal pairbreaking. The extension is based on Ambe-

gaokar, de Gennes, and Rainer's (AdGR) analysis[5] of the e�ects of di�use scattering

by an atomically rough surface on the transverse components of the p-wave orbital order

parameter. AdGR showed that di�use scattering leads to a boundary condition in which

the components that are transverse to the average normal direction of the surface are

�nite, but extrapolate linearly to zero past the boundary at a distance bT = 0.54ξ0. This

idea can be turned into a more general boundary condition for GL theory in a cylindrical

geometry as

Aαr|r=R = 0 ,

∂Aαz
∂r

∣∣∣
r=R

= − 1

bT
Aαz|r=R ,

∂Aαφ
∂r

∣∣∣
r=R

=

(
1

R
− 1

bT

)
Aαφ|r=R .(5.18)

where b′T ≡ bT/ξ0 can be treated as a parameter that varies between the maximal pair-

breaking (b′T → 0) and minimal pairbreaking (b′T →∞) limits. This generalized �AdGR�

boundary condition provides a useful extension of the typical Ginzburg-Landau boundary

conditions.

5.4. Super�uid Phases

The pore geometry reduces the maximal symmetry group for con�ned 3He to

(5.19) G = SO(3)S × D∞h × T
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where D∞h is the point group of the pore and is obtained from the point group of the

circle, C∞v = SO(2) × {e, πzx}, by D∞h = C∞v × {e, πxy}, where πxy is a re�ection

through the x − y plane. By numerically minimizing the GL free energy with respect

to all order parameter components we identify four equilibrium super�uid phases for the

200 nm diameter pore. In these calculations we assume the phases are translationally

invariant along the z axis.

Recently Aoyama has shown that a translational symmetry breaking �stripe� B-like

phase along the axis of the channel may be possible in cylindrical geometries, stabilized

with an anisotropic boundary condition that implements specular re�ection for scattering

along z, but retro-re�ection in the r-φ plane. This enhances Aαz on the boundary relative

to Aαφ.[9] Our boundary condition has the opposite anisotropy. Thus, with our formula-

tion it is unclear if conditions allow for an energetically stable B-like stripe phase. This

question will be addressed in a separate report.

5.4.1. Polar (Pz) Phase

Radial con�nement in a cylindrical pore leads to the stability of the one-dimensional polar

(Pz) phase below Tc1 ≤ Tc, where Tc1 is the transition temperature from the normal state.

The Pz phase is a time-reversal invariant equal-spin pairing (ESP) phase with an order

parameter of form

(5.20) Aαi = ∆z(r) d̂α ẑi ,

with radial pro�le shown in Fig. 5.2. The Pz order parameter becomes spatially homo-

geneous with Tc1 → Tc in the limit of specular scattering, and will be the �rst super�uid
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Figure 5.2. Order parameter amplitudes for the Pz phase as a function
of r at p = 26 bar and T = 0.5Tc for retro-re�ection (maximal pair-
breaking), di�use (b′T = 0.54), and specular (minimal pair-breaking) bound-
ary conditions. Values are scaled by the uncon�ned polar phase amplitude
∆2
P = |α(T )|/2β12345. For minimal pairbreaking boundary conditions the

Pz phase is spatially homogeneous within the pore.

phase upon cooling from the normal state, except for the exceptional case of perfect specu-

lar re�ection and perfect cylindrical cross-section (see Sec. 5.4.3). The residual symmetry

group of the Pz phase is H = SO(2)Sd
×Zspin

2 ×DL,π
∞h×T, where DL,π

∞h ≡ C∞v×{e, eiππxy}.

Thus, the Pz phase breaks spin rotational symmetry but retains the full orbital point

group, D∞h, by combining it with an element of the gauge group. Since the radius

R = 100 nm of the pore is much less than the dipole coherence length, ξD ≈ 10− 20µm,

the spin quantization axis, d̂, for the ESP state is to high accuracy uniform in space. All

transitions to and from the Pz phase that we �nd are second order.
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Figure 5.3. Order parameter amplitudes for the BSO(2) phase as a function of
r at p = 26 bar and T = 0.5Tc. The left �gure depicts maximal pairbreaking
(b′T = 0) while the right shows minimal pairbreaking (b′T =∞). Values are
scaled by the bulk B phase order parameter, ∆2

B = |α(T )|/6(β12 + 1/3β345).

5.4.2. BSO(2) Phase

The BSO(2) phase is the analogue to the bulk B phase for the cylindrical pore geometry,

and is stabilized at low temperatures and preferentially favored by strong pairbreaking

on the boundary. The residual symmetry of the BSO(2) phase is H = DL+S
∞h × T, joint spin

and orbital D∞h transformations combined with time-reversal. The order parameter is

represented as

(5.21) Aαi = ∆r(r)r̂αr̂i + ∆φ(r)φ̂αφ̂i + ∆z(r)ẑαẑi ,

with the radial pro�les shown in Fig. 5.3.

5.4.3. ASO(2) Phase

In addition to the Pz and BSO(2) phases, we �nd two stable chiral A-like phases. The higher

symmetry ASO(2) phase, reminiscent of the �radial disgyration texture� of bulk 3He-A, is

favored by weak pair-breaking on the boundary. The residual symmetry group of the
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ASO(2) phase is H = SO(2)Sd
×Zspin

2 ×DL,T
∞h , where D

L,T
∞h ≡ SO(2)×{e, tπzx}×{e, eiπtπxy}

and t is time reversal. The order parameter takes the form

(5.22) Aαi = d̂α[∆z(r)ẑi + i∆φ(r)φ̂i]

which is transverse to the pore boundary with radial pro�les shown in Fig. 5.4. The chiral

vector,

(5.23) ~l = −∆z(r)∆φ(r) r̂ ,

shown in Fig. 5.5, is radial except at the origin where ~l vanishes; the gradient terms

in the GL functional require ∆φ = 0, yielding a polar order parameter at the core of

the cylindrical pore. The resulting chiral �eld is analogous to a radial disgyration - a

topological line defect of bulk 3He-A. This form for ~l results in a zero average of ~l(r) over

the cylindrical pore, which leads to distinctly di�erent NMR frequency shift for the ASO(2)

phase as compared with a chiral state with a non-vanishing average chiral axis, 〈~l(~r)〉 6= 0,

as discussed in Sec. 5.6. For the specular boundary condition proposed in Ref. [20] (Eq.

5.18 with b′T → ∞), the ASO(2) phase entirely supplants the Pz phase, and onsets at the

bulk transition temperature Tc, despite being spatially inhomogeneous.

5.4.4. AC2 Phase

A lower symmetry A-like phase, denoted as AC2 , is an inhomogenous version of the the

circular disgyration, or Pan Am texture.[54, 37] This phase spontaneously breaks con-

tinuous SO(2)L symmetry of the cylinder and, unlike the ASO(2) phase, has a �nite value

for the spatially averaged chiral axis, 〈~l〉 6= 0, that may point in any direction in the x− y
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Figure 5.4. Order parameter amplitudes for the ASO(2) phase as a function of
r at p = 26 bar and T = 0.5Tc. The left �gure depicts maximal pairbreaking
while the right shows minimal pairbreaking. Values are scaled by the bulk
A phase order parameter, ∆2

A = |α(T )|/4β245.
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Figure 5.5. Chiral axis l̂ for the ASO(2) phase at p = 26 bar, T = 0.5Tc, and
minimal pairbreaking boundaries. Arrow lengths are scaled by |∆φ|.

plane. For convenience we take 〈~l〉 ‖ ŷ, with an order parameter of the form

(5.24) Aαi = d̂α[∆z(r, φ)ẑi + i∆r(r, φ)r̂i + i∆φ(r, φ)φ̂i] .

The residual symmetry group is then H = SO(2)Sd
× Zspin

2 × DL,T
2h , where DL,T

2h ≡
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Figure 5.7. Chiral axis l̂ for the AC2 phase at p = 26 bar and T = 0.5Tc.
(Left) Maximal pairbreaking boundaries result in a nearly uniform l̂ direc-
tion. (Right) Minimal pairbreaking, on the other hand, gives the charac-
teristic �Pan Am� con�guration. Arrow lengths are scaled by (∆2

r + ∆2
φ)1/2.

{e, tc2, πzx, tπzy}× {e, eiπtπxy}. The AC2 phase has a pair of disgyrations on the bound-

ary along an axis perpendicular to ẑ and 〈~l〉, as can be seen for the case of minimal

pairbreaking in Fig. 5.7. The AC2 phase is energetically favorable relative to the ASO(2)
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phase for strong pairbreaking on the boundary. In this case the boundary e�ectively

�censors� the energy cost of the AC2 disgyrations. The suppression of the disgyrations is

evident in Fig. 5.7.

The AC2 phase is the only phase we �nd with broken axial symmetry, and thus explicit

φ dependence. It is convenient to expand its amplitudes in terms of sines and cosines that

respect symmetry,

Aαi = d̂α

∞∑
j=0

{
i∆r,j(r) cos[(2j + 1)φ] r̂i

−i∆φ,j(r) sin[(2j + 1)φ] φ̂i + ∆z,j(r) cos(2jφ) ẑi

}
.(5.25)

Numerical solutions to the GL equations converge rapidly as a function of the number of

azimuthal harmonics, which greatly simpli�es the numerical minimization compared to

allowing for an arbitrary φ dependence.

5.5. Phase Diagram

The phase diagram for super�uid 3He con�ned within a pore is strongly dependent

upon the boundary conditions. We �rst �x R = 100 nm and consider the phase diagram

for four di�erent values of b′T , ranging from minimal to maximal pairbreaking as shown in

Figures 5.8 and 5.9. For strong pairbreaking (Fig. 5.8) the phase diagram is dominated

by the BSO(2), AC2 , and Pz phases. In this regime, our phase diagram di�ers from previous

calculations[53, 32] due to the appearance of the AC2 phase, which for strong pairbreaking

has a lower free energy than that of the ASO(2) phase. As pairbreaking decreases on the

boundary, the ASO(2) phase appears at high pressure, with a tri-critical point separating

the BSO(2), ASO(2) and AC2 phases. The ASO(2) phase occupies most of the super�uid
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Figure 5.8. Phase diagrams for b′T = 0 (maximal pairbreaking) and b′T =
0.1. The ASO(2) phase does not appear at all for maximal pairbreaking; as
pairbreaking at the boundary is relaxed it is stabilized at high pressure and
displaces the BSO(2) and AC2 phases.

phase diagram for minimal pairbreaking boundaries. It must be noted, however, that any

deviation from the perfect specular condition b′T =∞ will suppress Aαφ at the boundary



85

0 0.5 1 1.5 2 2.5

T/mK

0

5

10

15

20

25

30

p
/
b
a
r

BSO(2)

ASO(2)

Pz

b′T = 0.54

0 0.5 1 1.5 2 2.5

T/mK

0

5

10

15

20

25

30

p
/
b
a
r

B

ASO(2)

b′T =∞

Figure 5.9. Phase diagrams for b′T = 0.54 and b′T =∞ (minimal pairbreak-
ing). As pairbreaking decreases, the AC2 phase is suppressed completely and
the stable range of the BSO(2) phase is decreased signi�cantly. For minimal
pairbreaking the ASO(2) phase onsets at T = Tc with the Pz phase absent.

near Tc, and thus the Pz phase should always be expected to be the highest temperature

super�uid phase observed experimentally.
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p = 26 bar and the β parameters of Ref. [23].

We also consider the in�uence of the pore radius, R, on stability of the various phases.

Fig. 5.10 shows the phase diagram of stable phases in a cylindrical channel as a function

of the pore radius relative to the coherence length, R/ξ0. For a range of su�ciently small

R/ξ0 only the Pz phase is stable; the BSO(2), AC2 , and ASO(2) phases enter the diagram

with increasing R. The ASO(2) phase is favored over the AC2 phase for large radii; however,

the relative stability of these two chiral phases is sensitive to boundary scattering, i.e. b′T ,

as shown in Figs. 5.8 and 5.9. For larger radii of order the dipole coherence length,

R ≈ ξD ≈ 10µm, the spin quantization axis, d̂, for the AC2 and ASO(2) phases is no longer

constrained to be spatially uniform, and for R� ξD these phases become �dipole-locked�

with d̂ ‖ l̂.[20]

We also tested the robustness of our predictions for the phase diagram against a

di�erent set of strong-coupling β parameters, speci�cally the Sauls-Serene set of ∆βsci

calculated on the basis of leading order strong-coupling theory[72] based on a quasiparticle
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Figure 5.11. Phase diagram for b′T = 0.1 using the β parameters of Sauls
and Serene.[81] The resulting phase boundaries are largely left unchanged
except for the shift upward in pressure of the tricritical point, roughly
corresponding to the di�erence of the Choi et al[23] polycritical point,
pPCP ≈ 21 bar, and the Sauls and Serene polycritical point, pPCP ≈ 28 bar.

scattering amplitude that accounts for both the normal-state e�ective mass, ferromagnetic

enhancement of the spin susceptibility and transport coe�cients.[81] These β parameters

account for the relative stability of the bulk A- and B-phases, but have distinctly di�erent

predictions for the pressure dependences of the strong-coupling corrections: ∆βsci . The

key result is that the structure of the phase diagram is unchanged with a di�erent set of

strong-coupling β parameters, i.e. the relative stability of the Pz, BSO(2), AC2 , and ASO(2)

phases is unchanged between the two sets of strong-coupling β parameters. This is shown

in Fig. 5.10.
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5.6. NMR Signatures

The super�uid phases obtained for the narrow pore neglect the nuclear magnetic dipole

energy. This is an excellent approximation since the nuclear dipole-dipole interaction

energy for dipoles separated by the mean interatomic spacing a is very small compared to

the pairing energy scale, 1
a3

(γ~/2)2 ≈ 10−4
mK� Tc ≈ mK. Nevertheless, the dipole energy

gives rise to two important e�ects - (i) it partially resolves relative spin- orbital degeneracy

of the equilibrium states, and (ii) it generates a dynamical torque from the Cooper pairs

acting on the total spin when the latter is driven out of equilibrium. The dipolar torque

leads to NMR frequency shifts that are characteristic signatures of the broken symmetry

phases. In the following we report results for the nonlinear NMR frequency shifts that are

��ngerprints� of the Pz, ASO(2), AC2 , and BSO(2) phases. Our analysis is based on a spatial

and temporal averaging of the Leggett equations[48] for the nonlinear spin dynamics of

super�uid 3He.

The dipolar interaction breaks relative spin-orbit rotation symmetry, thus reducing

the maximal rotational symmetry from SO(3)S × SO(3)L to SO(3)L+S. This is re�ected

by additional terms in the GL free energy functional, ∆ΩD =
∫
V
d3r fD[A], where

(5.26) fD = gD
(
|TrA|2 + TrAA∗

)
is the mean pairing contribution to the nuclear dipolar interaction energy, with gD ∼

(N(0)γ~/2)2 > 0. A convenient expression for gD is gD = χ
2γ2

Ω2
A/∆

2
A, where the A-phase

susceptibility, χ = χN , is equal to the normal-state spin susceptibility, ∆A is the bulk

A-phase order parameter, and ΩA is the corresponding longitudinal resonance frequency.

The dipole energy is a weak perturbation that resolves (partially) the relative spin- and
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orbital degeneracy of the zero-�eld phases of the cylindrical pore. In particular, for the

ESP states of the form Aαi = d̂α ∆i(~r) the dipolar energy is given by fD = gD |d̂·~∆|2, which

is minimized if d̂ locally orients perpendicular to the two dominant orbital components.

However, spatial variations of the order parameter cost gradient energy. In the case

of the orbital components the spatial pro�les are already optimized by minimizing the

GL functional subject to the boundary conditions of the con�ning geometry. For the

inhomogeneous phases of super�uid 3He in a pore of radius R = 100 nm, the spatial

variations of the orbital components occur on a length scale that is short compared to the

dipole coherence length, ξD ≡
√
gD/K1 ≈ 10µm. Thus, spatial variations of d̂ on such

short length scales of the pore geometry cost much more than the dipole energy. As a

result d̂ �unlocks� from the local variations of the orbital order parameter. This allows us

to average the orbital components over the cross-section of the cylindrical pore and treat

the spin degrees of freedom as spatially uniform on the scale of R. For the non-ESP BSO(2)

phase the spin structure is described by an orthogonal matrix, R[α, β, γ], representing the

relative rotation of the spin and orbital coordinates.

The orientation of the spin coordinates of the Cooper pairs is also in�uenced by the

nuclear Zeeman energy,

(5.27) ∆ΩZ = gz

∫
V

d3r Hα

(
AαiA

∗
βi

)
Hβ ,

where

(5.28) gz =
N(0)γ2~2

(1 + F a
0 )2

7ζ(3)

48π2T 2
c

> 0 ,
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is the Zeeman coupling constant in the weak-coupling limit. For ESP states the static

NMR �eld prefers d̂ ⊥ ~H.

5.6.1. Fast vs. slow spin dynamics

The nuclear dipolar energy generates frequency shifts, ∆ω = ω−ωL, of the NMR resonace

line for super�uid 3He away from the Larmor frequency, ωL = γH, that are sensitive to

the spin and orbital structure of the ordered phase, the strength and orientation of the

static NMR �eld, and the rf �eld (�tipping �eld�) used to excite the nuclear spins. In

the high �eld limit, ωL � Ω, where Ω ∼ ΩA is the dynamical timescale set by the dipole

energy, we use Fomin's formulation of the spin dynamics based on the separation of fast

and slow timescales for the dynamics of the magnetization (see also Ref. [22]), or total

spin, ~S(t), and the order parameter, A(t). The �fast� response is on the scale set by the

Larmor freqency, ω ∼ ωL, while the �slow� response is set by the dipolar frequency of order

ΩA.[33] Note that the static NMR �eld is still assumed to be small in the sense that the

Zeeman energy is much smaller than the condensation and gradient energies associated

with the orbital components of the order parameter. Thus, the dynamical contributions

to the nuclear dipole and Zeeman energies can be calculated on the basis of the solutions

for the orbital order parameter in zero �eld. However, for static NMR �elds greater than

the Dipole �eld, H � HD ≈ 30G, the equilibrium orientation of the spin components

of the order parameter is determined primarily by the Zeeman energy, with the dipole

energy resolving any remaining degeneracy in the equilibrium orientation of the d̂ vector,

or the rotation matrix R for the BSO(2) state. This provides us with the initial equilibrium

conditions for orientation of the spin components of the order parameter.
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The spin dynamics of the super�uid phases is parametrized in terms of rotation ma-

trices for the precession of the order parameter, e.g. A(t) and total spin, ~S(t), following

an initial rf excitation of the spin system. An rf impulse applied at t = 0 rotates (�tips�)

the total spin, ~S(t = 0+) by an angle β relative to the equilibrium spin, ~S0|| ~H ≡ H ẑ′.

The resulting dynamics of the order parameter for timescales, 0 < t � 2π/Ω, is then

parametrized by[33]

(5.29) A(t) = Rz′(ωt)Ry′(β)Rz′(−ωt+ ϑ)A0 ,

where y′ ⊥ z′ is the direction of the rf tipping �eld, and the rotation angles are de�ned by

one �fast� angle, ωt, and two �slow� dynamical angles, β and ϑ. Inserting this expression

into Eq. 5.26 for the dipole energy and averaging the result over the fast time scale, 2π/ω,

gives the fast-time and short-distance scale averaged dipole energy density,

(5.30) fD =
ω

2π

∫ 2π
ω

0

dt
1

Vcell

∫
d3r fD[A(~r, t)] .

This averaged dipolar energy functional determines the transverse NMR frequency shift

∆ω as a function of tipping angle β for various orientations of the NMR �eld, ~H, relative

to the order parameter within the pore geometry. The variable ϑ � the generalization of

Leggett's rotation angle for the bulk B-phase � is �xed by the stationary condition of fD.

The transverse NMR frequency shift as a function of tipping angle is then given by[33]

(5.31) ω∆ω =
γ2

χ

1

sin β

d

dβ
fD ,

which provides the key NMR signatures for the phases of 3He under strong con�nement.



92

0.0 0.5 1.0

β/π

−0.4

0.0

0.4

ω
∆
ω
/
1
0

1
0

H
z2

ASO(2)
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Figure 5.12. Frequency shift of the ASO(2) phase at p = 26 bar, T = 0.5Tc,
and b′T = 0. The Pz phase has the same functional form, but with larger
amplitude.

5.6.2. Pz and ASO(2) Phases

The Pz and ASO(2) phases are both ESP phases parameterized by a real d̂ vector with

order parameters given by Eqs. 5.20 and 5.22, respectively. Spatial averaging of the dipole

energy for these two phases leads to a dipole energy of the same form for both phases,

(5.32) fD = gD
(
2
〈
∆2
z

〉
−
〈
∆2
φ

〉) (
d̂ · ẑ

)2

,

where ẑ is the axis of the cylindrical pore, and d̂ is homogeneous and oriented in equilib-

rium in the plane perpendicular to the NMR �eld ~H and along a direction that minimizes

Eq. 5.32.

Parameterizing the direction of the NMR �eld in the coordinate system of the cylindri-

cal pore by ẑ′ = {cosφ sin θ, sinφ sin θ, cos θ}, carrying out the transformation Eq. 5.29
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yields fD in Eq. 5.30,

fD =
1

8
gD
(〈

∆2
φ

〉
− 2

〈
∆2
z

〉) [
2(cos β + 1)2 cos2 ϑ sin2 θ

+ 4 cos2 β − (2 cos β + 7 cos2 β) sin2 θ
]
.(5.33)

Since 〈∆2
φ〉−2〈∆2

z〉 < 0 in the pore, fD is minimized with respect to ϑ with ϑ = 0. Finally,

a general expression for the transverse shifts as a function of tipping angle is obtained

with Eq. 5.31,

ω∆ω =
γ2

χN
gD
(
2
〈
∆2
z

〉
−
〈
∆2
φ

〉)
×
[
cos(β)− sin2(θ)

(
5 cos(β)− 1

4

)]
.(5.34)

The dependences on the tipping angle, β, and the polar orientation of the NMR �eld, θ,

are identical for both the Pz and ASO(2) phases - only the magnitude of the shift di�ers

between the two phases. Note in particular that the shift vanishes precisely at β = π/2

for ~H||ẑ. The result for the ASO(2) phase is equivalent to what is predicted for a 2D orbital

glass phase of 3He-A.[28] Although the Pz and ASO(2) phases di�er only quantitatively in

their transverse NMR frequency shift, they can still be distinguished in su�ciently clean

pores by the change in temperature dependence near the second order phase transition

between the two phases (see Fig. 5.9), in particular the discontinuity in the derivative of

the frequency shift, d∆ω/dT |Tc2 .

5.6.3. AC2 Phase

The AC2 phase, with order parameter given by Eq. 5.24, breaks SO(2) orbital symmetry,

and exhibits distinctly di�erent NMR signatures compared to those of the ASO(2) phase.
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Figure 5.13. Transverse frequency shifts for the AC2 phase with ~H ‖ ẑ at
p = 26 bar, temperatures T = 0.5− 0.8Tc, and maximal pairbreaking with
b′T = 0.

Here we consider the two cases ~H ‖ ẑ and ~H ⊥ ẑ. For ~H ⊥ ẑ the residual D2h symmetry

leads to a dependence of the transverse frequency shift on the azimuthal angle of ~H.

Due to the φ dependence of the order parameter it is convenient to work in Cartesian

coordinates with the chiral axis �xed along 〈~l〉 ‖ ŷ. The resulting spatial averages of the

order parameter pro�les entering the average dipole energy become,

〈
∆2
x

〉
=
〈
(∆r cosφ−∆φ sinφ)2

〉
〈
∆2
y

〉
=
〈
(∆r sinφ+ ∆φ cosφ)2

〉
〈∆x∆y〉 = 〈(∆r cosφ−∆φ sinφ)

× (∆r sinφ+ ∆φ cosφ)〉 = 0 ,(5.35)
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For ~H ‖ ẑ, the result for the transverse frequency shift for the AC2 phase becomes

ω∆ω(‖) =
1

2

γ2

χN
gD
{〈

∆2
y

〉
−
〈
∆2
x

〉
−
(
3
〈
∆2
x

〉
+
〈
∆2
y

〉
− 4

〈
∆2
z

〉)
cos β

+2
∣∣〈∆2

y

〉
−
〈
∆2
x

〉∣∣ (1 + cos β)
}
.(5.36)

The results for ω∆ω for several temperatures are shown in Fig. 5.13. The shift is similar

to that for the Pz and ASO(2) phases, except for the asymmetry of the positive and negative

shifts. Note also that ∆ω vanishes at a temperature-dependent angle β∗ > π/2.

In contrast, for ~H = H(cosϕx̂ + sinϕŷ) the shift, ω∆ω, depends on the azimuthal

angle ϕ of the static �eld, in addition to the tipping angle β. For an order parameter of

the form in Eq. 5.24 we have 〈~l〉 ‖ ŷ, and the resulting transverse frequency shift as a

function of ϕ and β becomes,

ω∆ω(⊥) =
1

4

γ2

χN
gD
{(〈

∆2
x

〉
+
〈
∆2
y

〉
− 2

〈
∆2
z

〉)
(cos β − 1)

+
(〈

∆2
x

〉
−
〈
∆2
y

〉)
(1 + 7 cos β) cos 2ϕ

}
.(5.37)

The results for several �eld orientations, ϕ = 0, π/4 , π/2, are shown in Fig. 5.14. The

tipping angle dependences for ~H ‖ 〈~l〉 and ~H ⊥ 〈~l〉 are of the same functional form

as the corresponding cases for bulk 3He-A. There is a �magic� tipping angle of βx =

cos−1(−1/7) ≈ 0.545π at which ∆ω(ϕ = 0) = ∆ω(ϕ = π/2) independent of temperature.

The tipping angle dependence for ϕ = π/4 is much weaker, and qualitatively similar

to that for the ASO(2) phase with ~H ⊥ ẑ. Observation of these results for several �eld
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Figure 5.14. Transverse frequency shifts for the AC2 phase with ~H ⊥ ẑ at
p = 26 bar, temperatures T = 0.5− 0.8Tc, and maximal pairbreaking with
b′T = 0. The left panel shows the shifts for in-plane �eld orientation ϕ = 0
(blue), and ϕ = π/2 (red). The right panel shows the shifts for ϕ = π/4,
which has the same functional form as that of the ASO(2) phase.

orientations would provide a clear identi�cation of the AC2 phase and determine the

direction of the mean chiral axis.

5.6.4. BSO(2) Phase

The BSO(2) phase is a non-ESP phase with a reduced and anisotropic spin susceptibility

below Tc. The BSO(2) phase also exhibits tipping angle dependence of the frequency shift

similar to that of 3He-B. In particular, for ~H ⊥ ẑ the shift is a polar-distorted Brinkman-

Smith mode[17], and for ~H ‖ ẑ we �nd the �perpendicular� mode[27] that is qualitatively

similar, but with important quantitative di�erences compared to bulk 3He-B.

For ~H ‖ ẑ, the Zeeman energy is minimized in equilibrium by a spin-rotation Rn̂(π/2),

where n̂ is in the x − y plane. This rotation leads to a positive transverse frequency

shift that is maximal at small tipping angles, unlike the Brinkman-Smith mode. The

quantitative description of the frequency shift depends on the spatial averages of the
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BSO(2) gap parameters,

P = 〈∆r∆z〉+ 〈∆φ∆z〉

Q =
〈
∆2
r

〉
+ 2 〈∆r∆φ〉+

〈
∆2
φ

〉
R =

〈
∆2
r

〉
+
〈
∆2
φ

〉
+ 4

〈
∆2
z

〉
,(5.38)

with the resulting transverse shift for ~H ‖ ẑ given by

ω∆ω(‖) =
1

8

γ2

χB
gD {4R cos β + 4P (1 + 4 cos β) cosϑ

−Q (1 + cos β) cos 2ϑ} ,(5.39)

where the Leggett angle is

cosϑ =


+1 : β ≤ β′L ,

2P (2 cosβ−1)
Q(1+cosβ)

: β′L < β < βL ,

−1 : β ≥ βL ,

(5.40)

with cos β′L = (2P + Q)/(4P − Q) and cos βL ≡ (2P − Q)/(4P + Q). Note that χB

entering both Eqs. 5.39 and 5.42 is given by χB = χN/[1 + gz/χN(〈∆2
r〉+ 〈∆2

φ〉)] < χN .

This result is obtained in both cases by minimizing the Zeeman energy for the speci�c

�eld orientation. The left panel of Fig. 5.15 shows the tipping-angle dependence of the

frequency shift ∆ω(||) for temperatures starting just below the transition to BSO(2)-AC2

phase boundary at p = 10 bar. At this pressure transition from the Pz phase to the BSO(2)

phase is interrupted by a narrow sliver of AC2 phase. Thus, near the BSO(2)-AC2 phase

boundary, the Pz order parameter is dominant and that is re�ected in the tipping angle
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Figure 5.15. Transverse frequency shifts for the BSO(2) phase at p = 10 bar,
temperatures T = 0.1Tc, 0.2Tc, 0.3Tc, 0.36Tc, and maximal pair-breaking,
b′T = 0.

dependence for T = 0.36Tc. At lower temperatures the transverse components of the

BSO(2) become signi�cant and the transverse shift evovles towards a form characteristic

of the B-phase with a sharp transition at βL. The polar distortion is still manifest as the

negative shift for β > βL.

For the static NMR �eld ~H ⊥ ẑ the relevant averages of the BSO(2) gap are

P =
〈
∆2
r

〉
+
〈
∆2
φ

〉
+ 2 〈∆r∆φ〉+ 2 〈∆r∆z〉+ 2 〈∆φ∆z〉

Q = 3
〈
∆2
r

〉
+ 3

〈
∆2
φ

〉
+ 2 〈∆r∆φ〉

+ 8 〈∆r∆z〉+ 8 〈∆φ∆z〉+ 8
〈
∆2
z

〉
R = 11

〈
∆2
r

〉
+ 11

〈
∆2
φ

〉
+ 18 〈∆r∆φ〉+ 8

〈
∆2
z

〉
,(5.41)
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leading to a transverse shift

ω∆ω(⊥) = − 1

16

γ2

χB
gD {2R cos β + 4P (1 + 4 cos β) cosϑ

+Q (1 + cos β) cos 2ϑ} ,(5.42)

where

cosϑ =


−2P (2 cosβ−1)
Q(1+cosβ)

: β < βL.

1 : β ≥ βL.
(5.43)

and cos βL = (2P −Q)/(4P +Q). Unlike bulk 3He-B, the con�nement induced anisotropy

of the BSO(2) order parameter results in a nonzero transverse frequency shift even at small

tipping angles, and a temperature dependent critial angle βL. Once again the frequency

shift shows the evolution from a functional form close to the Pz phase for T = 0.36Tc

towards the polar distored B-phase at low temperature.

5.7. Summary and Outlook

For 3He in a long cylindrical pore of radius R = 100 nm, the relative stability of

super�uid phases is strongly dependent on pressure both through the combination of

strong-coupling corrections to the fourth-order GL free energy and changes in the e�ective

con�nement ratio R/ξ0(p), and the degree of pairbreaking by boundary scattering. We

�nd four di�erent equilibrium phases over the full pressure range for boundary conditions

spanning the range from maximal pairbreaking (retro-re�ective boundaries) to minimal

pairbreaking (specular re�ective boundaries). The �rst instability is to the z-aligned

polar Pz phase, except for the idealized case of perfect specular re�ection for a perfectly

circular pore. A polar distorted B-like phase is stabilized at su�ciently low temperatures
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within our theory for the strong-coupling e�ects based on the GL functional. We �nd two

symmetry inequivalent chiral A-like phases, the axially symmetric ASO(2) phase with a

radially directed chiral �eld and a polar core favored in the limit of weak pairbreaking, and

the broken axial symmetry chiral AC2 phase with chirality directed perpendicular to the

axis of the pore. The ASO(2) phase dominates the phase diagram for specularly re�ecting

boundaries while the AC2 phase appears at intermediate temperatures and higher pressures

separating the Pz and BSO(2) phases. The four equilibrium phases can be identi�ed by

their distinct NMR freqency shifts as functions of tipping angle and NMR �eld orientation.

NMR experiments utilizing arrays of equivalent nano-pores should be able to test these

predictions and uniquely identify the polar phase as well as the new prediction of the

broken symmetry chiral AC2 phase.

The interplay of complex symmetry breaking, spatial con�nement, surface disorder

and strong-interactions beyond weak-coupling BCS leads to a remarkably rich phase dia-

gram of broken symmetry states in what is perhaps the simplest of con�ning geometries,

the cylindrical pore. We expect an even wider spectrum of broken symmetry phases with

unique physical properties in more complex con�ning geometries,[103] or when con�ne-

ment is in competition with external �elds or the formation of topological defects.[96, 99]

Indeed theoretical reports of new phases of super�uid 3He in thin �lms and cavities have

simulated the development of nano-scale cavities, MEMS and nano-�uidic oscillators and

new nano-scale materials for experimental search and discovery of new quantum ground

states. In the latter category the infusion of quantum �uids into highly porous anisotropic

aerogels has opened a new window into the role of con�nement on complex symmetry
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breaking. New chiral and ESP phases of super�uid 3He in uniaxially stretched and com-

pressed silica aerogels have been reported,[15, 71, 78] and in a new class of nano-scale

con�ning media, called �nematic� aerogels, there is strong evidence to support the obser-

vation of a polar Pz phase of 3He in this strongly anisotropic random medium.[11, 29]

From the vantage point of our predictions for 3He con�ned in a long cylindrical pore there

are strong similarities between the phase diagram for R = 100 nm cylindrical pores and

the experimental phase diagram of 3He in nematic aerogels, including the normal to Pz

transition, and uniaxially deformed B-like and chiral A-like phases. 2 It is remarkable

that the subtle correlations giving rise to chirality of an AC2 or ASO(2) phase survives the

random potential of these disordered porous solids. The observations pose challenges for

theorists to provide a quantitative understanding of how complex symmetry breaking and

long-range order remain so robust in random anisotropic materials.

2In Chapter 4 we describe a model of nafen aerogels that exhibits analogous phases.
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5.8. Material Parameters

The following tables summarize the pressure dependent material parameters that de-

termine the super�uid phases in strong-coupling GL theory.

p[bar] Tc[mK] vf [m/s] ξ0[nm] ∆βsc1 ∆βsc2 ∆βsc3 ∆βsc4 ∆βsc5

0.0 0.929 59.03 77.21 0.03 -0.11 0.10 -0.15 0.16

2.0 1.181 55.41 57.04 0.03 -0.04 -0.14 -0.37 0.19

4.0 1.388 52.36 45.85 0.02 -0.01 -0.24 -0.48 0.19

6.0 1.560 49.77 38.77 0.02 -0.01 -0.28 -0.54 0.18

8.0 1.705 47.56 33.91 0.02 -0.02 -0.30 -0.58 0.17

10.0 1.828 45.66 30.37 0.01 -0.03 -0.31 -0.60 0.15

12.0 1.934 44.00 27.66 0.01 -0.04 -0.31 -0.61 0.13

14.0 2.026 42.51 25.51 0.00 -0.05 -0.30 -0.62 0.11

16.0 2.106 41.17 23.76 0.00 -0.05 -0.27 -0.66 0.10

18.0 2.177 39.92 22.29 0.00 -0.06 -0.27 -0.68 0.09

20.0 2.239 38.74 21.03 -0.01 -0.06 -0.26 -0.69 0.07

22.0 2.293 37.61 19.94 -0.01 -0.07 -0.26 -0.71 0.06

24.0 2.339 36.53 18.99 -0.01 -0.07 -0.26 -0.72 0.04

26.0 2.378 35.50 18.15 -0.02 -0.07 -0.27 -0.73 0.03

28.0 2.411 34.53 17.41 -0.02 -0.07 -0.27 -0.74 0.01

30.0 2.438 33.63 16.77 -0.02 -0.07 -0.28 -0.74 -0.01

32.0 2.463 32.85 16.22 -0.03 -0.07 -0.27 -0.75 -0.02

34.0 2.486 32.23 15.76 -0.03 -0.07 -0.27 -0.75 -0.03

Table 5.1. Material parameters for 3He vs. pressure, with Tc from Ref.

[39], vf calculated with m∗ from Ref. [39] and density n from Ref. [101].

Coherence lengths are calculated as ξ0 = ~vf/2π kBTc. Strong-coupling

∆βsci parameters at Tc in units of |βwc1 | are from Ref. [23].



103

n ∆βsc1 ∆βsc2 ∆βsc3 ∆βsc4 ∆βsc5

0 3.070×10−2 −1.074×10−1 1.038×10−1 −1.593×10−1 1.610×10−1

1 −2.081×10−3 5.412×10−2 −1.752×10−1 −1.350×10−1 2.263×10−2

2 2.133×10−5 −1.081×10−2 3.488×10−2 1.815×10−2 −4.921×10−3

3 −4.189×10−7 1.025×10−3 −4.243×10−3 −1.339×10−3 3.810×10−4

4 � −5.526×10−5 3.316×10−4 5.316×10−5 −1.529×10−5

5 � 1.722×10−6 −1.623×10−5 −1.073×10−6 3.071×10−7

6 � −2.876×10−8 4.755×10−7 8.636×10−9 −2.438×10−9

7 � 1.991×10−10 −7.587×10−9 � �

8 � � 5.063×10−11 � �

Table 5.2. Coe�cients of a polynomial �t to the strong-coupling β param-

eters from Ref. [23] of the form ∆βsci =
∑

n a
(i)
n pn.
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p[bar] ∆βsc1 ∆βsc2 ∆βsc3 ∆βsc4 ∆βsc5

0 -0.008 -0.033 -0.043 -0.054 -0.055

12 -0.034 -0.080 -0.117 -0.199 -0.194

16 -0.041 -0.088 -0.129 -0.230 -0.236

20 -0.048 -0.095 -0.136 -0.254 -0.277

24 -0.055 -0.101 -0.140 -0.272 -0.320

26 -0.059 -0.103 -0.140 -0.280 -0.344

28 -0.062 -0.105 -0.139 -0.287 -0.370

30 -0.066 -0.106 -0.137 -0.292 -0.398

32 -0.070 -0.106 -0.132 -0.296 -0.429

34.4 -0.074 -0.103 -0.123 -0.298 -0.469

Table 5.3. Sauls-Serene ∆βsci parameters[81] for 3He vs. pressure. The

values at p = 0 bar were obtained by extrapolating the published ∆βsci ,

which were calculated only down to 12 bar, to their weak-coupling values

at limp→p0 Tc(p)/TF (p) = 0, which corresponds to a negative pressure of

p0 = −5 bar.

n ∆βsc1 ∆βsc2 ∆βsc3 ∆βsc4 ∆βsc5

0 −8.311×10−3 −3.334×10−2 −4.298×10−2 −5.416×10−2 −5.505×10−2

1 −2.404×10−3 −4.716×10−3 −7.988×10−3 −1.550×10−2 −1.427×10−2

2 2.813×10−5 8.032×10−5 1.637×10−4 3.174×10−4 2.942×10−4

3 −4.024×10−7 −9.400×10−8 −1.345×10−8 −2.138×10−6 −6.654×10−6

Table 5.4. Coe�cients of a polynomial �t to the Sauls-Serene β parameters

in Table 5.3 of the form ∆βsci =
∑

n a
(i)
n pn.
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CHAPTER 6

Publication: Spontaneous Helical Order of a Chiral p-wave

Super�uid Con�ned in Nanoscale Channels

6.1. Abstract

Strong interactions that favor chiral p-wave pairing, combined with strong pair break-

ing by con�ning boundaries, are shown to lead to new equilibrium states with di�erent

broken symmetries. Based on a strong-coupling extension of the Ginzburg-Landau (GL)

theory that accurately accounts for the thermodynamics and phase diagram of the bulk

phases of super�uid 3He, we predict new phases of super�uid 3He for con�ned geometries

that spontaneously break rotational and translational symmetry in combination with par-

ity and time-reversal symmetry. 1 One of the newly predicted phases exhibits a unique

combination of chiral and helical order that is energetically stable in cylindrical channels

of radius approaching the Cooper pair coherence length, e.g. R ∼ 100 nm. Precise nu-

merical mimimization of the free energy yields a broad region of stability of the helical

phase as a function of pressure and temperature, in addition to three translationally in-

variant phases with distinct broken spin- and orbital rotation symmetries. The helical

phase is stable at both high and low pressures and favored by boundaries with strong

pair-breaking. We present calculations of transverse NMR frequency shifts as functions of

1This chapter extends Chapter 5 to include phases that spontaneously break translational symmetry
along the axis of the cylindrical channel.
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rf pulse tipping angle, magnetic �eld orientation, and temperature as signatures of these

broken symmetry phases.

6.2. Introduction

The super�uid phases of 3He are paradigms for spontaneous symmetry breaking in

condensed matter and quantum �eld theory [95, 79]. The bulk A- and B phases are BCS

condensates of p-wave, spin-triplet Cooper pairs [49]. The broken symmetries of these

phases, which are well established, underpin the non-trival topologies of both ground states

[94, 61]. However, the bulk phases are only two realizations of the 18-dimensional mani-

fold of spin-triplet, p-wave condensates. When 3He is subjected to a con�ning potential on

scales approaching the Cooper pair coherence length, ξ0 ≈ 160−770Å depending on pres-

sure, new ground states with novel broken symmetries are stabilized [14, 99, 104, 105].

In this Letter we report theoretical predictions of the equilibrium phases of super�uid

3He when con�ned in quasi-one-dimensional channels with radial con�nement ranging

from R = 2 − 20 ξ0(p). Among these phases is a novel �helical� phase of 3He that spon-

taneously breaks both time-reversal and translational symmetry along the channel. The

broken translational symmetry is realized as a double helix of disclination lines of the

chiral axis con�ned on the boundary of the cylinder walls. The double-helix phase is

predicted to be stable over a large region of the pressure-temperature phase diagram for

channels with radius R = 100 nm.
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6.3. Ginzburg-Landau Theory

Our results are based on a strong-coupling extension of Ginzburg-Landau (GL) the-

ory that accurately reproduces the relative stability fo the bulk A- and B-phases, in-

cluding the A-B phase transition [104]. The GL theory is formulated as a functional of

the order parameter, the condensate amplitude for Cooper pairs, 〈ψσ(p)ψσ′(−p)〉 in the

spin-momentum basis. For spin-triplet, p-wave Cooper pairs the order paramater can

be expressed in terms of a 3 × 3 matrix Aαi of complex amplitudes that transforms as

the vector representation of SO(3)S with respect to the spin index α, and as the vector

representation of SO(3)L with respect to the orbital momentum index i. In cylindrical

coordinates the order parameter matrix may be represented as

(6.1) A =


Arr Arφ Arz

Aφr Aφφ Aφz

Azr Azφ Azz

 ,

where we choose aligned spin and orbital coordinate axes. The GL free energy functional,

(6.2) Ω[A] =

∫
V

d3r (fbulk[A] + fgrad[A]) ,

is expressed in terms of a bulk free energy density [91],

fbulk[A] = α(T )Tr
(
AA†

)
+ β1

∣∣Tr(AAT )
∣∣2

+ β2

[
Tr(AA†)

]2
+ β3 Tr

[
AAT (AAT )∗

]
+ β4 Tr

[
(AA†)2

]
+ β5 Tr

[
AA†(AA†)∗

]
,(6.3)
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and the gradient energies,

(6.4) fgrad[A] = K1A
∗
αj,kAαj,k +K2A

∗
αj,jAαk,k +K3A

∗
αj,kAαk,j ,

where A† (AT ) is the adjoint (transpose) of A, Aαi,j = ∂jAαi, and the transformation of the

gradient free energy from the Cartesian representation to cylindrical coordinates given in

Eq. (6) of Ref. [104]. The material parameters, α, {βi| i = 1 . . . 5}, and {Ka| a = 1, 2, 3}

multiplying the invariants de�ning the GL functional are determined by the microscopic

pairing theory for 3He. In weak-coupling theory these parameters are given in Refs.

[91, 104].

Ginzburg-Landau theory is widely used in studying inhomogeneous superconducting

phases, notably vortex states in type II superconductors [2], as well as Fulde-Ferrell-

Larkin-Ovchinnikov states at high �eld and low temperatures [4]. In the case of 3He a

strong-coupling extension of the weak-coupling GL theory that accounts for the relative

stability of the bulk A- and B phases, and speci�cally the A-B transition line, TAB(p)

for pressures above the polycritical point, p & pc was introduced in Ref. [104]. The

strong-coupling functional is de�ned by the corrections to the fourth-order weak-coupling

material parameters,

(6.5) βi(p, T ) = βwci (p, Tc(p)) + T
Tc

∆βsci (p) ,

with ∆βsci (p) = βi(p, Tc(p))− βwci (p, Tc(p)). The weak-coupling parameters, βwci (p, Tc(p))

are calculated from a Luttinger-Ward formulation of the weak-coupling microscopic free-

energy functional and evaluated using the known pressure-dependent Fermi-liquid mate-

rial parameters, provided in Table I of Ref. [104]. The ∆βsci (p) have been obtained from
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AS
2CA

Figure 6.1. Left: The chiral axis l̂(r) for the AC2 phase at p = 26 bar,
T = 0.7Tc with strong pairbreaking (b′T = 0.1). The chiral axis is con�ned
in the r − φ plane. The arrow color density is scaled by the amplitude,
(∆2

r + ∆2
φ)1/2. The red and blue dots locate the two disgyrations, which

support supercurrents propagating along +z and −z, respectively. Right:
Supercurrent isosurfaces in the SA phase, calculated using the full order
parameter in Eq. 6.13 of the Appendix.

analysis of measurements of the strong-coupling enhancement of heat capacity jumps,

NMR frequency shifts and the Zeeman splitting of super�uid transition in a magnetic

�eld [23]. The results we report are based on the strong-coupling parameters reported in

Table I of Ref. [104]. We emphasize that the extended GL functional accounts for the

relative stability of competing phases at temperatures well below Tc(p), including the bulk

A and B phases at high pressures [104], and the A to stripe phase transition in thin �lms

of 3He [105], and in the former case has been validated by our microscopic calculations

of TAB(p) and the strong-coupling beta parameters, ∆βsci (p), based on the formulation of

the strong-coupling theory developed in Refs. [72, 81, 80, 86].
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The geometry we consider here is an in�nitely long cylindrical channel of radius R.

For the channel walls we use boundary conditions that include a variable order parameter

�slip length� bT inspired by the analysis of Ambegaokar, de Gennes, and Rainer [5], as

well as the in�uence of boundary curvature [20]. The resulting conditions at r = R are

[104],

Aαr|r=R = 0 ,
∂Aαz
∂r

∣∣∣
r=R

= − 1

bT
Aαz|r=R ,

∂Aαφ
∂r

∣∣∣
r=R

=

(
1

R
− 1

bT

)
Aαφ|r=R .(6.6)

where the transverse extrapolation parameter b′T ≡ bT/ξ0 varies between the b′T → 0

(maximal pairbreaking) and b′T →∞ (minimal pairbreaking) limits.

The equilibrium order parameter is obtained by minimizing the GL free energy func-

tional, i.e. by solving the Euler-Lagrange equations, δΩ[A]/δA† = 0. When restricted

to translationally invariant states we obtain four phases stable in di�erent regions of the

p− T phase diagram: the Pz phase with Cooper pairs nematically aligned along the axis

of the cylindrical channel is the �rst unstable mode from the normal state. At a lower

temperature Cooper pairs with orbital wave functions transverse to z become unstable.

Strong-coupling and strong pair breaking on the boundary lead to two distinct chiral

phases with di�erent symmetries. The �rst is a second-order transition from the Pz phase

to the AC2 phase with the chiral axis aligned in the plane perpendicular to the z axis.

The AC2 phase spontaneously breaks SO(2)rotation symmetry. At lower temperatures the

cylindrically isotropic chiral phase, ASO(2), is stabilized, and at even lower temperatures,
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the polar-distorted BSO(2) phase is favored. Both ASO(2) and BSO(2) phases are separated

by �rst-order transitions [104].

6.4. Dynamical Instability

The chiral AC2 phase is an inhomogenous analog of bulk 3He-A, with a spatially

averaged angular momentum (chiral) axis 〈l̂〉 aligned along a �xed but arbitrary direction

in the r−φ plane, as shown in Figure 6.1. For maximal pairbreaking boundary conditions

the AC2 order parameter is given by

(6.7) Aαi=d̂α cos
( πr

2R

){
∆′z ẑi+i∆′′r(cos(φ−ϑ)r̂i−sin(φ−ϑ)φ̂i)

}
.

where ϑ + π/2 is the angle of the average direction of the angular momentum axis, 〈~l〉

in the r − φ plane. The in-plane chiral axis spontaneously breaks the continuous SO(2)

rotational symmetry of the con�ning potential. The corresponding continuous degeneracy

of the AC2 phase implies the existence of a Nambu-Goldstone (NG) mode associated with

massless, long-wavelength excitation of the orientation, ϑ, of 〈~l〉.

The dynamical equation for the NG mode is obtained from the action for the space-

time �uctuations of the Cooper pairs relative to the AC2 ground state, Aαi(r, t) = Aαi(r, t)−

A
AC2

αi (r),

(6.8) S =

∫
V

dt d3r
{
τ Tr

(
ȦȦ†

)
− U [A]

}
,

where U [A] is the e�ective potential derived from an expansion of the free energy func-

tional, Ω[A], to quadratic order in the �uctuations, A, of order parameter. The additional

invariant represents the kinetic energy of the Cooper pair �uctuations, with the e�ective
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Figure 6.2. NG mode dispersion, ω−, as a function of Q and T and scaled
by the bulk A-phase amplitude at p = 26 bar and R = 100 nm. Negative
values denote imaginary values of ω−. The circles indicate the most unstable
mode, Q/Qc, for each temperature. Qc ≈ π/674 nm = 4.66× 10−3nm−1 is
the maximum value of the most unstable mode at the SA-Pz transition.

inertia given by τ = 7ζ(3)Nf/48(πkBTc)
2 in the weak-coupling BCS limit [60], where Nf

is the normal-state density of states at the Fermi energy.

For the NG mode the action is a functional of the degeneracy variable corresponding

to space-time �uctuations of the orientation of the chiral axis, ϑ(t, z), and the �uctuations

of the polar component of the Cooper amplitude, δ′′z (t, z), that couples linearly to ϑ(t, z)
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through the gradient energy. The order parameter that incorporates these �uctuations is

Aαi = d̂α cos
( πr

2R

){
i∆′′r cos[φ− ϑ(t, z)]r̂i

−i∆′′r sin[φ− ϑ(t, z)]φ̂i + ∆′z ẑi
}

− i δ′′z (t, z) sin
(πr
R

)
sin[φ− ϑ(t, z)]d̂αẑi ,(6.9)

where ∆′′r and ∆′z take their equilibrium values found by minimizing the free energy

functional with the order parameter in Eq. 6.7. Since the �uctuations depend only on

time, t, and the coordinate, z, along the channel, we can integrate out the dependences

on r and φ. We then express the action in Fourier space, in which case we obtain a

sum over independent Fourier modes of the form, ϑ(t, z) = ϑ cos(ωt+Qz) and δ′′z (t, z) =

δ′′z sin(ωt + Qz). The Euler-Lagrange equations reduce to eigenvalue equations for the

coupled mode amplitudes,

ω2 ϑ = c2Q2 ϑ+
8(3π − 4)

9(π2 − 4)∆′′r

(πc
R

)
cQ δ′′z(6.10)

ω2 δ′′z =
1

τ

{
α +

(
1− 16

9π2

)
(β13 + β245)(∆′′r

2 + ∆′z
2)

+3 c2Q2 +
(πc
R

)2
[
1 +

2

π2
Cin(2π)

]}
δ′′z

+
16(3π − 4)∆′′r

9π2

(πc
R

)
cQϑ ,(6.11)

where Cin(2π) =
∫ 2π

0
du (1 − cosu)/u. The weak-coupling relation K1 = K2 = K3 ≡ K

has been used, and we introduced the velocity, c ≡
√
K/τ = vf/

√
5, where vf is the

Fermi velocity.
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Figure 6.3. (Left) The amplitudes ∆′z, (red); ∆′′r , (blue); and ∆′′z , (green)
for the SA order parameter phase, at p = 26 bar, R = 100nm and scaled by
the bulk A phase amplitude ∆A =

√
|α(T )|/4β245. The black vertical lines

denote the continuous phase transitions AC2-SA, SA-Pz, and Pz-Normal
with increasing temperature. (Right) The temperature dependence of the
half-period L.

There are two eigenmodes corresponding to bosonic excitatoins with dispersions ω±(Q).

The low frequency mode, ω−(Q) is identi�ed as the NG mode with an excitation that is a

pure rotation by ϑ, with a linear dispersion ω−(Q) ∝ Q for Q→ 0. Indeed the AC2 phase

supports low-frequency bosonic excitations corrsponding to oscillations of the chiral axis,

as shown in Fig. 6.2 for R = 100 nm, p = 26 bar and T/Tc = 0.5. However, the mode

softens as the temperature increases. Above a critical temperature of T ∗ ≈ 0.57Tc the

sti�ness supporting the NG mode vanishes, and a conjugate pair of imaginary eigenfre-

quencies appear signalling a helical instability of the AC2 phase. Figure 6.2 shows the

evolution from the dispersion relation from the region of a stable AC2 phase indicated

by positive frequencies. Negative values correspond to the magnitude of the imaginary

frequencies of the unstable NG mode. The wavevector of the most unstable mode, Qc(T ),

is indicated at each temperature. As we show below the instability is stabilized to a new
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chiral phase with spontaneously broken translation symmetry along z by nonlinear terms

in the GL free energy.

6.5. Double Helix Phase

The structure of the broken translation symmetry of this new phase, designated as

SA, is that of a double helix, easily visualized by the propagating rotation of the pair

disgyrations as shown in Fig. 6.1. This phase has continuous helical symmetry under the

set of rotations by −Θ about ẑ, Rz[−Θ] combined with the translation along z a distance

+Θ/Q, Tz[+Θ/Q]. Note also the helical �ow of the counter-propagating supercurrents

that are con�ned near the two disgyrations. The model for the order parameter in Eq.

6.9 allows us to to study the temperature evolution of the equilibrium SA phase, with

rotary propagation ϑ(z) = Qz, shown in Fig. 6.3. Note that half-period, L = π/Q, is a

minimum at the SA-Pz transition, with L ≈ 37 ξ0 ≈ 674 nm at p = 26 bar, and diverges

as the SA-AC2 transition is approached. The structure of the SA phase obtained from the

variational model, as well as the second-order phase transitions between AC2-SA phases,

and SA-Pz phase, agree closely with the numerical minimization of the full GL functional

(see Appendix).

6.6. Phase Diagram

We �nd six distinct phases for cylindrical channels: the translationally invariant Pz,

ASO(2), AC2 , and BSO(2) phases reported in Ref. [104], the double helix SA phase, and

a periodic domain-wall B-phase, SB, predicted by Aoyama [9]. The SB phase is de�ned

by domain walls separating polar-distored B-like phases along the z axis. We impose
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Figure 6.4. Phase diagram for the cylindrical channel with R = 100nm and
strong pairbreaking, b′T = 0.1. The labels SA and SB correspond to the
helical and B-like stripe phases, respectively. The ASO(2) phase appears at
the highest pressures, and the AC2 phase is suppressed by the more stable
SA phase. The SB phase appears in a narrow region at low pressure and
low temperature.

boundary conditions for the half-period, L, of the order parameter at z = 0 and z = L,

where L is determined in the minimization of the free energy functional.

Figure 6.4 shows the phase diagram for a R = 100 nm cylindrical channel with strong

pairbreaking, b′T = 0.1. The polar Pz phase, with Cooper pairs nematically oriented along

the channel is the �rst super�uid phase to nucleate from the normal state. At a lower

temperature the transverse orbital components appear; the chiral SA phase develops at

second-order instability from the Pz phase. Compared to an earlier calculation [104]

that assumed translational invariance along the channel, we �nd that the AC2 phase is

replaced by the more stable SA phase. At the higher pressures, the isotropic chiral A
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phase is favored over the helical phase, separated by a �rst-order transition line, which

then terminates at a tricritical point, below which the helical phase is unstable to the

polar-distorted B phase, BSO(2), also separated by a �rst-order transition. At still lower

pressures the SB phase is stable in a very small window of the phase diagram. The ASO(2)

and SB phases are very sensitive to surface pair-breaking, and are completely suppressed

for maximal pairbreaking (see Appendix). Finally, as the surface boundary condition

approachs specular re�ection the AC2 and SA phases are supplanted by the ASO(2) phase. A

more detailed presentation of the phase diagram, including a phase diagram as a function

of channel radius R, is presented in the Appendix.

6.7. NMR Signatures

Nuclear magnetic resonance (NMR) spectroscopy is a tool for identi�ng inhomogenous

phases of super�uid 3He [28]. The frequency shift of the NMR line relative to the Larmor

frequency is sensitive to the spin and orbital correlations of the order parameter that

minimizes the nuclear magnetic dipole energy, ∆ΩD =
∫
V
d3r gD (|TrA|2 + TrAA∗). The

dipole energy lifts the degeneracy of the equilibrium states with respect to relative spin-

orbit rotations. Thus, deviations from the minimum dipole energy con�guration lead

dipolar torques generated by the spin-triplet Cooper pairs that shift the NMR resonance

frequency away from the Larmor frequency. The magnitude of the shift is determined by

the dipole coupling, gD = χN
2γ2

Ω2
A/∆

2
A, which can be expressed in terms of normal-state

spin susceptibility, χN , and the bulk A-phase longitudinal resonance frequency, ΩA. We

follow the analysis described in Ref. [104] for the transverse NMR frequency shifts of the

translationally invariant phases of 3He con�ned in nano-pores to calculate the frequency
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shifts of the SA phase. In particular, the spatially averaged dipole energy density for

the SA phase is fD = gD〈∆2〉SA
(
d̂ · ẑ

)2

, with 〈∆2〉SA = 2 〈∆2
z〉 −

〈
∆2
φ

〉
− 〈∆2

r〉 where

〈∆2
i 〉 =

∫
V
d3r

∑
α |Aαi|

2 and d̂ lies in the plane of the channel and perpendicular to the

static magnetic �eld axis Ĥ. This results in a frequency shift of the same form as that of

the Pz and ASO(2) phases [104], but with amplitude ∝ 〈∆2〉SA ,

ω∆ω=
γ2

χN
gD〈∆2〉SA

[
cos β − sin2 θ

(
5 cos β − 1

4

)]
,(6.12)

where β is the pulsed NMR tipping angle and θ is the angle of the static �eld relative to

the z axis. Figure 6.5 shows the frequency shift for β → 0 as a function of temperature for

the SA variational order parameter de�ned in Eq. 6.9 and plotted in Fig. 6.3 for two �eld

orientations. The second order transition at the Pz-SA boundary shows a discontinuity in

the slope of ∆ω(T ), and an apparent jump occurs at the SA-AC2 transition. In fact this

is a smooth crossover con�ned to a narrow temperature range related to the divergence

of the period of the SA phase. The detailed NMR spectrum close to this transition is

more complex because the spatial variations of the SA phase, set by the half-period, L,

can exceed the dipole coherence length, ξD ≡
√
gD/K1 ≈ 10µm near to the SA-AC2

transition. The d̂ vector becomes inhomogeneous, spatial averaging breaks down and the

NMR line will broaden as the temperature approaches the SA-AC2 transition in a narrow

window indicated by the gray shading in Fig. 6.5. A narrow NMR line is restored in the

AC2 phase.

6.8. Conclusions and Beyond 3He

We �nd six distinct equilibrium phases within highly con�ned cylindrical channels,

including two phases that break translation symmetry along the channel. In particular,
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Figure 6.5. Small tipping angle (β ≈ 0) transverse frequency shift for the
SA phase as a function of temperature. The SA phase order parameter is
that shown in Fig. 6.3. The SA and Pz frequency shifts are found using
Eq. 6.12, and the AC2 frequency shifts are given by Eqs. 36 and 37 in Ref.
[104]. The grey shaded region denotes the region of the SA phase where
the half-period L exceeds ξD ≈ 10 µm.

we predict a �helical� phase, SA, which spontaneously breaks time-reversal symmetry and

translational symmetry, but retains rotary-translation (helical) symmetry. The double-

helix structure of this phase is predicted to be stable over a signi�cant region of p-T phase

diagram for long cylindrical pores of radius approaching the Cooper pair coherence length

ξ0, and to show a distinct NMR signature.

The novel broken symmetry phases of 3He are based on competing interactions in

a strongly correlated Fermi liquid with unconventional pairing, combined with strong

pair breaking by con�ning boundaries. This situation can arise in a broad range of

unconventional superconductors, including chiral superconductors such as Sr2RuO4 and

UPt3, as well as the cuprates. Indeed theoretical predictions of novel broken translational

symmetry phases are reported for d-wave superconductors subject to strong con�nement
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[97, 43], and it seems likely that there are more novel broken symmetry phases in multi-

component, unconventional superconductors awaiting discovery.
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6.9. Appendix

Order Parameter for the Double Helix Phase � Numerical minimization of the GL

functional to determine the exact structure of the SA phase is made e�cient, without

loss of accuracy, by developing the φ-dependence as an expansion in symmetry-preserving

harmonics,

Aαi = d̂α

∞∑
j=0

{
∆′r,j(r) sin[2j(φ+Qz)] r̂i

+ i∆′′r,j(r) cos[(2j + 1)(φ+Qz)] r̂i

+ ∆′φ,j(r) cos[2j(φ+Qz)] φ̂i

+ i∆′′φ,j(r) sin[(2j + 1)(φ+Qz)] φ̂i

+ ∆′z,j(r) cos[2j(φ+Qz)] ẑi

+ i∆′′z,j(r) sin[(2j + 1)(φ+Qz)] ẑi

}
.(6.13)

The numerical result for the SA phase converges rapidly to the exact solution with the

addition of higher harmonics.
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Sensitivity of the Phase Diagram to Strong Pairbreaking � The anisotropic chiral

AC2 and SA phases are favored under conditions of strong pairbreaking on the boundary

because the energy cost of the boundary half-disgyrations is minimal due to suppression

of all the order parameter components. By contrast the ASO(2) phase, which hosts a radial

disgyration at the center of the cell is disfavored over both anisotropic chiral phases.

This is re�ected in the phase diagram for maximal pairbreaking, b′T = 0, shown in Fig.

6.6 for a R = 100 nm cylindrical channel. Note that strong-coupling, which is relatively

stronger at higher temperatures favors the helical phase over the translationally invariant

AC2 phase. Also note that SB phase is not stable at this con�nement (R = 100 nm) for

maximal pair-breaking.
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We also include the phase diagram as a function of the channel radius R (Fig. 6.7) for

p = 26 bar and b′T = 0.1. The SA phase is clearly favored by high con�nement relative to

the AC2 , ASO(2), and BSO(2) phases. However, at this pressure the SB phase is very fragile

and stable only at very low temperatures where non-local corrections to the gradient

energy, which are not included in the extended GL functional, are likely relevant. We also

note that there is a critical radius above which the AC2 phase appears.



124

CHAPTER 7

Publication: Strong-coupling and the Stripe phase of 3He

7.1. Abstract

Thin �lms of super�uid 3He were predicted, based on weak-coupling BCS theory, to

have a stable phase which spontaneously breaks translational symmetry in the plane of the

�lm. This crystalline super�uid, or �stripe� phase, develops as a one dimensional periodic

array of domain walls separating degenerate B phase domains. We report calculations

of the phases and phase diagram for super�uid 3He in thin �lms using a strong-coupling

Ginzburg-Landau theory that accurately reproduces the bulk 3He super�uid phase dia-

gram. We �nd that the stability of the Stripe phase is diminished relative to the A phase,

but the Stripe phase is stable in a large range of temperatures, pressures, con�nement,

and surface conditions.

7.2. Introduction

The theoretical prediction of a crystalline super�uid, or �stripe� phase, that sponta-

neously breaks translational symmetry in thin �lms of 3He [99], along with advances in

nanoscale fabrication and experimental instrumentation [50], has renewed interest in the

properties of super�uid 3He in thin �lms and con�ned geometries. In the weak-coupling

limit of BCS theory the Stripe phase is predicted to be stable in a large region of temper-

ature and pressure for �lms of thickness D ∼ 700 nm. However, recent experiments on
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3He con�ned in slabs of thickness D ≈ 700 nm and D ≈ 1080 nm have failed to detect

evidence of the Stripe phase [50]. 1

A limitation of the Vorontsov and Sauls theory is that it does not include strong-

coupling corrections to the BCS free energy. In bulk 3He, weak-coupling theory predicts

a stable B phase at all temperatures and pressures; however, the A phase is found to

be stable experimentally at Tc and pressures above pPCP ≈ 21.22 bar, with a �rst-order

transition at TAB < Tc to the B phase. Theoretically accounting for the stability of

the A phase requires including next-to-leading order corrections to the full free energy

functional, i.e. corrections to the weak-coupling functional [72]. While these strong-

coupling corrections are largest at high pressures, they remain signi�cant even for p ∼

0 bar[23]. Thus, for super�uid 3He con�ned within a �lm, it is to be expected that strong-

coupling e�ects will increase the stability of the A phase relative to both the B- and Stripe

phases, which could diminish, or even eliminate, the experimentally accessible region of

the Stripe phase.

In this paper we report our study of the A-Stripe and Stripe-B super�uid transitions

using a Ginzburg-Landau (GL) functional that incorporates strong-coupling corrections

to the weak-coupling GL material coe�cients and accurately reproduces the bulk super-

�uid 3He phase diagram [104]. Within this strong-coupling GL theory we calculate the

super�uid order parameter and phase diagram as a function of pressure, temperature,

con�nement, and surface conditions.

1Levitin et al[52] have recently reported evidence of spatial modulation in a 1080 nm slab.
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7.3. Ginzburg-Landau Theory

The general form of the p-wave, spin triplet order parameter for 3He is given by the

mean-�eld pairing self energy, which can be expanded in the basis of symmetric Pauli

matrices (S = 1) and vector basis of orbital momenta (L = 1),

(7.1) ∆̂(p̂) =
∑
αi

Aαi (iσασy) p̂i ,

where p̂ is the direction of relative momentum of the Cooper pairs de�ned on the Fermi

surface, and Aαi are the elements of a 3× 3 complex matrix,

(7.2) A =


Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

 ,

that transforms as a vector under spin rotations (with respect to α) and (separately) as

a vector under orbital rotations (with respect to i). We choose aligned spin and orbital

coordinate axes.

7.3.1. Free energy functional

To determine the order parameter and the phase diagram of 3He in a �lm geometry, we

solve the Euler-Lagrange equations of the Ginzburg-Landau functional, subject to relevant

boundary conditions, and calculate the order parameter and the stationary free energy.

The GL functional is de�ned by bulk and gradient energies with temperature dependent
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strong-coupling corrections, and is supplemented by boundary conditions that we can

tune from maximal to minimal pair-breaking [104].

The Ginzburg-Landau free energy functional is expressed in terms of invariants con-

structed from the order parameter matrix, A, and is given by [91]

Ω[A] =

∫
V

d~R

{
α(T )Tr

(
AA†

)
+ β1

∣∣Tr(AAT )
∣∣2 + β2

[
Tr(AA†)

]2
(7.3)

+ β3 Tr
[
AAT (AAT )∗

]
+ β4 Tr

[
(AA†)2

]
+ β5 Tr

[
AA†(AA†)∗

]
+K1

(
∇kAαj∇kA

∗
αj

)
+K2 (∇jAαj∇kA

∗
αk) +K3 (∇kAαj∇jA

∗
αk)

}
.

In the weak-coupling limit the GL material parameters are given by

αwc(T ) = 1
3
N(0)(T/Tc − 1) ,(7.4)

2βwc1 = −βwc2 = −βwc3 = −βwc4 = βwc5 ,(7.5)

βwc1 = − N(0)

(πkBTc)2

{
1

30

[
7

8
ζ(3)

]}
,(7.6)

Kwc
1 = Kwc

2 = Kwc
3 =

7ζ(3)

60
N(0) ξ2

0 ,(7.7)

and determined by the normal-state, single-spin density of states at the Fermi energy,

N(0), the bulk transition temperature, Tc, and the Fermi velocity, vf . The Cooper pair

correlation length ξ0 ≡ ~vf/2πkBTc varies from ξ0 ' 770Å at p = 0 bar to ξ0 ' 160Å at

p = 34 bar.
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7.3.2. Strong-coupling corrections

The fourth order β parameters that enter the GL free energy functional are modi�ed by

next-to-leading order corrections to the full Luttinger-Ward free energy functional [72].

These corrections scale as ∆βsci ∼ βwci (T/TF ) near Tc. Combining the ∆βsci with the weak-

coupling coe�cients in the bulk GL functional yields the critical pressure, pPCP, above

which the A phase is stable relative to the B phase. For p > pPCP the temperature scaling

of the strong-coupling corrections relative to the weak-coupling β parameters breaks the

degeneracy in temperature between the A and B phases at the critical pressure and

accounts for the pressure dependence of the A-B transition line, TAB(p), and thus an

accurate bulk phase diagram [104]. The resulting strong-coupling β parameters are given

by

βi(T, p) = βwci (p, Tc(p)) +
T

Tc
∆βsci (p) .(7.8)

Figure 7.1 shows the experimental bulk super�uid phase diagram as well as the phase di-

agram calculated from strong-coupling GL theory using ∆βsci coe�cients obtained based

on analysis of selected experiments by Choi et al. [23]. These β coe�cients di�er sub-

stantively from those calculated from strong-coupling theory based on a quasiparticle

scattering amplitude that accounts for the normal Fermi liquid properties of 3He. Figure

7.2 shows the bulk phase diagram calculated using the ∆βsci from Sauls & Serene[81].

This set of β coe�cients has a higher polycritical pressure than experiment; however,

the pressure dependence of the ∆βsci represents the expectation based on strong-coupling
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Figure 7.1. (Left) Bulk phase diagram with lines showing the measured
phase transitions and shading showing the calculated regions of phase sta-
bility based on GL theory. The ∆βsci coe�cients are from Choi et al[23]
and are plotted in the right panel.

theory dominated scattering from ferromagnetic spin-�uctuations. Below p = 12 bar the

∆βsci are extrapolated to zero at a negative pressure corresponding to Tc = 0 [104]. 2

7.3.3. Boundary Conditions

Con�nement is represented in the GL theory through boundary conditions. For in�nite,

planar surfaces there are two limiting cases: maximal pairbreaking, due to the retrore�ec-

tion of quasiparticles[77], and minimal pairbreaking, corresponding to specular re�ection

[5]. For a surface on the x − y plane with 3He �lling z > 0, maximal pairbreaking is

2In Chapter 8 we report an improved microscopic strong-coupling model that reproduces the bulk phase
diagram along with its resulting GL parameters.
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de�ned within GL theory by

Aαi
∣∣
z=0

= 0 ∀i ∈ {x, y, z} ,(7.9)

while minimal pairbreaking is de�ned by

Aαz
∣∣
z=0

= 0 ,

∇zAαx
∣∣
z=0

= ∇zAαy
∣∣
z=0

= 0 .(7.10)

These boundary conditions may be extended by interpolating between the two ex-

tremes. In particular, Ambegaokar, de Gennes, and Rainer (AdGR) showed that di�use

scattering from an atomically rough surface leads to a GL boundary condition in which
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the transverse orbital components of the order parameter are �nite at the surface, but

extrapolate linearly to zero a distance bT = 0.54ξ0 past the boundary. Thus, we introduce

more general boundary conditions de�ned by

Aαz
∣∣
z=0

= 0 ,

∇zAαx
∣∣
z=0

=
1

bT
Aαx

∣∣
z=0

∇zAαy
∣∣
z=0

=
1

bT
Aαy

∣∣
z=0

,(7.11)

where bT = b′T ξ0 is the extrapolation length. The parameter b′T is allowed to vary from

b′T = 0, maximal pairbreaking, to b′T → ∞, minimal pairbreaking. The �lm geometry

consists of two in�nite coplanar surfaces separated by a distance D with 3He �lling the

region between them. The boundary conditions in Eq. 7.11 are imposed at z = ±D/2.

7.3.4. Extrapolating GL theory to low temperatures

Ginzburg-Landau theory is only expected to be accurate in the vicinity of Tc. This is easily

seen in the order parameter amplitude, ∆2 ∼ 1−T/Tc, which varies linearly in T down to

T = 0; whereas the weak-coupling BCS order parameter saturates at low temperatures.

In con�ned 3He, this di�erence is re�ected in the characteristic length scale for variations

of the order parameter, which in GL theory is

ξGL(T ) =

[
7ζ(3)/20

1− T/Tc

]1/2( ~vf
2πkBTc

)
.(7.12)
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theory (dashed lines), and weak-coupling GL theory with D rescaled by
ξGL(T )/ξ∆(T ) (solid black lines).

In weak-coupling BCS theory, the characteristic length scale is

ξ∆(T ) =
~vf√

10∆BCS
B (T )

,(7.13)

which is signi�cantly larger than ξGL(T ) at low temperatures. In order to more accurately

extrapolate the spatial variations of the order parameter, as well as the con�nement phase

diagram, to lower temperatures we rescale the �lm of thickness in the GL equations

D → D(T ) with

D(T ) = D(Tc)
ξGL(T )

ξ∆(T )
,(7.14)
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where D(Tc) = D is the thickness of the �lm and D(T ) is a rescaled thickness used

within the GL theory calculation. Figure 7.3 shows the e�ect of this rescaling on the

weak-coupling GL theory phase diagram for the region of stability of the Stripe phase

in comparison to the Stripe phase region obtained in weak-coupling quasiclassical theory

[99]. Rescaling lengths in the GL theory in terms of ξ∆(T ) gives a more accurate repre-

sentation of the con�nement phase diagram than simple extrapolation of the GL results to

low temperature. The deviations that remain re�ect the non-locality of the quasiclassical

theory for inhomogeneous phases for T � Tc.

7.4. Stripe phase

The Stripe phase spontaneously breaks translational symmetry in the plane of the

�lm. We assume it does so along the x axis, leaving the order parameter translationally

invariant along the y direction. Broken translational symmetry leads to a new length

scale, L, which is the half-period of the Stripe phase order parameter; L is an emergent

length scale, which varies with temperature, pressure, �lm thickness, and the surface

boundary condition, and must be determined by numerical minimization of the GL free

energy in parallel with the self-consistent determination of the order parameter.

7.4.1. Order parameter

The Stripe phase is predicted to be stable in super�uid 3He �lms of thickness D ∼ 10ξ0

[99]. In weak-coupling theory this phase appears as a second order transition between

the Planar and B phases, and for D . Dc2 ≈ 13ξ0, corresponds to a periodic array of

degenerate B-phase domains separated by domain walls [99].
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Figure 7.4. Stripe phase order parameter for specular surfaces as functions x
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The amplitudes are scaled in units of the bulk B phase order parameter,
∆B =

√
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For broken translational symmetry along the x axis the residual symmetry of the

Stripe phase is de�ned by the point group,

H = {e, cL2xcS2x} × {e, πL
xzπ

S
xz}×{e, πL

xyπ
S
xy}

× {e, πL
xzπ

S
xz}×{e, eiπcL2z}×T ,(7.15)

where cL2x is an orbital space π rotation about the x axis, πS
xz is a spin space re�ection

about the xz plane, and T is the operation of time reversal. Based on this residual

symmetry group we can simplify the form of the order parameter for the Stripe phase to

(7.16) A(x, z) =


Axx 0 Axz

0 Ayy 0

Azx 0 Azz

 ,
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where the remaining �ve components are functions of x and z, and are all real due to

time reversal symmetry.

The spatial dependences of the self-consistent order parameter components for the

Stripe phase at pressure p = 3 bar, T/Tc = 0.5, thickness D = 12ξ0 with specular surfaces

are shown in Fig. 7.4. Note that the calculated half period is L ≈ 23.6ξ0, and that the

dominant components are the diagonal elements, Axx, Ayy and Azz. The latter exhibits

a domain wall separating degenerate B-like order parameters with sgn(Azz) = ±1. The

pair-breaking of Azz on the boundaries is alleviated by the large o�-diagonal component,

Azx, at the junction with the domain wall. The remaining symmetry allowed amplitude,

Axz, clearly exhibits the symmetry with respect to cL2xc
S
2x, but is smaller by an order of

magnitude.

The stability of the Stripe phase results from a tradeo� between the lowering of the

energy at junctions where the surfaces intersect the domain wall (note the gradient energy

in Fig. 7.5) and the cost in energy, away from the �lm surface, due to the suppression of

the order parameter along the domain wall. The total condensation energy density, with

separate bulk and gradient energy densities, is shown in Fig. 7.5.

7.4.2. Variational Model

The magnitude of the half-period of the Stripe phase, L, is most easily determined using

a variational form of the order parameter; L is a minimum at the Stripe-Planar transition

and diverges at the Stripe-B transition. At the Stripe-Planar transition, and for specular
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boundaries, L may be derived from the variational order parameter,

(7.17) A(x, z) =


∆xx 0 0

0 ∆yy 0

Azx 0 Azz

 ,

where Azx = −∆zx cos(πx/L) sin(πz/D) and Azz = ∆zz sin(πx/L) cos(πz/D). At the

Stripe-Planar transition we assume that

∆yy = ∆xx, ∆zx � ∆xx, and ∆zz � ∆xx.(7.18)

After spatially averaging and dropping terms greater than second order in ∆zx and ∆zz

the resulting GL functional reduces to,

Fvar = 2α∆2
xx + 4βP∆4

xx −
π2K23∆zx∆zz

2DL
(7.19)

+ ∆2
zx

{
α

4
+ βP∆2

xx + π2

(
K123D

2 +K1L
2

4D2L2

)}
+ ∆2

zz

{
α

4
+ β12∆2

xx + π2

(
K1D

2 +K123L
2

4D2L2

)}
,
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where βijk... = βi + βj + βk + ..., Kijk... = Ki + Kj + Kk + ... and βP = β12 + 1/2β345

determines bulk free energy of the Planar phase. Minimizing Fvar with respect to ∆2
xx

gives,

(7.20) ∆2
xx =

|α|
2βP
− ∆2

zx

8
− ∆2

zzβ12

8βP
.

The reduced free energy functional then simpli�es to

Fvar = − α2

4βP
− π2K23∆zx∆zz

2DL
(7.21)

+ ∆2
zx

{
π2

(
K123D

2 +K1L
2

4D2L2

)}
+ ∆2

zz

{
α

(
βP − β12

4βP

)
+ π2

(
K1D

2 +K123L
2

4D2L2

)}
.

The last three terms in Eq. 7.21 determine when nonzero values of ∆zx and ∆zz are

favorable and the Stripe-Planar instability occurs. At the instability

α(T ) = − π2βP
D2L2(βP − β12)

{
−2DLK23

(
∆zx

∆zz

)
(7.22)

+
(
D2K123 + L2K1

)(∆zx

∆zz

)2

+(D2K1 + L2K123)

}
.

Minimizing Fvar with respect to the ratio ∆zx/∆zz gives

(7.23)
∆zx

∆zz

=
DLK23

D2K123 + L2K1

.
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Combining Eq. 7.23 with Eq. 7.22 yields the Planar-Stripe instability temperature, TPS,

as a function of D and L. Optimizing TPS with respect to the Stripe phase period yields,

(7.24) L =

√
K123

|K23 −K1|
D ,

which for weak-coupling values of K1, K2, and K3, reduces to L =
√

3D.

Although the Planar to Stripe transition is interrupted by a �rst-order transition to

the A phase, the Stripe-Planar instability determines the scale of the half period, L,

and the temperature region where the Stripe phase is expected to be stable. The half-

period de�nes the wavenumber, Q0 = π/
√

3D, of the single-mode instability at TPS. The

wavenumber varies with the �lm thickness, D, and temperature. Figure 7.6 shows the

temperature dependence of Q for two values of the �lm thickness starting from the Planar

to Stripe instability at TPS, i.e. omitting the A phase. The stability of the A-phase relative

to the Planar phase changes the Stripe instability to a �rst-order transition at a lower

temperature TAS. For D = 11 ξ0 the stable region of Stripe phase persists to T = 0, while

for D = 11.5 ξ0 there is a Stripe to B phase transition at a temperature, TSB < TPS. In

both cases the wavenumber decreases (L increases) as T drops below TPS, with Q → 0

(L → ∞) as T → TSB. Strong coupling corrections to the free energy lead to a modest

increase the period of the Stripe phase away from the Stripe to B transition; however,

the transition temperature, TSB, is sensitive to pressure (strong-coupling) as shown in the

right panel of Fig. 7.6.
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and D = 11.5 ξ0, with a Stripe to B transition (right panel). The onset of
the Stripe transition is based on the Planar-Stripe instability, i.e. omitting
the A phase.

7.5. Stripe Phase Stability

The most prominent e�ect of strong-coupling corrections to the weak-coupling BCS

theory in bulk super�uid 3He is the stability of the A phase above pPCP = 21.22 bar. In

su�ciently thin �lms, the A phase is energetically stable relative to the B phase even in

weak-coupling theory, and is degenerate with the Planar phase [98, 99] Strong-coupling

corrections favor the A phase over the Planar phase, leading to a stable A-phase in thin

�lms at all pressures. Since the Stripe phase can be understood as a periodic array

of degenerate B phase domains separated by time-reversal invariant domain walls, one

expects strong-coupling to favor the A phase near the Planar-Stripe instability line. Indeed

the A phase suppresses the Planar to Stripe instability temperature. However, the Stripe

phase is found to be stable over a wide range of temperatures and pressures.
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Figure 7.7 shows the phase diagram for minimal pairbreaking (specular) surfaces at

pressures from 0 to 12 bar, with the Stripe phase onsetting at temperatures above 0.5Tc.

The accuracy of the strong-coupling GL theory is expected to diminish at very low tem-

peratures; therefore we show results for low and intermediate pressures for which the

A- to Stripe transition onsets above 0.5Tc. Note that at T = 0 the strong-coupling GL

corrections vanish, and the phase boundaries are determined by weak-coupling theory at

T = 0 and thus pressure independent. This is an artefact of the temperature scaling of
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Figure 7.8. Pressure-temperature phase diagram for a �lm of thickness D =
700 nm with minimal pairbreaking (specular) boundary conditions. The A
phase is stable everywhere in the white region below the bulk transition
temperature. The larger yellow circles are data for the A-B transition based
on NMR from Levitin et al obtained with 4He preplating [50].

the strong-coupling GL parameters. It is known that there are residual strong-coupling

corrections at the few percent level in the limit T = 0 [86].

A striking di�erence between the two sets of strong-coupling β parameters shown in

Figs. 7.1 and 7.2 is evident at low pressures. The ∆βsci from Choi et al. [24] are non-

monotonic between p = 0 and p = 12 bar, which leads to maximal stability of the Stripe

phase at p ≈ 3 bar. In contrast the theoretically calculated strong-coupling corrections

are monotonic functions of pressure and predict maximal stability of the Stripe phase at

p = 0 bar and decreasing stability with increasing pressure. 3
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7.5.1. Pressure-Temperature Phase Diagram

Although a number of experiments have been reported on super�uid 3He in planar ge-

ometries, of particular interest are those involving slabs of thickness D ≈ 700 nm and

D ≈ 1080 nm, which are in the range of con�nement where the Stripe phase is expected

to be stable. Levitin et al. [50] (RHUL group) used transverse NMR frequency shifts

to determine transition temperatures in these cells. They did not �nd NMR evidence of

the Stripe phase. These experiments were done both with and without preplating the

surfaces of the slab with 4He, the presence of which greatly increases the specularity of

the surface. Without the 4He present, the RHUL group reported large suppression of the

onset of the super�uid transition - a suppression larger than that predicted theoretically

for maximally pairbreaking retro-re�ective surface scattering. The explanation or origin

of this anomalous suppression is currently lacking. Thus, we focus on the measurements

done with 4He preplating, which exhibit minimal Tc suppression, and may be modeled

theoretically with minimal pairbreaking boundary conditions (specular scattering).

Calculations of the phase diagram for D = 700 nm are shown in Fig. 7.8. The A

phase onsets at the bulk Tc. There is an A to Stripe transition followed by the Stripe to B

transition. For both sets of strong-coupling β parameters, the Stripe phase is predicted to

be stable at low pressures and at experimentally accessible temperatures. Although the

stability of the A phase is maximal with specular boundary conditions, the calculated A-B

or A-S phase transition occurs at signi�cantly higher temperature than that reported by

the RHUL group. The discrepancy is su�ciently large that it is well outside uncertainties

3New microscopic calculations in Chapter 8 accurately reproduce the thermodynamic potential and bulk
phase diagram without signi�cant non-monotonicity.
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1080 nm with minimal pairbreaking boundaries. The A phase is stable
everywhere not excluded by the Stripe and B phases.

in the magnitude of the strong-coupling parameters based bulk A- and B phase free

energies. Based on our calculations accessing the Stripe phase would be optimal for

pressures between p = 1 and p = 1.5 bar.

For the thicker slab geometry, D = 1080 nm, shown in Figure 7.9, the Stripe phase is

predicted to have a negligible region of stability in the pressure-temperature plane based

on the β parameters from Choi et al. [24], and only a small window of stability at the

lowest pressures based on the theoretically calculated strong-coupling parameters.

7.5.2. E�ects of Surface Conditions on the Phase Diagram

We use the variable boundary conditions in Eqs. 7.11 to investigate the sensitivity of

the Stripe phase to surface disorder. Figure 7.10 shows the temperature-con�nement

phase diagram at p = 3 bar for maximal (b′T = 0), di�use (b′T = 0.54), and minimal

(b′T =∞) pairbreaking boundary conditions. Maximal stability of the Stripe phase occurs
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for minimal pairbreaking, i.e. specular surfaces, as shown by the blue region of stable

Stripe phase. Note that for di�use scattering the region of Stripe phase stability does not

di�er signi�cantly from that for specular boundary scattering. Conversely, for maximal

pairbreaking the Stripe phase exists only in the vicinity of T = 0.

7.6. NMR Signatures of the Stripe Phase

Nuclear magnetic resonance (NMR) spectroscopy of the 3He order parameter is based

on resonance frequency shifts originating from the Cooper pair contribution to the nuclear

magnetic dipole energy, ∆ΩD =
∫
V
d3r fD[A], which evaluated to leading order in A is

fD = gD
(
|TrA|2 + TrAA∗

)
,(7.25)

where gD = χ
2γ2

Ω2
A/∆

2
A is the nuclear dipole coupling, γ is the 3He nuclear gyromagnetic

ratio, χ is the nuclear magnetic susceptibility of normal 3He, and ΩA is the A phase longi-

tudinal NMR resonance frequency. The dipole energy, of order gD∆2
A, lifts the degeneracy

of relative rotations of the spin- and orbital state of the Cooper pairs.

NMR spectroscopy is based on the NMR frequency shift, ∆ω = ω − ωL, resulting

from the dipolar torque acting on the total nuclear magnetization. The shift depends in

general on the orientation of the NMR �eld, H, the initial tipping angle, β, generated

by the r.f. pulse, and particularly the spin- and orbital structure of the order parameter.

We use the reduction of Leggett's theory of NMR in 3He proposed by Fomin [33], 4

valid for intermediate magnetic �elds, ΩA � ωL � ∆, where ωL = γH is the Larmor

frequency [33]. The key approximation is the �rst inequality which provides a separation

4This theory is explained in detail in Section 5.6.
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of �fast� and �slow� timescales for the spin dynamics. The second inequality allows us

to neglect the deformation of the order parameter by the Zeeman �eld. Similarly, for

inhomogeneous states we use the separation of length scales for spatial variations of the

Stripe phase, of order L ∼ D ≈ 1µm, both small compared to the dipole coherence length,

ξD ≡
√
gD/K1 ≈ 20µm. The spin degrees of freedom of the order parameter cannot vary

on length scales shorter than the dipole coherence length ξD. Thus, for L� ξD the nuclear

spin dynamics is determined by the spatially averaged dipole energy. An exception to this

spatial averaging occurs near the Stripe-B transition where the period of the Stripe phase

diverges. In this limit the dipolar energy varies on su�ciently long spatial scales that

the spin dynamics is determined by a spatially varying dipolar potential. Combined with

Fomin's formulation, the separation in scales for spatial variations of the orbital and spin

components of the order parameter allows us to calculate the nonlinear NMR frequency

shifts for the inhomogeneous phases of the thin �lm as described in Ref. [104].

7.6.1. Translationally invariant Planar-distorted B phase

For non-equal-spin pairing (non-ESP) states, e.g. the polar distorted B phase or the

Stripe phase, the nuclear magnetic susceptibility, χ, is suppressed relative to that of

normal 3He, χN . For all non-ESP phases, including the Stripe phase, the susceptibility

can be expressed as

(7.26) χB =
χN

1 + 2 gz/χN(〈∆2
zx〉+ 〈∆2

zz〉)
.

For a non-ESP super�uid phase of a 3He �lm with the magnetic �eld ~H||z, for both the

B and Stripe phases, there are two possible dipole orientations corresponding to di�erent
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local minima in the dipole energy [22]. The �rst orientation is a minimum of the dipole

energy and has positive frequency shift, which following Levitin et al[51] we denote as

the B+ state in the case of the translationally invariant B phase. The frequency shift for
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the B+ state is obtained as

ω∆ω+ =
γ2

χB
gD ×


〈∆2

x〉2−〈AxxAzz〉2
〈∆2

x〉 + 2
(
〈AxxAzz〉2
〈∆2

x〉 − 〈∆2
z〉
)

cos β , cos β ≥ cos β∗ ,

−〈∆2
x〉 − 〈AxxAzz〉 − 2

〈
(Axx + Azz)

2
〉

cos β , cos β < cos β∗ ,

(7.27)

where 〈...〉 = (1/V )
∫
V
d3R . . . denotes spatial averaging, and

(7.28) cos β∗ =
1

2

(〈AxxAzz〉 − 2 〈∆2
x〉

〈AxxAzz〉+ 〈∆2
x〉

)

is the critical angle.

Axial symmetry of the Planar-distored B phase implies
〈
∆2
y

〉
= 〈∆2

x〉; thus, only 〈∆2
x〉,

〈∆2
z〉, and 〈AxxAzz〉 are non-zero. This NMR resonance is analogous to the Brinkman-

Smith mode in bulk 3He-B, but with a positive frequency shift at small tipping angle and

a shifted critical angle.

The translationally invariant, but meta-stable, B− state, corresponds to a minimum

of the dipole energy, and has a frequency shift given by

ω∆ω− =
γ2

χB
gD

{
−
(〈

∆2
x

〉
+ 2

〈
∆2
z

〉)
cos β

}
.(7.29)

This mode has a negative frequency shift at small tipping angles and, unlike the B+ state,

has no critical angle, and therefore no deviation from cosine tipping angle dependence.

The tipping angle dependences of both Planar-distorted B phase states are shown in Fig.

7.11 plotted as a function of cos β. The positive (negative) shift at small tipping angle is

the signature of the of the B+ (B−) state in the NMR spectra of the RHUL group [50].
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Figure 7.11. Transverse NMR frequency shifts as a function of tipping angle
β at D = 12ξ0, p = 3 bar, and T = 0.5Tc, with minimal pairbreaking for
the B± and S± states.

These identi�cations are con�rmed by nonlinear NMR measurements [51] showing both

the pure cosine tipping angle dependence of ω∆ω for the B− state, and the �kink� in the

shift at the critical angle β∗ for the B+ state. Note that for D = 12ξ0 at p = 3 bar there

is a small slope to the positive shift for cos β > cos β∗.

7.6.2. Nonlinear NMR shifts for the S± Stripe phases

The breaking of both translational and rotational symmetry in the plane of the �lm by

the Stripe phase leads to a qualitatively di�erent transverse NMR frequency shift for the

Stripe phase with relative spin-orbit rotation corresponding to a minimum of the dipole
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energy, i.e. the S+ state,

ω∆ω+ =
1

4

γ2

χB
gD

{〈
(Ayy + Axx)

2
〉

−
[〈

(Ayy − Axx)2
〉

+ 8
〈
∆2
z

〉
− 4

(〈
A2
xz

〉
+
〈
A2
zx

〉)]
cos β

}
.(7.30)

The S+ phase is distinguished with respect to both the bulk B phase and the Planar-

distorted B+ phase by the absence of a critical tipping angle. This results from spatial

averaging over the period of the Stripe phase which contains equal volumes of Azz > 0

and Azz < 0 giving 〈AxxAzz〉 = 〈AyyAzz〉 = 0.

By contrast the frequency shift of the metastable S− phase does not di�er substantially

from that of the B− phase,

ω∆ω− =
1

4

γ2

χB
gD

{〈
(Ayy − Axx)2

〉
(1 + cos β)

−
[
2
〈
∆2
x

〉
+ 2

〈
∆2
y

〉
+ 8

〈
∆2
z

〉
− 4

(〈
A2
xz

〉
+
〈
A2
zx

〉)]
cos β

}
.(7.31)

Note that the constant term in the shift for the S− state proportional to the average

〈(Ayy − Axx)2〉 is absent for the B− state; however, this constant shift is negligibly small.

Figure 7.11 shows the comparison between the translationally invariant B± NMR shifts

and those for the corresponding stable and metastable S± Stripe phases. The primary

NMR signature of the Stripe phase is the positive shift with an o�set, a �nite slope and

the absence of critical angle. This signature clearly di�erentiates the S+ phase from the

B± states and the A phase.
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7.7. Summary and Outlook

By formulating a GL theory that incorporates pressure and temperature dependent

strong-coupling corrections, combined with temperature dependent rescaling of the con-

�nement length, D, we have greatly expanded the region of applicability of GL theory

for calculations of the properties of con�ned super�uid 3He. Strong-coupling corrections

expand the region of stability of the A phase and decrease the region of stability of the

Stripe phase; however, the Stripe phase remains stable in a large region of pressure,

temperature, and con�nement. The stability of the Stripe phase is insensitive to di�use

surface scattering; the phase diagram for specular and fully di�usive scattering predict

the Stripe phase to occur in nearly equivalent regions of the phase diagram. Nonlinear

NMR measurements are probably the best means of detecting the Stripe phase. The

NMR signatures - positive shift with no critical angle - di�erentiates the S+ phase from

the B± and A phases.
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CHAPTER 8

Strong-coupling: Super�uid 3He as the precursor to an

anti-ferromagnetic solid

8.1. Introduction

While the prior chapters of this thesis have made extensive use of strong-coupling cor-

rections, they have done so in the Ginzburg-Landau theory using strong-coupling material

coe�cients inferred from experiment. This treatment cannot include low temperatures

and small length scales beyond the Ginzburg-Landau regime. It also is subject to substan-

tial theoretical uncertainty, because the strong-coupling corrections inferred by Choi et

al[23] look nothing like those previously calculated using microscopic theory[81]. In this

chapter we revisit the theory of the stability of the A phase with a microscopic strong-

coupling theory based on the Luttinger-Ward free-energy functional and quasiclassical

theory.

Attempts to understand the �ne details of 3He quasiparticle interactions and their

in�uence on the super�uid state predate the experimental discovery of the super�uid.

Fay and Layzer[31] in 1968 showed that many-body e�ects could favor p-wave pairing in

ferromagnetic (FM) neutral Fermi systems, speci�cally 3He. The resulting paramagnon

exchange model, and the �feedback mechanism� of Anderson and Brinkman[7], provided

a plausible explanation as to what stabilized the super�uid A phase at pressures above

pPCP and temperatures near Tc.[47, 16].
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The feedback mechanism mediated by paramagnon exchange, however, was mostly

qualitative. Attempts to get a quantitative handle on the relative stability of the super-

�uid phases lead to models including more complicated interactions. One of the most use-

ful formalisms developed for this was the quasiclassical reduction of the Luttinger-Ward

free-energy functional developed by Rainer and Serene.[72] The free-energy functional

approach could be used to calculate static and dynamic properties for both the normal

Fermi liquid and the super�uid phases. Sauls and Serene[81] used this technique to cal-

culate super�uid energetics in the Ginzburg-Landau regime, and it was later shown to �t

Greywall's B-phase speci�c heat measurements exceptionally well.[39]

8.2. Free-energy functional

We consider the quasiclassical reduction of the Luttinger-Ward free-energy functional

introduced by Rainer & Serene.[72] The full Luttinger-Ward functional is

Ω[Ĝ, Σ̂] = −T
2

∑
εn

∫
d3k

(2π)3
Tr4

{
Σ̂(~k, εn) Ĝ(~k, εn)

+ ln[−Ĝ−1
0 (~k, εn) + Σ̂(~k, εn)]

}
+ Φ[Ĝ] ,(8.1)
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where the full Nambu space propagators are given by

Ĝ(~k, εn) =

 Ĝ(~k, εn) F̂ (~k, εn)

F̂ †(~k, −εn) −Ĝtr(−~k, −εn)

(8.2)

Σ̂(~k, εn) =

 Σ̂(~k, εn) ∆̂(~k, εn)

∆̂†(~k, −εn) −Σ̂tr(−~k, −εn)

 ,(8.3)

with

Gαδ(~k, εn) = −
∫ β

0

dτ eiεnτ
〈
Tτ a~kα(τ) a†~kδ(0)

〉
(8.4)

GT
αδ(−~k, −εn) = −

∫ β

0

dτ e−iεnτ
〈
Tτ a−~kδ(τ) a†−~kα(0)

〉
(8.5)

Fαδ(~k, εn) = −
∫ β

0

dτ eiεnτ
〈
Tτ a~kα(τ) a−~kδ(0)

〉
(8.6)

F †αδ(
~k, εn) = −

∫ β

0

dτ e−iεnτ
〈
Tτ a

†
−~kα(τ) a†~kδ(0)

〉
(8.7)

The propagator Ĝ is �xed in terms of Σ̂ by the Dyson equation as

(8.8) Ĝ−1(~k, εn) = Ĝ−1
0 (~k, εn)− Σ̂(~k, εn) ,

where Ĝ0 is the propagator for noninteracting fermions. Eq. 8.8 leads to the stationarity

property

(8.9) δΩ[Ĝ, Σ̂]/δΣ̂tr(~k, εn) = 0 ,
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in which Ĝ and Σ̂ are treated as independent. A further stationarity property,

(8.10) δΩ[Ĝ, Σ̂]/δĜtr(~k, εn) = 0 ,

de�nes Φ[Ĝ] in terms of the skeleton expansion of the self-energy,

Σ̂ = Σ̂skel = 2 δΦ[Ĝ]/δĜtr .(8.11)

To form the quasiclassical reduction of the free-energy functional, we �rst subtract o�

the normal state ΩN with

∆Σ̂ = Σ̂− Σ̂N

∆Ĝ = Ĝ− ĜN ,(8.12)

and

∆Ω[∆Ĝ, ∆Σ̂] = Ω[Σ̂]− Ω[Σ̂N ]

= −T
2

∑
εn

∫
d3k

(2π)3
Tr4

{
∆Σ̂ Ĝ

+ln[−Ĝ−1
N + ∆Σ̂]− ln[−Ĝ−1

N )]
}

+ ∆Φ[Ĝ] .(8.13)

The subtracted Φ term is given by

∆Φ[Ĝ] = Φ[Ĝ]− Φ[ĜN ]− T

2

∑
εn

∫
d3k

(2π)3
Tr4[Σ̂N ∆Ĝ] .(8.14)

The quasiclassical reduction proceeds from the observation that the energy scale of

the super�uid Cooper pairs, Tc, is much less than the Fermi scale Tf . This allows the
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problem to be simpli�ed by restricting the propagator to a shell of width 2Ec about the

Fermi surface, where Ec � Ef . The high-energy contributions beyond this shell are es-

sentially integrated out and replaced by phenomenological parameters. The quasiclassical

propagator is then de�ned by

ĝ(p̂, εn) ≡ 1

a

∫ +Ec

−Ec
dξp τ̂3Ĝ(~p, εn)(8.15)

where ξp = vf (|p|−pf ) and a is the weight of the quasiparticle pole in the spectral function

used to normalize the propagator. The quasiclassical self-energy we split into leading and

next-to-leading order contributions through

σ̂ ≡ Σ̂(pf p̂, εn)τ̂3

= σ̂wc + σ̂sc(8.16)

σ̂wc = 2 δ∆Φ[ĝ]wc/δĝ
tr

σ̂sc = 2 δ∆Φ[ĝ]sc/δĝ
tr ,(8.17)

where ∆Φwc reproduces the weak-coupling BCS functional, ∆Φsc contains higher order

terms, and τ̂i denote Pauli matrices in particle-hole (Nambu) space. The ∆Φsc is formally

of order (T/Tc)
3 and to this order can be evaluated at the weak-coupling stationary point,

∆Φsc[ĝwc] = ∆Φsc

[∫
dξp(iεnτ̂3 − ξp1̂− σ̂wc)

−1
]
.
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After simpli�cation, the quasiclassical free-energy functional is

∆Ω[ĝ, σ̂wc] = −N(0)T

2

∑
εn

∫
dΩp

4π
Tr4

{
σ̂wc ĝ

+

∫
dξp

(
ln[−Ĝ−1

0 + σ̂wc]− ln[−Ĝ−1
0 ]
)}

+ ∆Φwc[ĝ] + ∆Φsc[σ̂wc] .(8.18)

where the normal-state quasiparticle propagator is

(8.19) Ĝ−1
N = iεnτ̂3 − ξp1̂

Note that while ĝ is the full propagator, σ̂sc no longer appears explicitly in Eq. 8.18. This

means that we may eliminate ĝ using σ̂ = 2 δ∆Φ[ĝ]wc/δĝ
tr.

For homogeneous, unitary phases without external �elds, we can further simplify the

functional by taking σ̂ = ∆̂ and evaluate the logarithm and ∆Φwc in the usual manner[86],

∆Ω[∆̂] = N(0)

∫
dΩp

4π

{
ln(T/Tc)|∆|2

+πT
∑
n

|∆|4
|εn|(|εn|+

√
ε2
n + |∆|2)2

}

+ ∆Φsc[∆̂] .(8.20)
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The propagator ĝ in this approximation is given equivalently by Eilenberger's transport

equation and normalization,

0 = [iεnτ̂3 − ∆̂, ĝ] + ivF p̂F · ∇ĝ(8.21)

ĝ2 = −π21̂ ,(8.22)

which for homogeneous equilibrium has the solution

(8.23) ĝ = −π iεnτ̂3 − ∆̂(p̂)√
ε2
n + |∆(p̂)|2

.

The order parameter ∆̂ is given by the stationarity condition

δΩ/δ∆̂tr = 0 .(8.24)

The strong-coupling contributions to the free-energy functional are described diagram-

matically in terms of four propagators,

f̂ =
π∆̂√

ε2
n + |∆̂|2

(8.25)

f̂ =
−π∆̂∗√
ε2
n + |∆̂|2

(8.26)

ĝN
= −iπ sgn(εn)1̂(8.27)

ĝ − ĝN = −iπ

 εn√
ε2
n + |∆̂|2

− sgn(εn)

 1̂(8.28)
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Figure 8.1. Φ diagrams. Diagram (a) generates the usual BCS weak-
coupling theory, while diagrams (b) to (h) are next order corrections at
(Tc/TF )3 which contribute to Φsc and are described further in Appendix A.

where the exact expressions given are valid for the unitary, homogeneous states we con-

sider. The Φ diagrams to order (Tc/TF )3 are given in Fig. 8.1 and written out explicitly

for the A phase in Appendix A.[72] The vertex in the leading diagram (a) is the irre-

ducible particle-particle interaction leading to p-wave super�uidity, while the other vertex

appearing in diagrams with four propagator lines is the quasiparticle-quasiparticle scat-

tering amplitude evaluated on the Fermi surface with ~pi = pf p̂i and εni = 0. This vertex

T is expressed as

(8.29) Tα, β; γ, ρ(p̂1, p̂2; p̂3, p̂4) = T

p̂1, α p̂2, β

p̂3, γ p̂4, ρ

,
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where α, β, γ, and ρ are the spin projections (↑ or ↓) for the incoming and outgoing

scattering states.

To order (T/Tf )
3 the quasiparticle scattering amplitude reduces to a function of only

two variables, which we choose to be the two momentum transfers q1 = |p̂1 − p̂3| and

q2 = |p̂1 − p̂4|.[81] The vertex is then split into two functions as

Tα,β;γ,ρ(p̂1, p̂2; p̂3, p̂4) = δαγδβρ ν(q1)− δαρδβγ ν(q2)

+ ~σαγ · ~σβρ j(q1)− ~σαρ · ~σβγ j(q2)(8.30)

where v(q) and j(q) represent the spin-independent and exchange interaction potentials

governing the scattering of quasiparticles near the Fermi surface. These potentials, or ef-

fective interactions, determine both the thermodynamic and transport Fermi liquid prop-

erties of normal 3He. They also determine the leading order strong coupling corrections

to the BCS free energy functional, and thus the relative stability of the A and B phases

of super�uid 3He. Note that Eq. 8.30 assumes that the only spin dependence is that from

exchange due to indistinguishable Fermions interacting through a spin-independent po-

tential. The nuclear dipole interaction, a spin-orbit interaction, violates this assumption;

however, it is a tiny perturbation compared to the pairing interaction and can be treated

perturbatively.

8.3. Frequency dependence of ∆

The Matsubara frequency sums in Φsc are generally convergent, however they converge

at values of εn orders of magnitude above the expected weak-coupling cuto� scale Ec ≈

0.1EF . This implies that, were the frequency dependence of the leading weak-coupling
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interaction and the order parameter treated self-consistently, then that scale would be

provide a frequency cuto� for the Φsc terms through the frequency dependence of ∆.

While we do not know the exact form of the frequency dependence of the leading pair-

ing interaction, it is reasonable to approximate it as a boson-mediated pairing interaction.

We take the pairing interaction with a Lorentzian form. Thus we take the spin-�uctuation

mediated pairing interaction to be

λ(p̂, εm; p̂′, ε′m) = λ (p̂ · p̂′) θ(εm, ε′m) ,

θ(εm, ε
′
m) = ω2

sf/[(εm − ε′m)2 + ω2
sf ](8.31)

where the frequency cuto� is determined by the maximum paramagnon energy, ωsf =

xsfEF (1 + F a
0 ). The coe�cient xsf ∼ O(1) is pressure independent and determined by

�tting to experiment. Treated self-consistently within the weak-coupling free-energy func-

tional, this pairing interaction results in an order parameter that also has a Lorentzian

frequency dependence of ∆̂(p̂, εm) ≈ ∆̂(p̂) θ(εm, 0). Figure 8.2 shows the frequency depen-

dence of the self-consistent order parameter, and we note that this self-consistent recovery

of the form of the pairing interaction is not found for the quartic cuto� used by Sauls

and Serene.[80] We therefore treat the order parameter ∆̂ as having this �xed Lorentzian

frequency dependence instead of calculating it self-consistently for each individual Mat-

subara frequency εm.

8.4. Experimental Inputs

The material parameters entering the free-energy functional, along with the quasipar-

ticle interaction potentials, must be determined experimentally. For the basic Fermi liquid
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Figure 8.2. The relative order parameter amplitude for the bulk A and B
phases as a function of Matsubara index m. The red circles (B phase)
and blue squares (A phase) are calculated self-consistently and have nearly
identical frequency dependence. The dashed black line is the Lorentzian
function with width ωsf = 1.14ωff where ωff is the spectral width of the
pairing interaction.

properties, the Fermi momentum pf , the e�ective mass m∗, and the molar volume Vm, we

use the values found by Greywall[39] but converted to the newer PLTS-2000 temperature

scale as described by Goudon in Ref. [36]. This shift in temperature scale results in up

to a 5% enhancement of m∗. We also use the magnetic susceptibility measurements, and

hence F a
0 , from the Grenoble experiment presented in that paper.[36] The speed of �rst

sound, c1, and hence the value of F s
0 , is from the experiment of Ref. [69] with �tting

coe�cients provided by Ref [41].

Further normal Fermi liquid properties are considered but given far less weight due to

signi�cant uncertainties. The Fermi liquid parameter F s
2 , taken from Refs. [56, 42, 30],

is found to be most consistent with F s
2 ≈ 0.1 independent of pressure. We also incorporate
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data for three transport measurements: thermal conductivity[38], dynamic viscosity[63],

and spin di�usion[76] which constrain angular averages of the T matrix via exact solutions

to the Landau-Boltzmann transport equation for these transport properties.[18]

We further �t the model to the speci�c heat jumps of the A and B phase transitions

at Tc. For the B phase and the A phase above pPCP we use Greywall's data[39] converted

to the PLTS-2000 scale. To constrain the A phase speci�c heat jumps below pPCP, we

follow the analysis described by Choi et al[23] which uses g(β), the g-shift, and the B

phase speci�c heat.

8.5. Quasiparticle interaction potentials

Obtaining a good �t to the experimental input data required a large number of �tting

parameters characterizing the potentials v(q) and j(q) appearing in Eq. 8.30 regardless

of which polynomial bases or variational functions we tried. We chose to use l ≤ 10

shifted Legendre polynomials on q/2kF ∈ [0, 1] due to their goodness of �t and numerical

e�ciency. The additional free parameter, the spin �uctuation coe�cient, was �xed at all

pressures as xsf ≈ 0.4. As we do not have enough independent inputs to fully constrain

this 21 parameter model, we checked for additional solutions using global optimization; we

found no additional minima in the physically reasonable parameter space aside from that

reported here. In addition, the overall shape of the potentials was found to be insensitive

to small shifts in the key experimental inputs.

Figure 8.3 shows the resulting interaction potentials. The exchange interaction, −j(q),

is maximal near q = 0, signifying the role of ferromagnetic spin �uctuations. In addition

to the ferromagnetic peak we �nd an additional maximum appearing at the same q value
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Figure 8.3. The spin-dependent interaction potential j(q) and the spin-
independent potential v(q) at pressures from 0 to 34 bar. The curvature
variations of the potentials with pressure at small q appear to largely be
artifacts of the underconstrained functional forms. The vertical dashed line
is the value of q that corresponds to the solid 3Helattice constant at 34 bar.

in both −j(q) and the spin-independent potential v(q). These peaks at a relatively high

q = qa are interpreted as anti-ferromagnetic spin-�uctuation exchange and exchange of

long-lived density �uctuations near a Mott transition, respectively. The wave vector, qa,

is found, at the melting pressure 34.4 bar, to match that lattice constant of the anti-

ferromagnetic 3He solid,

qa =
2π

(2 va/NA)1/3
≈ 1.64 kF ,(8.32)

where va is the molar volume of the bcc solid 3He.[74] Thus the form of the interaction

potentials strongly suggests a link between the interacting 3He Fermi liquid, the strong-

coupling stabilization of the A phase, and the anti-ferromagnetic solid phase at higher

pressure, which we will discuss further in the Conclusion.



164

8.6. Speci�c heat

Having determined the interaction potentials at Tc, we can test the strong-coupling

free-energy functional below Tc directly by calculating the super�uid speci�c heat,

C − CN = −T (∂2∆Ω/∂T 2) ,(8.33)

as a function of temperature and comparing it to experiment. Evaluating the free-energy

functional for the A phase below Tc is particularly challenging, since it is not possible to

separate the Matsubara sums from the angular integrals as is the case with the B phase.

We implemented the Foam Monte Carlo integration algorithm[44] to accomplish this, the

details of which are given in Appendix C.

Figure 8.4 shows a direct comparison at p = 34 bar between the temperature de-

pendence of the super�uid speci�c heat in both A and B phases as measured by Grey-

wall[39],after conversion to the PLTS-2000 temperature scale, and self-consistent cal-

culations using the strong-coupling free-energy functional. The quantitative agreement

between theory and experiment is maintained at all pressures and temperatures available.

Figure 8.5 shows fractional di�erences between between our calculation and Greywall's ex-

periment as a function of both temperature and pressure, and demonstrates greater than

95% agreement until T ≈ 0.9 mK where the thermometry calibration of the experiment

is known to be highly uncertain.

We �nd that, having �t the interaction potentials to our known normal and super�uid

properties at Tc, the strong-coupling theory maintains a high degree of accuracy when

calculating the speci�c heat at lower temperatures. While previous work by Sauls, Serene,

and Rainer[81, 85] showed a high degree of accuracy in calculating the B phase speci�c
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Figure 8.4. Super�uid speci�c heat as a function of temperature at 34 bar,
for both A and B phases, as calculated self-consistently with the strong-
coupling free-energy functional (solid lines) and as a measured by Grey-
wall[39] (squares and circles).

heat, it did not include the A phase due to numerical di�culty. Here we have shown that

the strong-coupling free-energy functional considered is able to accurately reproduce both

measured A and B phase speci�c heat curves.

8.7. Phase diagram

Another key test of the accuracy of the strong-coupling theory is the bulk phase

transition line between the A and B phases as a function of temperature and pressure.

This TAB is absent in weak-coupling, where only the B phase is stable, and its exact

location is extremely sensitive to the relative free energies of the A and B phases. Prior

microscopic strong-coupling results have not included this line due to the di�culty of

calculating the A phase free-energy below Tc; however, the TAB line was found to be
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Figure 8.5. Fractional di�erences between the calculated super�uid speci�c
heat and Greywall's measurements. For temperatures below the vertical
line at T ∼ 0.8 mK the temperature calibration for the experiment becomes
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accurately represented by Ginzburg-Landau theory including both the strong-coupling

corrections to the 4th order invariants and their temperature dependence at Tc.[104]

We calculate the TAB line through direct comparison of the A and B phase free energies

and where they cross. Figure 8.6 shows the bulk phase diagram as measured by Grey-

wall[39], including the measured A-B transition, compared to our calculated TAB line.

The agreement is seen to be incredibly good, going from pPCP to the melting pressure at

34.4 bar and capturing the curvature of the TAB line. These results provide strong valida-

tion of the e�ective interaction potentials that determine the strong-coupling corrections

to the weak-coupling free energy.
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8.8. Ginzburg-Landau regime

Having shown the accuracy of the strong-coupling free-energy functional for the bulk

A and B phases, we can use it to recover the leading corrections to the weak-coupling

Ginzburg-Landau theory for 3He. These corrections appear in the fourth-order β coe�-

cients as[104]

(8.34) βi ≡ βwc
i + (T/Tc) ∆βsc

i .

The resulting ∆βsc
i coe�cients are similar to those calculated by Sauls and Serene[81],

with the negative ∆βsc5 dominating at high pressures followed by ∆βsc
4 . The theoretical
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results for the strong-coupling GL parameters are qualitatively di�erent than that pro-

posed by Choi et al[23], which includes positive ∆βsc
5 corrections, shown in Fig. 3.1; these

positive corrections are hard, if not impossible, to realize in strong-coupling theory.

8.9. Conclusion

We have obtained extraordinarily good numerical agreement with the measured ther-

modynamic properties of bulk super�uid 3He using next-to-leading order strong-coupling

quasiclassical theory. In particular, this work represents the �rst accurate quantitative

calculation of the TAB line and the A phase speci�c heat below Tc. Moreover, the quasi-

particle interaction potentials necessary for this quantitative accuracy show rich features

beyond the ferromagnetic interactions expected from spin-�uctuations. We �nd that

both anti-ferromagnetic and Mott interactions emerge from the �t to our input data,
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and that both these interactions exhibit a peak at the same wavevector qa correspond-

ing the anti-ferromagnetic solid 3He lattice. The model of super�uid 3He as an almost

localized Fermi liquid was �rst suggested by Anderson and Brinkman[6] on the basis of

its almost pressure-independent F a
0 parameter and strongly pressure dependent e�ective

mass and later expanded by Vollhardt.[92] That signi�cant weight in the interaction po-

tentials is necessarily found at large momentum transfer strongly suggests that the rich

phase diagram of 3He is a product of interactions mediated by both ferromagnetic and

anti-ferromagnetic spin-�uctuations, as well as density �uctuations of an almost localized

Fermi liquid near a Mott transition.
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APPENDIX A

Strong-coupling diagrams

The diagrams (b) through (h) of Fig. 8.1 that make up ∆Φsc[∆̂] for the bulk A phase

are described in this appendix; the B phase follows the same form as the weak-coupling

plus model studied by Serene and Rainer.[85] The angular integrals are formulated as in

Rainer and Serene[72] where the vertex T is de�ned as

(A.1) Tαβ, γρ ≡ T (s) δαρδβγ + T (a)(~σ)αρ · (~σ)βγ .

The spin-symmetric and spin-antisymmetric components are given, respectively, by

T (s)(q1, q2) =
1

4

{
4 v(q1)− 2 v(q2)− 6 j(q2)

}
T (a)(q1, q2) =

1

4

{
4 j(q1) + 2 j(q2)− 2 v(q2)

}
.(A.2)

We use the Abrikosov-Khalatnikov[3] angles to integrate the resulting terms in the free-

energy functional. These angles, θ and φ, relate to the momentum transfers as

q1 ≡ |p̂1 − p̂3| = kf {| cos θ − 1| | cosφ− 1|}1/2

q2 ≡ |p̂1 − p̂4| = kf {| cos θ − 1| | cosφ+ 1|}1/2 .(A.3)
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For diagrams (d) and (e) we also must de�ne two additional angles[72]

cos θ′ = cosφ− cos2(θ/2)(cosφ+ 1)

cosφ′ =
3 cos2(θ/2)− 1− [cos2(θ/2)− 1] cosφ

cos2(θ/2) + 1 + [cos2(θ/2)− 1] cosφ
.(A.4)

The A phase order parameter is separated into

∆A(p̂, εn) = ∆ θ(εn)ω(p̂)(A.5)

where the amplitude ∆ is taken to be both real and positive and ω(p̂) = p̂x + ip̂y. We

de�ne the following convenience functions related to the scalar pieces of the quasiclassical

propagators,

f i ≡ ∆θ(εni)√
ε2
ni

+ |∆ θ(εni)|2[1− (p̂i · ẑ)2]

giS ≡
εni√

ε2
ni

+ |∆ θ(εni)|2[1− (p̂i · ẑ)2]
− sgn(εni)

giN ≡ sgn(εni)(A.6)

The prefactors, summations, and integrations are identical for each diagram consid-

ered, so we separate out the innermost integrand ϕsc as

∆Φsc[∆̂] = −π
4N(0)

8

T 3

Tf

∑
εn1

∑
εn2

∑
εn3

∫
Ω1

4π

∫
Ω2

4π

∫
Ω3

4π
δ(|p̂1 + p̂2 − p̂3| − 1)

× ϕsc[∆; p̂1, εn1 ; p̂2, εn2 ; p̂3, εn3 ; p̂1 + p̂2 − p̂3, εn1 + εn2 − εn3 ] .(A.7)
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Finally, the individual diagrams are then given by

ϕb =
1

2

(
[T (s)(θ, φ)]2 + 3 [T (a)(θ, φ)]2

)
g1
S g

2
S g

3
N g

4
N(A.8)

ϕc =
(
[T (s)(θ, φ)]2 + 3 [T (a)(θ, φ)]2

)
g1
S g

2
N g

3
S g

4
N(A.9)

ϕd = −2
[
T (s)(θ, φ)T (s)(θ′, φ′) + T (a)(θ, φ)T (a)(θ′, φ′)

]
× ω∗(p̂2)ω(p̂4) g1

S f
2 g3

N f
4(A.10)

ϕe = −
[
T (s)(θ, φ)T (s)(θ′, φ′) + T (a)(θ, φ)T (a)(θ′, φ′)

]
g1
S g

2
S g

3
N g

4
S(A.11)

ϕf = −1

4

(
[T (s)(θ, φ)]2 + 3 [T (a)(θ, φ)]2

)
ω∗(p̂1)ω∗(p̂2)ω(p̂3)ω(p̂4)

× f 1 f 2 f 3 f 4(A.12)

ϕg =
(
[T (s)(θ, φ)]2 + 3 [T (a)(θ, φ)]2

)
ω∗(p̂2)ω(p̂4) g1

S f
2 g3

S f
4(A.13)

ϕh =
1

4

(
[T (s)(θ, φ)]2 + 3 [T (a)(θ, φ)]2

)
g1
S g

2
S g

3
S g

4
S .(A.14)
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APPENDIX B

Numerical Optimization with L-BFGS

Minimizing the Ginzburg-Landau free-energy functional is an example of a nonlinear

optimization problem. Given a function

(B.1) f(~x) : RN → R ,

we want to �nd ~x such that ∇f(~x) = 0.

Numerically, we treat this as an iterative procedure in which at each iteration k f(~xk+1)

is expanded as

f(~xk+1) ≡ f(~xk + αp̂)(B.2)

≈ fk +∇fTk αp̂+
1

2
α2 p̂TBkp̂+O(α3) ,(B.3)

where a direction p̂k and step length αk must be chosen to update ~x and Bk is the Hessian

matrix

(B.4) [Bk]ij = ∂i∂jf(~xk) .

Newton's method explicitly minimizes Eq. B.3 with

(B.5) αp̂ = −B−1
k ∇fk .



184

The downside of this solution is that it involves B−1
k , which requires both the computation

of all second partial derivatives of f and also solving a linear system to recover p̂. To

avoid dealing with B−1
k , Quasi-Newton methods use various approximations to eliminate

the computation of second derivatives and the additional matrix inversion problem.

Nocedal and Wright[65] describe in a great detail a number of Quasi-Newton and re-

lated methods, along with pseudocode and mathematical proofs for convergence. For the

Ginzburg-Landau solvers used starting with Chapter 3 in this thesis we used the algorithm

Limited-memory BFGS (L-BFGS), related to the Broyden�Fletcher�Goldfarb�Shanno al-

gorithm.[64]

It is typical with Quasi-Newton methods, which return a vector ~p, to re�ne �nal step

size α through a linesearch method that minimizes f(~xk + α~p) with respect to α. These

linesearch methods typically combine secant methods and solution bracketing.[65]

Included below is Python 3.4 and numpy code demonstrating the implementation of

the L-BFGS two-loop recursion algorithm[65] as well as a minimal linesearch with both

a secant step and bracketing. The code also includes a test problem to show how the

linesearch and L-BFGS portions are deployed.
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1 from numpy import *
2

3

4 def _ip(x, y):
5 return sum(
6 real(

7 x.conj() * y

8 )

9 )

10

11

12 class LBFGS:
13

14 def __init__(self , m_max ):
15 self._m_max = m_max # maximum memory

16

17 self._m = 0 # current memory size

18 self._mi = 0 # current index into memory

19

20 # saved state , to be set on first run

21 self._s = None # vector s ~ [m_max * n_dim]

22 self._y = None # vector y ~ [m_max * n_dim]

23 self._rho = None # vector rho ~ [m_max]

24 self._alpha = None # vector alpha ~ [m_max]

25

26 self.last_x = None # store last x

27 self.last_gx = None # store last gx

28

29 # search direction , is returned
30 self.p = None # search direction

31

32 def update(self , x, gx):
33 if self._s is None:
34 # initialize on first iteration , return gradient
35 self._s = zeros ((self._m_max ,) + x.shape)

36 self._y = zeros ((self._m_max ,) + x.shape)

37 self._rho = zeros ((self._m_max ))

38 self._alpha = zeros ((self._m_max ))

39

40 self.last_x = copy(x)

41 self.last_gx = copy(gx)
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42 self.p = - copy(gx)

43 return self.p
44

45 # add last iteration to memory vectors

46 k = self._mi

47 self._s[k, :] = x - self.last_x

48 self._y[k, :] = gx - self.last_gx

49 self._rho[k] = 1. / _ip(self._s[k], self._y[k])

50 self.p[:] = gx[:]

51

52 self.last_x [:] = x[:]

53 self.last_gx [:] = gx[:]

54

55 # first loop , reverse

56 for k0 in range(self._m):
57 if self._mi < k0:
58 k = self._mi + self._m - k0

59 else:
60 k = self._mi - k0

61

62 self._alpha[k] = self._rho[k] \

63 * _ip(self._s[k], self.p)

64 self.p -= self._alpha[k] * self._y[k]

65

66 # scale factor (H_k^0)

67 gamma = 1. / self._rho[self._mi] / \

68 _ip(self._y[self._mi], self._y[self._mi])

69 self.p *= gamma

70

71 # second loop , forward

72 for k0 in range(self._m):
73 if self._mi + k0 + 1 < self._m:
74 k = k0 + self._mi + 1

75 else:
76 k = k0 + self._mi + 1 - self._m

77

78 beta = self._rho[k] * _ip(self._y[k], self.p)

79 self.p += (self._alpha[k] - beta) * self._s[k]

80

81 # memory index update

82 if self._m < self._m_max:
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83 self._m += 1

84 self._mi = (self._mi + 1) % self._m_max

85

86 # sign convention of search direction

87 self.p *= -1.

88 return self.p
89

90

91 class Secant:
92

93 def __init__(self , tol , margin ):
94 self.tol = tol

95 self.margin = margin

96 self.bkt = [0., 1e15]

97

98 def update_bracket(self , a, proj_a ):
99 if proj_a > 0.:
100 self.bkt[1] = a

101 else:
102 self.bkt[0] = a

103

104 def secant_step(self , a0 , pa0 , a1, pa1):
105 return (a0 * pa1 - a1 * pa0) / (pa1 - pa0)
106

107 def update(self , x, gx0 , p, gradf ):
108 a0 = 0.

109 proj_a0 = _ip(gx0 , p)

110 self.bkt = [0., 0.]

111 self.update_bracket(a0, proj_a0)

112 a = 1.

113 i = 0

114 for i in range(0, 10):
115 x += (a - a0) * p

116 gx = gradf(x)

117 proj_a = _ip(gx , p)

118 self.update_bracket(a, proj_a)

119

120 if abs(proj_a) < self.tol:
121 break
122

123 a2 = self.secant_step(a0, proj_a0 , a, proj_a)
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124 w = self.margin * (self.bkt[1] - self.bkt [0])

125 if a2 < self.bkt[0] + w \
126 or (self.bkt[1] != 0. \
127 and a2 > self.bkt[1] - w):
128 a2 = 0.5 * (self.bkt[1] + self.bkt [0])

129

130 a0 = a

131 proj_a0 = proj_a

132 a = a2

133 gx0[:] = gx[:]

134 return a, i
135

136

137 def rosenbrock(x):
138 n = x.shape [0]

139 s = 0.

140

141 for i in range(n - 1):
142 s += 100. * (x[i + 1] - x[i] ** 2) ** 2 \

143 + (x[i] - 1.) ** 2

144

145 return s
146

147

148 def grad_rosenbrock(x):
149 n = x.shape [0]

150 s = zeros_like(x)

151

152 s[0] = 100. * 2. * (x[1] - x[0] ** 2) * (-2. * x[0]) + \

153 2. * (x[0] - 1.)

154 s[-1] = 100. * 2. * (x[-1] - x[-2] ** 2)

155

156 for i in range(1, n - 1):
157 s[i] = 100. * 2. * (x[i] - x[i - 1] ** 2)

158 s[i] += 100. * 2. * (x[i + 1] - x[i] ** 2) * \

159 (-2. * x[i]) + 2. * (x[i] - 1.)

160

161 return s
162

163

164 def main ():
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165 n = 5000

166 x = 0.5 * ones((n))

167 fx = rosenbrock(x)

168 gx = grad_rosenbrock(x)

169

170 m_max = 10

171 lbfgs = LBFGS(m_max)

172

173 max_iter = int(1e3)

174 tol = 1e-12

175 sec_tol = 1e-1

176

177 secant = Secant(sec_tol , 1e-1)

178

179 for i in range(0, max_iter ):
180 p = lbfgs.update(x, gx)

181 a, li = secant.update(x[:], gx[:], p[:], \

182 grad_rosenbrock)

183 err = amax(abs(gx))

184 err_sol = sum(abs(x - 1.))

185 print ("iter: ", i, " err: ", err , \

186 " abs err: ", err_sol)

187 if amax(abs(gx)) < tol:
188 break
189

190 print (" Initial: ", fx , ", Final: ", rosenbrock(x))
191

192

193 main()
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APPENDIX C

Monte Carlo integration

One of the primary di�culties in calculating the strong-coupling diagrams in Chapter

8 is that they require, generally, summation over 3 Matsubara indices and integration over

5 angles. Calculating these sums by brute force numerical methods takes a huge amount of

computational time to achieve any degree of precision. This is further exacerbated by the

fact that evaluating the free-energy functional requires repeating this multidimensional

problem multiple times to achieve self-consistency.

To improve the performance of these evaluation, it is useful to look at the problem

as one of multidimensional integration. While the Matsubara frequencies are discrete,

they can be considered as piecewise constant functions for the purposes of integration

here. High dimensional integrals are a long-standing problem in numerical QFT, and one

of the most successful methods for calculating them is Monte Carlo integration. Here

we sketch out the basic motivations behind Monte Carlo integration schemes and our

implementation for the strong-coupling free-energy functional.

We want to calculate the integral

(C.1) I =

∫
V

d~x f(~x) ,
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where V is the volume of the domain V being integrated over. Although our Matsubara

frequencies do not have explicit bounds, the cuto� provided by the weak-coupling dia-

gram at the spin-�uctuation scale guarantees convergence within a relatively small and

predictable range of indices. In the simplest Monte Carlo we take N uniform samples

{~xi}N1 ∈ V leading to the approximation for I,

(C.2) IN ≡
V

N

∑
i

~xi = V 〈f〉 .

The sample variance of f is

(C.3) Var(f) =
1

N − 1

∑
i

(
f(~xi)

2 − 〈f〉2
)
,

so that

(C.4) Var(IN) =
V 2

N
Var(f) .

This means that, so long as Var(f) is well-behaved, the error in IN decreases as N1/2

independent of the dimension of the integration domain. This is qualitatively di�erent

than methods like Gaussian-quadrature, where the number of points required for a given

precision will grow exponentially with dimension.

Clearly, there are better ways to sample a function than uniformly. The most straight-

forward would be to sample from a probability distribution proportional to |f |; however,

sampling properly from arbitrary probability distributions is quite di�cult. General pur-

pose Monte Carlo algorithms attempt to approximate the probability distribution of |f |
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Figure C.1. Probability densities generated by Foam in comparison to the
exact function, two gaussians on a diagonal. Brighter points are higher
probability.

in a manner that requires minimal function evaluations and can itself be sampled e�-

ciently. We implement the Foam Monte Carlo algorithm developed by Jadach[44], which

iteratively creates a probability distribution through the cellular division of hypercubes.

Foam, as implemented here, works by starting from a single hypercube for the entire

domain, taking a number of uniform samples, and then splitting the hypercube along a

plane that maximally decreases the sum of the variance of the two new daughter cells.

Then a new hypercube is chosen by whichever hypercube in the set has the largest vari-

ance. The algorithm �nalizes the probability distribution after a set number of hypercubes

have been generated. Each hypercube in the resulting probability distribution is weighted

through its sample RMS value. Figures C.1 and C.2 show a comparison between foam

distribution with di�erent hypercube counts and probabilities derived from an exact |f |.

The �nal Monte Carlo integration estimate is obtained by sampling this �nal probability

distribution. We generally see estimated errors of less than 10−3 in the strong-coupling

evaluations which are consistent across trials.
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Figure C.2. Probability densities generated by Foam in comparison to the
exact function, a Marr wavelet. Brighter points are higher probability.

For our application we regenerate the foam of hypercubes repeatedly with temperature

and pressure. We also only care about the foam quality as far as it a�ects the numerical

integration. From these considerations, our version of Foam di�ers slightly from the

reference publications and code[44], in that it assumes the input function is not positive

de�nite and adds multiprocessor support where possible to optimize the foam generation

speed.
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