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Abstract

Phonotactic patterns are generalizations that govern the order of consonants and vowels,

within words and syllables. Certain second-order phonotactic patterns—those that relate multiple

sounds within a syllable, such as “if the vowel is [ɪ], then [s] can only appear at the end of the

syllable”—require a period of sleep-based consolidation before adults can internalize them such

that their speech errors conform to these generalizations in a tongue-twister task (Gaskell et al.,

2014). The present work examines the role of prior knowledge in consolidating these

second-order phonotactics for speech production, testing the hypothesis that new phonotactic

knowledge which is similar to previously-acquired knowledge is easier to consolidate during

sleep. We do this by analyzing errors made in a tongue-twister task (Chapter 2). We

operationalize “similar prior knowledge” in terms of the syllable positions to which the

consonants are constrained, and consider two sources of prior knowledge in these speech

experiments: participants’ native language (English; Experiment 1) and pre-trained restrictions

learned through tongue-twisters produced in the first experimental phase (Experiment 2). In a

follow-up experiment in a non-linguistic sequential action domain (keypress sequence

production; Chapter 3), we test whether the results we found in Experiment 1 were specific to

speech production, or due to more general properties of sequential action. Our results indicate

that global (first-order) and local (second-order) sequential patterns are simultaneously

represented in production, and that this may be a necessary property of the schema for structured

sequential action, in both speech and keypress sequence production. We found evidence of

transfer from phonotactic restrictions that had been previously learned in a similar environmental

context, supporting an incremental account of phonotactic learning (Anderson et al., 2019) as

well as a view of phonotactic learning in which restrictions are stored together with their

https://www.zotero.org/google-docs/?vByw5x
https://www.zotero.org/google-docs/?vByw5x
https://www.zotero.org/google-docs/?MtLYq6
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contexts of acquisition (Dell et al., 2019). Our results also suggest that consolidation’s main

function in phonotactic learning for speech production is to resolve interference among multiple

conflicting mappings between consonants and their syllable positions. Moreover, we found

evidence that participants’ native language (English) may have affected their speech errors.

Overall, this research demonstrates that prior knowledge’s complex role in sequential pattern

learning, which depends not only on similarity to new information and opportunity for

consolidation, but also on the environment in which that prior knowledge was acquired.

https://www.zotero.org/google-docs/?Qy9yCY
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Introduction

Language learning is a dynamic process: the current state of the linguistic system affects

its future state. An adult native Polish speaker and an adult native Spanish speaker can take the

same English course, but it is likely that the native Spanish speaker will have more difficulty

pronouncing word-initial /s/-consonant clusters (as in the word <stop>) after an equivalent

amount of practice, since these clusters are prohibited in their native language (Harris, 1983, p.

14)—and indeed, several studies have documented L2 Spanish-English learners’ tendency to

modify these clusters with an prothetic vowel (e.g., stop → “estop”; see Carlisle, 1988 for a

review and additional supporting data), even after at least one year of English experience

(Carlisle & Cutillas Espinoza, 2014). By contrast, the native Polish speaker has more experience

with these clusters (found in Polish words like <styl> /stɨl/ “style,” <stopka> /ˈstɔp.ka/

“footnote,” and others) and therefore does not need to modify them when producing English

words (Hodne, 1985).

One mechanism through which prior knowledge may influence learning is

consolidation—an improvement in what learners can recall across a period of sleep or resting

while awake. According to McClelland et al. (1995), consolidation’s purpose is to integrate new

knowledge with old, such that old knowledge is not overwritten by new. Lewis and Durrant

(2011) additionally propose that this integration helps learners pick up on patterns by replaying

both new and old memories at the same time. Based on these theories, we propose that certain

prior knowledge may have differential effects on participants’ knowledge state, and that these

differential effects may only emerge after a consolidation period. We hypothesize that new

knowledge which is similar to previously acquired knowledge should benefit more from

consolidation than dissimilar new knowledge, since dissimilar new knowledge may require

https://www.zotero.org/google-docs/?TensNR
https://www.zotero.org/google-docs/?TensNR
https://www.zotero.org/google-docs/?sqqrYh
https://www.zotero.org/google-docs/?sqqrYh
https://www.zotero.org/google-docs/?U835eJ
https://www.zotero.org/google-docs/?hBUgwj
https://www.zotero.org/google-docs/?zCTpzk
https://www.zotero.org/google-docs/?4V3TGQ
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additional time or resources before it can be integrated with prior knowledge during

consolidation.

Here, we test this hypothesis in the realm of phonotactic pattern learning for speech

production. Phonotactic patterns are generalizations that govern the order of consonants and

vowels, within words and syllables. These generalizations vary from language to language, as in

the Polish vs. Spanish example above. Several previous studies have found consolidation effects

in learning novel phonotactic patterns, as measured through speech errors’ tendency to follow

phonotactic restrictions governing stimuli of a tongue-twister task (Warker & Dell, 2006; see

Anderson & Dell, 2018 for meta-analysis). A consolidation period appears to be required before

adults’ speech errors in this task can reflect novel second-order phonotactic patterns (Gaskell et

al., 2014)—i.e., those that relate multiple sounds within a syllable, such as “if the vowel is [ɪ],

then [s] can only appear at the end of the syllable.”1 Such patterns are common across the

world’s languages. The present work clarifies the role of prior knowledge in consolidating these

second-order phonotactics.

1.1 Approach

To test our hypothesis, we collected data from three experiments manipulating the

relationship between prior knowledge and to-be-learned sequential pattern generalizations. The

first two of these (described in Chapter 2) were speech production experiments, in which

participants recited tongue-twisters conforming to a set of phonotactic restrictions. In the third

experiment (described in Chapter 3), which was a follow-up in a non-linguistic modality,

participants keyed in sequences of keypresses that were constructed according to a set of rules

akin to the phonotactic restrictions from the speech experiments.

1 This is in contrast to first-order phonotactic patterns, which can affect speech errors before a consolidation
period (Warker & Dell, 2006).

https://www.zotero.org/google-docs/?rJbpYM
https://www.zotero.org/google-docs/?rJbpYM
https://www.zotero.org/google-docs/?lYySST
https://www.zotero.org/google-docs/?lYySST
https://www.zotero.org/google-docs/?zvcG2L
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1.1.1 Experiments and Predictions

In Experiment 1, participants learned phonotactic restrictions that either resembled or

differed from structural associations found in our learners’ native language (English). Per our

hypothesis, we expected structurally similar phonotactics to benefit more from consolidation,

since prior knowledge could be leveraged more readily. We operationalized this “structural

similarity” in terms of syllable positions that were constrained by the vowel in each syllable of

the tongue-twisters. In English, syllable codas are more predictable from vowel identity than

syllable onsets (Kessler & Treiman, 1997), and so stimuli seen by participants in the

English-similar condition conformed to phonotactic restrictions that constrained consonants to

coda, based on the identity of the vowel (e.g., “if the vowel is [ɪ], then [s] can only appear in

coda”). By contrast, in the English-dissimilar condition, participants saw stimuli conforming to

phonotactic restrictions that constrained consonants to onset (e.g., “if the vowel is [ɪ], then [s]

can only appear in onset”).

In Experiment 2, the source of prior knowledge was a pre-training phase. This design

gave us more control over the specific prior knowledge our participants had coming into the task,

as well as the context in which participants acquired that prior knowledge. Phonotactic

restrictions learned in the main experimental phase were either similar or different from the

pre-training phase, in terms of the syllable positions to which consonants were restricted. As in

Experiment 1, we predicted that if consolidation recruits prior knowledge for phonotactic

learning, participants in the training-similar condition would be more efficient at consolidating

the new phonotactic generalizations, with more improvement after a consolidation opportunity

than their training-different counterparts. This experiment additionally allowed us to explore the

degree of transfer between already-consolidated and novel second-order phonotactic patterns.

https://www.zotero.org/google-docs/?fzgAiT
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To test whether the results of Experiment 1 were due to linguistic experience and not

differences in planning processes between conditions, we replicated Experiment 1 in a sequential

action domain where participants do not have structured prior experience: button-pressing

(Chapter 3). We expected less of a difference between conditions in this experiment, compared to

in Experiment 1. The critical manipulation and dependent measure were identical to those in the

speech experiments, but participants keyed in sequences of button-presses on specially modified

keyboards instead of producing syllables.

1.1.2 Measuring Knowledge through Errors in Production Tasks

In all experiments, participants were asked to produce sequences to the beat of a

metronome. Each trial began with one repetition of the stimulus sequence at a slow pace (1 beat

per second), followed by three repetitions at a fast pace (2.53 beats per second); only errors in

the fast repetitions were included in our analysis. Each stimulus sequence comprised multiple

smaller subsequence units (four syllables in the speech experiments, three panes in the

button-pressing experiment). In all experiments, these subsequences contained exactly three

“atomic” response units: consonants and vowels in the speech experiments and keypress targets

in the button-pressing experiment. Syllables in the speech experiments always had the form

consonant-vowel-consonant. Similarly, each pane in the button-pressing experiment displayed a

sequence of keypress targets in which the first and third targets were always finger keys (index,

middle, or ring on either hand) and the second target was always a thumb key. In the speech

experiments, the vowel was always the same (either /æ/ or /ɪ/) in all four syllables of each

stimulus, and no consonants were repeated within the stimulus. Similarly, in the button-pressing

experiment, the thumb key was always the same (either left or right) in all three panes of each

stimulus, and no finger key targets were repeated within the stimulus.
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All stimuli contained three types2 of targets (consonants or finger keypresses),

categorized according to the positions in which they could occur within subsequences (onset or

coda in speech experiments, first or third in button-pressing experiment):

1. Unrestricted targets could appear in any position, in any stimulus.

2. Restricted-constrained targets were restricted to a particular position in the

context of the vowel or thumb in the current stimulus.

3. Restricted-free targets were restricted to a particular position elsewhere in the

experiment, but not in the context of the vowel or thumb in the current stimulus.

We inferred the state of participants’ knowledge on each day by analyzing their errors.

More specifically, we measured the extent to which participants’ errors conformed to the

generalizations in question by comparing the rates at which the aforementioned three target types

preserved their syllable position in participants’ errors. Knowledge of the phonotactic restrictions

that generated the stimuli was indexed by how much more often errors on restricted-constrained

targets preserved position, compared to errors on both restricted-free and unrestricted targets.

To assess this, we first coded each error as position-preserving if the produced consonant

or keypress appeared in the same position as it did in the stimulus, and position-altering

otherwise. An example of this coding is depicted in Figure 1. To test whether our predictions

were supported by the data, we then used each error as an observation in a logistic mixed-effects

model that included target type (as well as other relevant factors) as predictors.

2 Speech experiment stimuli additionally included two language-restricted consonants, /h/ and /ŋ/, which
were not included in our main analyses..
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Figure 1

Coding Errors for Position-Preservation

Note. Gray box depicts sample production by participant, in response to the tongue-twister

stimulus above it. Purple lines indicate alignment to target syllables, calculated according to the

algorithm described in Section 2.3.2.2.1. Both /f/ and /k/ appear in coda in the stimulus, so the

errors in which these consonants are produced in onset position are classified as

position-altering. Section 2.3.2.2.1 describes how this classification was used in our statistical

analysis.

1.1.3 Testing for Effects of Slow-Wave Sleep

To assess whether prior knowledge’s influence on learning took place during sleep-based

consolidation (as opposed to some other stage of acquisition), participants took part in two

sessions per experiment, with an opportunity for consolidation between each session. Slow-wave

sleep, a stage of deep sleep characterized by long slow delta waves and slow or absent eye

movement, has been implicated in second-order phonotactic learning (Gaskell et al., 2014).

Given this, we calculated the proportion of slow-wave sleep between nights of the study for each

https://www.zotero.org/google-docs/?728RqU
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participant, using data collected from wrist-worn activity monitors. Based on Gaskell et al.

(2014)’s findings, we expected individual differences in slow-wave sleep proportion to correlate

with the magnitude of improvement in phonotactic learning across days. We additionally

reasoned that, if consolidation was implicated in prior knowledge’s effect on learning, this

correlation should be stronger for participants in the similar condition of each experiment.

1.2 Findings and Significance

Overall, we found that the function of consolidation in second-order phonotactic learning

depended on the nature of prior knowledge and how it was acquired. In the speech experiments,

consolidation enabled transfer from prior phonotactic knowledge, but only when that knowledge

was acquired in a similar environment as the task itself (i.e., pre-training). In contrast to previous

second-order phonotactic learning studies where mappings between restricted consonants and the

positions they appeared in interfered with each other, we found evidence of phonotactic learning

on Day 1 of each experiment, suggesting that consolidation’s role in previous studies had been to

resolve interference between conflicting mappings. Participants tended to keep syllable rimes

intact in speech errors; we failed to replicate this in the button-pressing task, suggesting that this

tendency arose from distributional characteristics of participants’ native language (English). We

additionally found evidence that participants generalized second-order phonotactic restrictions to

context-independent, first-order constraints that bound restricted consonants to a particular

syllable position more often than chance, even when not constrained by immediate vowel

context.

Our results support a contextually compartmentalized view of phonotactics for speech

production, in which representations of phonotactic generalizations are tied to the environment

they are learned in, as in the model proposed by Dell et al. (2019). Learners may represent

https://www.zotero.org/google-docs/?mrPAU9
https://www.zotero.org/google-docs/?mrPAU9
https://www.zotero.org/google-docs/?tvqkOM
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second-order phonotactic generalizations as confluences of context-dependent and

context-independent positional restrictions. This research additionally indicates that

consolidation’s main function in phonotactic learning for speech production is to resolve

interference among multiple conflicting mappings between consonants and their syllable

positions. This work further clarifies how the neural mechanisms underlying speaking adapt to

new input over time, integrating the study of linguistic knowledge with work in the cognitive

neurosciences.
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Learning Second-Order Phonotactics in Speech Production

2.1 Introduction

Although learning a new language as an adult is difficult (Newport, 1990), adults may be

able to draw upon their prior knowledge to help them fluently pronounce words and sentences in

a new language. The mature speech production system can adapt such that speech conforms to

novel phonotactic restrictions—i.e., restrictions governing the ordering of sounds within words

and syllables—that are not present in the learner’s native language, particularly if the novel

phonotactic restrictions generate words and phrases that are legal in the learner’s native language

(Dell et al., 2000). Language learning is a dynamic process, so the current state of the linguistic

system affects the future state of the system; however, the extent and nature of prior knowledge’s

influence on phonotactic learning  have not yet been ascertained. In this multiple-day training

study, we examine effects of prior phonotactic knowledge from two sources: participants’ native

language (English) and pre-training in the experimental context. We additionally investigate

sleep-based consolidation’s role in moderating the relationship between old and new phonotactic

knowledge.

2.2 Learning Phonotactic Constraints for Speech Production

2.2.1 Speech Errors as a Window into Phonotactic Knowledge

Wells (1951/1973) first noted that “a slip of the tongue is practically always a

phonetically possible noise,” remarking that this “phonetic possibility” includes the

dispreference of “English sounds… in un-English combinations” (p. 86). For example, native

English speakers are more likely to mispronounce the target phrase “sleepy vole” as “fleepy

sole” than “vleepy sole,” even though neither “fleepy” nor “vleepy” are words of

English—simply because the onset “fl” is more phonotactically probable in English than “vl.”

https://www.zotero.org/google-docs/?hG9Bj7
https://www.zotero.org/google-docs/?zGTxJ5
https://www.zotero.org/google-docs/?LE8Q4s
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This observation, along with other converging evidence from naturally-produced speech error

data (Boomer & Laver, 1968; Fromkin, 1971; Motley, 1973), led Motley and Baars (1975) to

verify this tendency experimentally by using a tongue-twister task to induce speech errors in the

laboratory.

Since then, several other researchers have leveraged this property (dubbed the

phonotactic regularity effect by Dell et al., 1993) to infer the current state of speakers’

phonotactic knowledge available for speech production by working backwards from their speech

errors. The logic of this is as follows: if knowledge of a phonotactic restriction is used to guide

speech production, then participants’ errors should follow a phonotactic restriction more often

than expected by chance. Therefore, by calculating the proportion of speech errors that follow a

phonotactic restriction and controlling for additional factors that influence speech production, a

researcher can obtain a metric that corresponds to the strength of knowledge regarding a

phonotactic restriction that is available for speech production.

Speakers can make use of knowledge from multiple sources. Notably, Dell et al. (2000)

found that speakers’ errors are not only sensitive to statistical regularities found in their native

language, but also reflect statistical regularities from recently-presented stimuli. In this study,

native English speakers recited tongue-twisters consisting of consonant-vowel-consonant

“words” in which certain consonants were restricted to particular syllable positions by novel

phonotactic restrictions. When aggregated across all four days of the study, all groups of

participants’ speech errors reflected the statistical regularities in the stimuli, as well as

phonotactic restrictions found in English. The production system, therefore, adapts to reflect

recent experience, and this adaptation can be quantified and detected by analyzing speech errors.

https://www.zotero.org/google-docs/?vw39so
https://www.zotero.org/google-docs/?W9srO3
https://www.zotero.org/google-docs/?eew2G9
https://www.zotero.org/google-docs/?60sb0Z
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2.2.2 Consolidation Effects in Phonotactic Learning

Although all groups of participants in Dell et al. (2000) did eventually learn the

phonotactic restrictions used to create the stimuli, regardless of the phonotactic restriction in

question, not all phonotactic restrictions are learned equally quickly. Several follow-up studies

using the same tongue-twister paradigm have failed to detect effects of novel phonotactic

restrictions on Day 1 in the speech errors of participants exposed to phonotactic regularities in

which the position of consonants depends on the identity of the local vowel (i.e., second-order

phonotactic restrictions), despite finding Day 1 adaptation for speakers exposed to global,

vowel-independent constraints (Warker & Dell, 2006; see Anderson & Dell, 2018 for

meta-analysis). Results from other recent studies (Smalle et al., 2017, 2021; Smalle & Szmalec,

2021) which find Day 1 adaptation for second-order phonotactic constraints in populations with

reduced attentional control (children, older adults, and cognitively-depleted adults) suggest that

consolidation may serve to overcome difficulties with pattern generalization that are caused by

the failure of participants with heightened attentional control to consider the context necessary to

learn second-order constraints.

Gaskell et al. (2014)’s nap study established that it was sleep, and not the mere passage of

time, that enabled participants’ speech errors to reflect their recent experience. In this study, each

participant performed the tongue-twister task for two sessions, spaced 110 minutes apart, with

stimuli in both sessions following the same second-order phonotactic restriction. In the interval

between sessions, the researchers randomly assigned each participant to either nap for 90

minutes or watch a video with minimal dialogue. The rate at which speech errors followed the

phonotactic restriction increased significantly more for participants who slept between sessions,

compared to participants who remained awake. Gaskell et al. (2014) additionally recorded

https://www.zotero.org/google-docs/?dHr4Rz
https://www.zotero.org/google-docs/?Sa2u9k
https://www.zotero.org/google-docs/?Sa2u9k
https://www.zotero.org/google-docs/?CJGFMV
https://www.zotero.org/google-docs/?CJGFMV
https://www.zotero.org/google-docs/?G7fo2H
https://www.zotero.org/google-docs/?EHVyrr
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electroencephalography (EEG) data during participants’ naps and found positive correlations

between second-order phonotactic learning in speech production and characteristics related to the

depth of slow-wave sleep: namely, duration of this sleep stage and amplitude of the

low-frequency neural oscillations (delta waves) that characterize it. Other research has also

implicated slow-wave sleep in sleep-based consolidation—particularly in the development of

abstraction over hidden patterns by transferring information between the neocortex and

hippocampus (see Diekelmann & Born, 2010, for a review). This accumulation of evidence

suggests a critical role for sleep-based consolidation in the learning of second-order phonotactic

restrictions.

What is the causal mechanism linking sleep-based consolidation to adaptation in speech

production? According to Stickgold & Walker (2013)’s theory of consolidation, sleep-based

consolidation serves to increase the usefulness of knowledge for future actions. In this case, the

“future action” is better performance on the tongue-twister task, with the speaker’s memories of

the experimental task integrating with existing phonotactic knowledge. In a similar vein, Dell et

al. (2021) proposed that learners accumulate knowledge of second-order phonotactic constraints

during first exposure, and consolidation converts it into a form that can subsequently influence

speakers’ productions—perhaps by foregrounding information previously ignored due to

attentional control, as Smalle et al. (2021) have suggested. In Warker & Dell (2006)’s

connectionist model of this process, this is achieved through the activation of “hidden units” that

code for context dependencies within the rule—e.g. [s] in the context of [ɪ]—during the

consolidation period. According to Dell et al. (2021), “[c]onsolidation promotes the separation

[between the experimental context and English], making it so that the new rule, rather than

contrary English rules, is in force in the experimental context during the second session” (p. 20).

https://www.zotero.org/google-docs/?QhNGDT
https://www.zotero.org/google-docs/?rFfIep
https://www.zotero.org/google-docs/?YrE5zW
https://www.zotero.org/google-docs/?YrE5zW
https://www.zotero.org/google-docs/?EAmpgZ
https://www.zotero.org/google-docs/?sRgkb6
https://www.zotero.org/google-docs/?Xks3OF
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This “separation-promotion” is one example of how consolidation mediates the relationship

between existing and newly-learned phonotactic knowledge.

2.2.3 Current Study: A Role for Prior Knowledge?

In this study, we test whether consolidation may have another, more selective function in

phonotactic learning. According to Lewis and Durrant (2011)’s theory of schema consolidation

and generalization, newly-formed memories and old related ones are reactivated during

slow-wave sleep through neuronal replay—an offline process in which neurons activate in

patterns that are similar or even identical to their activations during online practice (Genzel &

Robertson, 2015). This replay selectively strengthens the overlapping parts of memories and

promotes abstraction over their commonalities. We hypothesize that, in the context of

phonotactic learning, congruence of old and new phonotactic constraints can create this overlap,

leading to more successful integration of novel phonotactic constraints that are similar to

previously-learned ones. Additionally, we propose that phonotactic dependencies can be

gradiently accessible, such that some second-order phonotactic dependencies may benefit more

from consolidation than others, depending on whether the hidden units governing these

dependencies were already active in the learner’s productive repertoire.

If our hypothesis is correct, we expect phonotactic patterns that are more structurally

similar to previously-learned phonotactic constraints to benefit more from consolidation. We

consider two sources of prior knowledge in this study: participants’ native language (Experiment

1) and pre-training in the context of the experiment (Experiment 2). In designing the experiments

in this study, we operationalize this “structural similarity” with respect to Warker & Dell (2006)’s

model of speech production, assuming two constraints are similar if they share the same

relationship between syllable positions—i.e., if they activate the same hidden unit. In Experiment

https://www.zotero.org/google-docs/?4Lg3ls
https://www.zotero.org/google-docs/?np2ZC6
https://www.zotero.org/google-docs/?np2ZC6
https://www.zotero.org/google-docs/?iEodUa
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1, we leverage the fact that in English, vowel identity predicts syllable codas more reliably than

it does syllable onsets (Kessler & Treiman, 1997). Therefore, participants in our

language-similar condition recited words of an artificial language containing dependencies

between vowels and coda consonants—e.g. “If /ɪ/ is the vowel, then /s/ can only be a coda.” In

contrast, we will expose participants in the language-dissimilar condition to syllables with

dependencies between vowel and syllable onsets—e.g. “If /ɪ/ is the vowel, then /s/ can only be an

onset.” Participants from Experiment 1’s language-dissimilar condition also took part in

Experiment 2, where their experience from Experiment 1 was used as pre-training. In

Experiment 2, participants in the training-similar condition recited tongue-twisters with a similar

vowel-onset dependency, and those in the training-dissimilar condition recited tongue-twisters

containing a vowel-coda dependency. In both experiments, our hypothesis predicted that the

increase in likelihood of errors of participants in the similar condition to follow the learned

phonotactic restrictions would be greater than the increase in this likelihood for participants in

the dissimilar condition.

2.3 Experiment 1: Prior Knowledge from English

2.3.1 Method

2.3.1.1 Participants. We recruited 115 adult native English speakers with no

self-reported history of speech, language, hearing, or sleep disorder through flyers posted on the

Northwestern University campus, as well as via Northwestern University’s Communications

Research Registry. Each participant completed a screening questionnaire ahead of participation

to establish that they met the aforementioned demographic criteria, as well as to ensure that they

had access to the equipment required to complete the study: a computer, headphones, and a

non-Bluetooth microphone. This screening survey also contained questions about availability,

https://www.zotero.org/google-docs/?vZ31Hm
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and participants were only eligible if they could be available for 30 minutes at the same time of

day for both two weekdays in a row and for four weekdays in a row. The purpose of these

questions was to minimize confounding differences between participants in the language-similar

condition (who only took part in the study for two days) and the language-dissimilar condition

(who went on to take part in Experiment 2 after Experiment 1, for a total of four days of

participation).

All participants provided informed consent before taking part in the study. Participants

were compensated for completing sessions on two schedules, depending on condition.

Participants in the language-similar (2-day) condition were compensated a total of $20 for their

participation ($7 for Day 1 + $13 for Day 2). In order to incentivize return for the two

subsequent Experiment 2 sessions, participants in the language-dissimilar condition were paid a

total of $16 for completing Experiment 1 ($7 for Day 1 + $9 for Day 2), and an additional $24

for completing Experiment 2 ($11 for Day 1 + $13 for Day 2).

A total of 47 participants were excluded due to experiment software malfunction (N =

13), poor audio quality (N = 11), attrition after Day 1 (N = 6), not making at least one error on

the relevant syllable positions for analysis (see “Dependent Measure,” Section 2.3.2.2.1) in both

sessions (N = 6), failing to complete at least one session (N = 4), experimenter error in verifying

eligibility requirements (N = 3), failing to sleep for at least 3 hours between sessions (N = 3),

taking more than one hour to complete either session (N = 2), and/or audible distractions (N = 2),

for a final sample size of 68 participants.

The target number of participants recruited was determined by a power analysis. To

determine the power of this experiment to detect a significant effect, we ran a Monte Carlo

simulation to generate the data we expected to collect, given a range of sample sizes. Using
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effect size estimates from previous studies using this paradigm (Gaskell et al., 2014; Goldrick &

Larson, 2008), we constructed each dataset such that simulated participants in the ‘similar’

condition were, on average, 1.49 times more likely to preserve syllable position of targeted

consonants in errors on Day 2 compared to simulated participants in the ‘dissimilar’ condition.

We generated 1000 datasets for each sample size tested, and ran the planned mixed-effects

logistic regression from our pre-registration (Mirea & Goldrick, 2021) on each dataset. We began

our testing at a sample size of 24 participants in each experimental condition, because we wanted

to be able to recover the second-order phonotactic learning effect in both experimental

conditions, and the largest study to do so to date (Warker & Dell, 2015) used 24 participants. At

the minimum tested sample size of 24 participants per condition, 1 - β = 0.76.3

2.3.1.2 Materials. All stimuli were tongue-twisters consisting of four syllables, each with

a consonant-vowel-consonant structure4. Tongue-twisters were presented with a space between

each syllable. Within each tongue-twister, the same vowel was used in all four syllables to

encourage errors (Wilshire, 1999), but, as in Dell et al. (2000) and other experiments using the

tongue-twister paradigm, each consonant appeared exactly once to allow detection of consonant

errors, which were critical to our dependent measure.

2.3.1.2.1 Sound Inventory. Half of the tongue-twisters that each participant saw

contained the /ɪ/ vowel (spelled ‘i’), and half contained the /æ/ vowel (spelled ‘a’). Given

4 Although most syllables in this study were non-words, there were some real words among them due to the
small number of unique syllables (127) that could be generated using the limited sound inventory and associated
restrictions. We did not expect lexical effects to influence results, because the specific syllables used in each
condition were counterbalanced across participants; only 36 (28.35%) of our syllables have meanings listed in
WordNet (Feinerer & Hornik, 2020; Fellbaum, 1998; Wallace, 2007); and prior evidence suggests that the lexical
bias effect is suppressed in a nonword context (Hartsuiker et al., 2005). Moreover, Goldrick (2004) found that results
in single-day (first-order) phonotactic learning are robust to removal of word outcomes. In order to maximize power,
we retained all word outcomes in our analysis of these experiments.

3 Due to changes in statistical model structure in the interim, as well as unanticipated exclusions, this power
analysis may not reflect the actual power of the experiment reported herein to detect a significant effect.

https://www.zotero.org/google-docs/?N8oWyl
https://www.zotero.org/google-docs/?N8oWyl
https://www.zotero.org/google-docs/?qMcy1e
https://www.zotero.org/google-docs/?zYhvzV
https://www.zotero.org/google-docs/?Ain2th
https://www.zotero.org/google-docs/?AfENFs
https://www.zotero.org/google-docs/?FVPaHl
https://www.zotero.org/google-docs/?G33E5F
https://www.zotero.org/google-docs/?OFoN2J
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English’s semi-opaque mapping between orthography and vowel pronunciation, we gave every

participant two practice trials at the beginning of each participant’s first session to clarify

pronunciation of these vowels. These practice trials each contained one of these vowels and none

of the target consonants in the experiment.

The consonant inventory consisted of (a) unrestricted consonants /m, n, k, g/, which

could appear in any syllable position; (b) English-restricted consonants, which were restricted to

particular syllable positions by virtue of English phonotactics (/h/ restricted to onset, /ŋ/ [spelled

‘ng’] restricted to coda); (c) experimentally-restricted consonants /s, f/, which were the targets of

the phonotactic generalizations under study here, and were restricted according to each

participant’s experimental condition and counterbalancing condition.

All sounds in the inventory whose International Phonetic Alphabet (IPA) symbols were

part of the English language were written with their respective phonetic symbols, with the

following exceptions:

● /g/ was written as ‘gh’ before ‘i,’ because in English, the letter ‘g’ can also be

pronounced as /dʒ/ in this position (as in “ginger”)

● /s/ was written as ‘ss’ at the end of syllables, because in English, the letter ‘s’ can

also be pronounced as /z/ in this position (as in “has” and “his”)

2.3.1.2.2 Phonotactic Dependencies. Participants assigned to the language-similar

condition saw stimuli in which experimentally-restricted consonants were restricted to coda

when they appeared in the same syllable as a certain constraining vowel, which differed by

consonant. In contrast, participants assigned to the language-dissimilar condition saw stimuli in

which experimentally-restricted consonants were restricted to onset when they appeared in the

same syllable as their respective constraining vowel. We randomly counterbalanced the mapping
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between constraining vowels and targeted consonants across participants, orthogonal to their

experimental condition. Table 1 shows examples of stimuli in all conditions.
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Table 1

Examples of Experiment 1 Tongue-Twister Stimuli

Experimental
condition

Counter-
balancing
condition

Stimulus
vowel

Example tongue-twister Illegal
sub-

sequence

language-
similar
(vowel-coda
restrictions)

i→s; a→f i mis hig fin king
● restricted-constrained: /s/
● restricted-free: /f/

*si

a maf hag san kang
● restricted-constrained: /f/
● restricted-free: /s/

*fa

i→f; a→s i mif hig sin king
● restricted-constrained: /f/
● restricted-free: /s/

*fi

a mass hag fan kang
● restricted-constrained: /s/
● restricted-free: /f/

*sa

language-
dissimilar
(vowel-onset
restrictions)

i→s; a→f i sim hig fin king
● restricted-constrained: /s/
● restricted-free: /f/

*is

a fam hag san kang
● restricted-constrained: /f/
● restricted-free: /s/

*af

i→f; a→s i fim hig sin king
● restricted-constrained: /f/
● restricted-free: /s/

*if

a sam hag fan kang
● restricted-constrained: /s/
● restricted-free: /f/

*ass

Note. In all stimuli, unrestricted consonants were /m/, /n/, /g/, and  /k/. Bulleted lists identifying
restricted consonants are included for illustrative purposes only and were not shown to
participants. Likewise, syllables demonstrating each phonotactic generalization are bolded and
appear first here for clarity, but in the experiment itself, these syllables could appear anywhere in
the tongue-twister and were not emphasized visually.
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To construct stimulus lists for each condition, we first generated all 11,520 possible

tongue-twisters in each condition. After removing tongue-twisters containing taboo syllables

(‘fag’, ‘nig’), we randomly sampled 192 tongue-twisters to keep our sessions at a reasonable

length of 96 trials each. Since the phonotactic generalization learned by each participant was the

same on both days, we randomly sampled 96 tongue-twisters to present on Day 1 for each

participant, and presented the remaining 96 tongue-twisters on Day 2.

2.3.1.3 Procedure. Upon submitting the online screening survey, participants were

randomly assigned to either the language-similar condition (probability = ) or the1
3

language-dissimilar condition (probability = ) and informed how many days they would be2
3

asked to participate (two for the language-similar condition; four in the language-dissimilar

condition). No other details about their participant assignment were revealed. Participants were

then emailed a link to the consent form for the study. After providing their informed consent,

participants booked appointments to pick up and return the study equipment (see “Sleep Data

Collection,” Section 2.3.1.3.3 for description) in person at the Northwestern University campus

and optionally provided their height, weight, age, and gender (for use in Fitbit’s sleep staging

algorithm). Pick-up and drop-off appointments were scheduled at least five days apart, in order

to allow participants time to complete all experimental sessions, including those in Experiment 2,

between appointments. At the pick-up appointment, an experimenter who was unaware of each

participant’s condition distributed the study equipment, told them to begin each experimental

session 24 hours apart, and instructed them to wear the activity monitor while sleeping between

sessions. The experimenter sent each participant a link to the first session of the study no later

than 30 minutes after the pick-up appointment. All experimental sessions were completed online.
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Due to the COVID-19 pandemic, we used participants’ home computers and

microphones to display stimuli and record responses, using a custom-built web application

hosted on a Google Firebase server.5 Due to data quality issues detected with Bluetooth

microphones during piloting, all participants were instructed to use a non-Bluetooth microphone

(either wired, USB, or built-in) to record their responses during experimental sessions. Initially,

we instructed participants to use the Firefox, Chrome, Microsoft Edge, or Safari browser to

access the study, but due to persistent audio quality issues with speech data from participants

who used the Safari browser (see “Audio Data,” Section 2.3.2.3.1), we instructed participants

after January 19, 2022 (N = 17) to use only Firefox, Chrome, or Microsoft Edge.

Each experimental session lasted approximately 30 minutes, and sessions were gated

such that participants could begin Day 2 no sooner than 24 hours after having begun Day 1. Each

session began with an interactive wizard to verify that the participants’ microphone was set up to

record at the correct volume. Participants were then asked to read tongue-twisters to the beat of a

metronome. In order to familiarize participants with the instructions and trial structure, each

participant experienced two practice tongue-twister trials after the microphone set-up phase at

the start of Day 1, and one at the start of Day 2 as a reminder. These practice trials did not

contain any of the critical consonants from the rest of the experiment, and were identical across

conditions. Each session contained 96 trials in random order (1 tongue-twister per trial).

2.3.1.3.1 Trial Structure. At the start of each trial, a fixation cross appeared on the

screen, accompanied by an initial low-pitched (700 Hz) beep to signal the beginning of the trial,

and the participant’s microphone began recording. One second later, the tongue-twister stimulus

appeared written on the screen with spaces separating each syllable, accompanied by a

5 Code for this application is available at https://github.com/nimirea/tongue-twisters-online-firebase.

https://github.com/nimirea/tongue-twisters-online-firebase
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medium-pitched (882 Hz) “get ready” beep. One second after the appearance of the stimulus, the

metronome began to play at a rate of 1 beat per second, set to a higher pitch (1049 Hz) to

distinguish it from the “get ready” beep. After 4 metronome beats (1 repetition of the

tongue-twister, the metronome sped up to a rate of 2.53 beats per second, and participants were

instructed to repeat the tongue-twister three times at this faster rate. After the 12 fast beats, the

microphone stopped recording, a clickable “next” button appeared beneath the tongue-twister

(enabling participants to take self-timed breaks before continuing to the next trial), and the

individual trial recording was uploaded to the server in Waveform Audio File Format.

2.3.1.3.2 Surveys. At the end of each experimental session, participants were asked what

equipment they used for the session (browser, computer operating system, headphones, and

microphone) to help diagnose data quality issues during data collection. They were also asked

how many hours of sleep they received the previous night, and had an opportunity to provide

other written feedback about their experience. The Karolinska Sleep Questionnaire (KSQ;

Westerlund et al., 2014) was additionally administered after Day 1’s session.

2.3.1.3.3 Sleep Data Collection. We collected sleep data using Fitbit Inspire 2 wrist-worn

activity monitors, which use body movement, heart rate, and heart rate variability to detect

sleep/wake intervals and identify different sleep stages (Stage 1, Stage 2, and Deep [Slow-Wave]

Sleep). When measured against an EEG machine, Fitbit’s algorithms using these variables are

comparable to a standard wrist-worn actigraphy device in terms of identifying slow-wave sleep

and detecting sleep intervals (Haghayegh et al., 2020). Participants were asked to wear these

activity monitors on nights between sessions, on their non-dominant hand, one finger-width up

the wrist, as recommended by Fitbit’s support website (Fitbit, Inc., n.d.).

https://www.zotero.org/google-docs/?H4pe8x
https://www.zotero.org/google-docs/?H4pe8x
https://www.zotero.org/google-docs/?YrSSxn
https://www.zotero.org/google-docs/?Ym5g2R
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2.3.2 Results

2.3.2.1 Data Processing. Two transcribers independently transcribed recordings from this

experiment as well as from Experiment 2, with parallel coding of 15% of trials for reliability. To

ensure that transcribers were naive to experimental condition, each session was given its own

randomly generated identification number before transcription, and the mapping between

random session ID, participant, and day was stored in a separate file that neither transcriber

accessed until after transcription had been completed. To diagnose microphone quality issues

before transcription, five randomly-selected trials from all sessions were checked by the first

author; sessions were excluded if less than 12 syllables in each of these trials were clearly

audible (17 sessions, resulting in 11 excluded participants).

2.3.2.2 Statistical Data Analysis. To test the hypothesis that prior knowledge provides a

consolidation benefit, we built a mixed-effects logistic regression that predicted

position-preservation of consonants produced in participants’ errors from session, condition, type

of consonant produced, and context of consonant produced. We used the lme4 package (Bates,

Mächler, et al., 2015) in the R programming language (R Core Team, 2022) to fit this model.

2.3.2.2.1 Dependent Measure. Our learning measure of interest was the rate of syllable

position maintenance during “fast” repetitions of each tongue-twister, and so the dependent

measure in our statistical model was whether each error preserved the syllable position of the

consonant that was produced in the error, relative to where it appeared in the stimulus

tongue-twister (1) or not (0).

We used the following automated procedure to extract and classify errors from

transcriptions:

1. We split the transcription of each produced syllable into onset, vowel, and coda.

https://www.zotero.org/google-docs/?iqOMtq
https://www.zotero.org/google-docs/?iqOMtq
https://www.zotero.org/google-docs/?TWf82q
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2. We truncated consonant clusters to include only the first consonant of the cluster.

3. Each produced syllable was aligned to one of the four syllables in the target

stimulus via a similarity metric that took shared onsets and codas into account

equally, as well as a fallback heuristic involving syllable position. For each

syllable produced in a repetition, we calculated the total number of onset and coda

consonants it matched with each syllable in the target tongue-twister. If a single

target syllable had more matches than all other target syllables, we chose that

target syllable as the produced syllable’s aligned target. Otherwise, the produced

syllable was aligned with the target syllable in the closest position; if two target

syllables were equally distant, we selected the first target syllable in the tie set as

the aligned target.

4. We identified all consonants that did not match their aligned targets as errors.

5. We classified each error as either position-preserving if the position of the

produced consonant matched the consonant’s position in the target stimulus, or as

position-changing otherwise. Out-of-vocabulary consonants and other sounds (N

= 464) were removed from the dataset, since they could not be classified as either

position-preserving or position-changing.

Based on an inspection of the data, it was clear that coda targets were more likely to

preserve position than onset targets. Therefore, to create a fair baseline within each condition, we

only analyzed errors made in positions to which the experimentally-restricted consonants were

constrained—e.g., for participants that learned phonotactics restricting items in coda

(language-similar condition), we only included errors in our model where produced consonants
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were in coda position in the target, and we only included errors where produced consonants were

in onset position for participants in the language-dissimilar condition.

2.3.2.2.2 Fixed Effects. Fixed effects were session, condition, and two factors encoding

contrasts among consonant types in context, and interactions between all factors except the

factors encoding contrasts among consonant types in context.

Contrast coding for each factor was centered on zero, such that the intercept of the model

reflected the grand mean. We defined session as a within-participant factor with two effect-coded

levels: pre-consolidation (Day 1), coded as -0.5, and post-consolidation (Day 2), coded as 0.5.

We defined similarity to English as a between-participants factor with two effect-coded levels:

similar, coded as 0.5, and dissimilar, coded as -0.5.

In contrast to previous second-order phonotactic learning studies that constrained

experimentally-restricted consonants to a certain position in every trial, our study only

constrained experimentally-restricted consonants to a certain position in the presence of their

respective constraining vowel. Our statistical model therefore took into account differences in

context among experimentally-restricted consonants by using a two-factor Helmert coding

scheme (see Table 2), with separate fixed effects for the difference between

experimentally-restricted consonants and unrestricted consonants (unrestricted vs. restricted) and

the difference between experimentally-restricted consonants in whose position was constrained

in the current vowel context and experimentally-restricted consonants whose position was not

restricted in the current trial (restricted-constrained vs. restricted-free).
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Table 2

Contrast Coding Scheme for Consonant Type and Context

Consonant type Constraining context Number of
consonants

per trial

Fixed effect coding

unrestricted
vs. restricted

restricted-constrained
vs. restricted-free

experimentally-
restricted

constrained = in the
context of its
conditioning vowel

1 -0.66 0.5

unconstrained = in
the context of the
other
(non-conditioning)
vowel

1 -0.66 -0.5

unrestricted N/A 4 0.33 0

Note. Predictors used in the model to encode consonant type and context. Each fixed effect was

coded such that the sum of values of across consonants was zero.

2.3.2.2.3 Random Effects Structure, Convergence, and Parsimony. In addition to

aforementioned fixed effects, we initially included random intercepts and slopes for all fixed

effects by participant.6 We used the BOBYQA optimizer (Powell, 2009) to fit model parameters

and perform convergence checks.

Because the maximal model did not converge within 100,000 iterations, we constrained

correlation parameters to zero, following the recommendations in Bates et al. (2015) to avoid

6 In our pre-registration, we initially stated that we would use the maximal random effects structure.
However, due to the relatively homogenous pool from which stimulus items were chosen, as well as the
comparatively small number of observations per tongue-twister (M = 7.66, SD = 5.21), relative to the number of
observations per participant (M = 77.72, SD = 66.13), we included only by-participant random effects in the model,
opting to forgo by-stimulus random effects.

https://www.zotero.org/google-docs/?tfLR4l
https://www.zotero.org/google-docs/?juOCxW
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overparameterization.7 To avoid singular fit, we removed all third-order random slopes, as well

as the random by-participant slope of the interaction between restricted-constrained vs.

restricted-free and session.

2.3.2.2.4 Significance Testing. The significance of each predictor was assessed via a

likelihood ratio test, in which we compared the likelihood of the data under the full model to the

likelihood of the data under a model that did not include the predictor in question via a 𝝌2 test.

2.3.2.3 Data Quality.

2.3.2.3.1 Audio Data. A randomly selected set of 16 sessions (1532 trials) was

transcribed by both transcribers. Overall, transcribers agreed on 96.63% (N = 35,684) of all

consonants transcribed (97.39% of onsets and 94.87% of codas) in this set, with Cohen’s 𝜅 =

0.97 on all consonants, indicating almost perfect agreement (Landis & Koch, 1977). The most

frequently confused pair of consonants was /m/ and /n/, with 111 occurrences of disagreement

between transcribers.

When looking only at errors, however, transcribers only agreed on 62.15% (N = 1,000) of

consonants, with Cohen’s 𝜅 = 0.57, indicating only moderate agreement (Landis & Koch, 1977);

agreement on onset errors was 62.58% (Cohen’s 𝜅 = 0.56), while agreement on coda errors was

61.97% (Cohen’s 𝜅 = 0.55). These discrepancies in agreement between transcriptions of errors

and transcriptions of all consonants may be due to (a) the smaller number of observations

(36,928 total vs. 2,622 in errors); (b) the fact that virtually all disagreements regarding the

identity of consonants (97.49%; N = 824) involve substituting either an errorful consonant for a

correct one, or the exchange of two errorful consonants; and (c) the fact that more nearly a third

7 We followed the recommendations in (Bates, Kliegl, et al., 2015) with a single exception: we did not
further reduce the random effects structure beyond the number of principal components that cumulatively accounted
for 100% of the variance in random effects. This is the most conservative version of the model.

https://www.zotero.org/google-docs/?EWmeLi
https://www.zotero.org/google-docs/?ySRXX5
https://www.zotero.org/google-docs/?Ekia5h
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(29.23%; N = 178) of disagreements on errorful consonants were due to disagreements regarding

splitting up a trial into repetitions—that is, these consonants were transcribed by both

transcribers, in the same syllable position, but were not assigned to the same repetition and/or

location within a repetition.

Each transcriber rated audio quality for each transcribed session from 1 (worst) to 5

(best); the most common audio quality rating was 5 (N = 56 sessions). We excluded 11

participants from transcription due to audio quality issues.

2.3.2.3.2 Sleep Data. We collected biometric data from 71 participants between Day 1

and Day 2 using activity trackers. However, of these, only 51 participants (71.83%) provided

their height, weight, age, and gender8 when signing up for the study. Since Fitbit uses this

demographic information to calculate heart rate zones for each participant, (M. Considine,

personal communication, March 19, 2021), we omitted the 20 participants who did not provide

full demographic information from our analysis of sleep data.

2.3.2.4 Speech Error Position Analysis. On average, approximately 53.40% of

consonants produced in errors preserved their syllable positions (β = 0.73, SE = 0.12). We found

significant main effects of similarity to English, unrestricted vs. restricted, and

restricted-constrained vs. restricted-free (see Figures 1 and 2 for visualizations of these effects),

with models including all predictors except each of these resulting in significant reductions in fit

to the data compared to the full model, according to chi-squared tests (see Table 3 for

8 We recorded gender as a free-response variable in our set-up survey, but the Fitbit sign-up form only had
two possible choices for gender: Male and Female. We coded responses as Female if participant responses to the
gender question were “F” or “f”, or included “female”, “Female”, or “woman” (N = 38); Male if participants
responded “M”, “m”, or if their response contained “Male”, “male”, or “man” (N = 11); participants who indicated
another gender were assigned to one of the two binary genders with equal probability using a random number
generator (N = 2).

https://www.zotero.org/google-docs/?OAnNpp
https://www.zotero.org/google-docs/?OAnNpp
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chi-squared test results and coefficient estimates from the statistical model). When visualizing

the results of this and subsequent experiments, we transformed position-preservation rate using

the empirical logit function described in Appendix A.
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Figure 2

Probability of Errors in Experiment 1 Preserving Position, by Condition

Note. Position-preservation probability was calculated for experimentally-restricted and

unrestricted consonants in each session; area of each violin represents the total number of

sessions in each condition in which at least one error on both experimentally-restricted and

unrestricted consonants was made. Horizontal lines show quantiles. Significance marks are

derived via the significance tests described in Section 2.3.2.2.4.

***p < 0.001
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Figure 3

Consonants’ Probability of Preserving Position in Errors Made in Experiment 1

Note. Position-preservation probability was calculated for each session; area of each violin

represents the total number of sessions in which at least one error involving a consonant of the

respective type-context combination was made. Horizontal lines show quantiles. Significance

marks are derived via the significance tests described in Section 2.3.2.2.4.

***p < 0.001
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Table 3

Experiment 1 Speech Error Mixed-Effects Model Results

Predictor Estimate
(in logits)

Standard
Error

𝜒2(1) p value of 𝜒2

test

(Intercept) 0.73 0.12

session 0.01 0.13 0.01 0.918

restricted-constrained vs. restricted-free 1.08 0.28 13.76 < 0.001 ***

unrestricted vs. restricted -1.83 0.18 66.94 < 0.001 ***

similarity to English 1.40 0.25 27.99 < 0.001 ***

restricted-constrained vs. restricted-free
× session

-0.29 0.42 0.46 0.498

restricted-constrained vs. restricted-free
× similarity to English

-0.39 0.55 0.43 0.513

unrestricted vs. restricted × session -0.21 0.3 0.41 0.521

unrestricted vs. restricted × similarity to
English

-0.33 0.35 0.89 0.345

similarity to English × session -0.14 0.27 0.27 0.606

restricted-constrained vs. restricted-free
× similarity to English × session

-0.81 0.84 0.9 0.343

unrestricted vs. restricted × similarity to
English × session

0.14 0.6 0.05 0.817

Note. Only fixed effects are shown in this table. The and p values for each predictor were𝜒2(1)

obtained via the significance testing procedure described in Section 2.3.2.2.4.
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All else being equal, the odds of errors from participants in the similar-to-English

condition preserving position were approximately 4.06 (β = 1.40, SE = 0.25) times those of

errors made by participants in the dissimilar condition preserving position (see Figure 2). Since

this applied to unrestricted as well as restricted consonants, we interpret this as an effect of

syllable position, rather than an effect driven by training condition (see discussion before Figure

4).

The odds of unrestricted consonants preserving position in errors were approximately

0.16 (β = -1.83, SE = 0.18) times those of restricted consonants preserving position in errors,

which in turn had odds of preserving position that were approximately 2.96 (β = 1.08, SE = 0.28)

higher when they appeared in their constrained context compared to their free context (see Figure

3), indicating that participants successfully learned the second-order phonotactic restrictions

presented during the experiment.

In order to test whether there was a significant difference in position-preservation rates

between restricted consonants in free contexts and unrestricted consonants, we re-analyzed our

data using a version of the model that set restricted consonants in free contexts as the baseline in

a simple coding scheme (see Appendix B for details of model and results). This analysis revealed

a significant difference in the odds of position-preservation between unrestricted and restricted

consonants in free vowel contexts, with the odds of unrestricted consonants preserving position

being 0.27 times those of restricted consonants in free vowel contexts preserving position (β =

-1.27, SE = 0.21; = 32.53, p < 0.001). This indicates that participants generalized the𝜒2(1)

restriction to unconstrained contexts.

We failed to find any significant interactions between predictors, or any significant main

effect of session. In a follow-up analysis on Day 1 data only (see Appendix D for details) we
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detected a significant effect of both the unrestricted vs. restricted (β = -1.53, SE = 0.26; =𝜒2(1)

23.42, p < 0.001) predictor and the restricted-constrained vs. restricted-free predictor (β = 1.19,

SE = 0.40; = 7.84, p < 0.01), indicating that participants were indeed using the phonotactic𝜒2(1)

restrictions to guide their productions as early as Day 1.

We failed to replicate Westerlund et al. (2013)’s correlation between slow-wave sleep and

self-reported restoration for sleep (see Appendix C for a more thorough treatment of this data).

2.3.2.4 Number of Errors. On average, participants produced 100.84 errors per session

(minimum = 9; maximum = 328). In order to test whether the number of errors in each session

may have mediated the effects we found in our analysis, we first tested whether the number of

errors per session correlated with either similarity to English or session by fitting a negative

binomial linear model that predicted number of errors from similarity to English, session, and

their interaction. Using the model simplification procedures described in Bates et al. (2015), we

were able to retain random intercepts by participant in the model. We used the same significance

testing procedure described in Section 2.3.2.2.4 to test whether each predictor was significant.

Results are shown in Table 4.

https://www.zotero.org/google-docs/?3U5MDB
https://www.zotero.org/google-docs/?tfZR5A
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Table 4

Experiment 1 Number of Errors Model Results

Predictor Estimate Standard
Error

𝜒2(1) p value of 𝜒2

test

(Intercept) 4.35 0.10

session -0.20 0.05 15.30 < 0.001 ***

similarity to English -0.05 0.19 0.07 0.781

similarity to English × session -0.03 0.10 0.10 0.757

Note. The and p values for each predictor were obtained via the significance testing𝜒2(1)

procedure described in Section 2.3.2.2.4.

We found significant correlations between session and the number of errors in each

session. Participants made significantly more errors on Day 1 (M = 108.31, SD = 74.24) than on

Day 2 (M = 93.37, SD = 73.36). Since we did not find any significant effects of session or

interactions between session and any other variables in our main model, we conclude that the

results of our main model were not caused by differences in the number of errors across

participants.

2.3.3 Discussion

In this experiment, we tested whether the benefits of consolidation are modulated by

similarity to participants’ native language, in order to assess whether consolidation serves to

integrate newly learned phonotactic knowledge with phonotactic knowledge from participants’

native language. We did not find evidence of this differential benefit. However, we did find

evidence of phonotactic learning in this experiment, with restricted consonants preserving
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position more often than unrestricted consonants in errors, and restricted consonants preserving

position more often when they appeared with their constraining vowels than in their

unconstrained contexts. Errors made by participants learning a vowel-coda restriction also

preserved position more often than those made by participants who learned a vowel-onset

restriction, though we believe this is ultimately due to the tendency of English speakers to

preserve rhyme structure in errors.

We found that restricted consonants preserved syllable position more often in errors than

unrestricted consonants—a result that has been interpreted as phonotactic learning in previous

research. Additionally, restricted consonants were significantly more likely to preserve position

when they appeared in their constrained context, meaning that participants were able to

successfully bind consonants to their respective constraining vowel contexts. Taken together,

these results indicate that participants did use the statistical regularities present in the stimuli to

guide their productions. We take this as evidence of successful learning of second-order

phonotactic restrictions. However, in our follow-up analysis (see Appendix B), we did discover

that restricted consonants preserved position significantly more often than unrestricted

consonants, even in vowel contexts where the restricted consonants’ positions were

unconstrained. If participants’ errors perfectly reflected the statistical characteristics of the

stimuli, errors on restricted consonants in unconstrained vowel contexts should preserve position

just as often as unrestricted consonants. Instead, the higher position-preservation rates for

restricted consonants, even in unconstrained vowel contexts, indicate that participants generalize

positional restrictions across vowel contexts, for a given segment. Participants’ errors therefore

reflect overlapping influence of global, first-order phonotactic generalizations (e.g., “/f/ appears

in coda position 75% of the time, throughout the experiment”) and local, second-order
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phonotactic generalizations (e.g., “/f/ is more likely to appear in coda position, if /ɪ/ is the vowel

in this syllable”)—suggesting that participants may be learning both types of statistical

generalizations simultaneously.

Despite our considerable sample size (N = 68 participants total), we did not detect any

significant interactions between session and either restrictedness or constraining vowel context.

In fact a follow-up analysis on Day 1 data only (see Appendix D for details) revealed that

participants were making use of phonotactic restrictions on Day 1. This was unexpected given

the results of several past experiments showing that second-order phonotactics only begin to

affect undistracted adults’ productions after a period of sleep (Gaskell et al., 2014; Smalle et al.,

2017, 2021; Warker, 2013; Warker et al., 2010; Warker & Dell, 2006). The discrepancy between

our results and those of past studies suggests that this experiment’s design may have introduced a

key difference that enabled participants to make use of the phonotactic restrictions on Day 1.

One possibility is that the remote modality of this study may have led to higher levels of

participant distraction, and that these distraction may have introduced higher cognitive load, such

that participants in our study resembled the cognitively-depleted condition from Smalle et al.

(2021). This is unlikely, however, since we excluded all participants who took longer than one

hour to complete either session, and only 16.67% of participants (N = 7) took more than the

estimated 30 minutes to complete Day 1.

Another possibility is that the unique characteristics of our stimuli may have made them

easier to utilize in production on Day 1. Participants in past second-order phonotactic learning

studies have learned sets of phonotactic restrictions that constrain two consonants to “opposite”

syllable positions, depending on the identity of the vowel—for example, “If /ɪ/ is the vowel, then

/s/ can only be an onset, and /f/ can only be a coda; if /æ/ is the vowel, then /s/ can only be a

https://www.zotero.org/google-docs/?jEVOs2
https://www.zotero.org/google-docs/?jEVOs2
https://www.zotero.org/google-docs/?KEGIF7
https://www.zotero.org/google-docs/?KEGIF7
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coda, and /f/ can only be an onset.” In this study, by contrast, each participant learns a set of

restrictions in which vowels only restrict a single consonant—for example, in the

similar-to-English condition: “If  /ɪ/ is the vowel, then /s/ can only be an coda (and /f/ can be

either onset or coda); if /æ/ is the vowel, then /f/ can only be a coda (and /s/ can be either onset or

coda).” In this example, syllables such as “CVs” and “CVf” are permitted no matter what vowel

is chosen for “V,” which may remove the incompatibility that hidden units serve to overcome. In

other words, participants learn that /s/ and /f/ are permitted in coda regardless of the vowel,

allowing the production system to “ignore” the identity of the vowel and treat this restriction like

a first-order phonotactic restriction that constrains both /s/ and /f/ to syllable coda.

Nevertheless, hidden units (at least, as formulated by Dell et al., 2021 and Warker & Dell,

2006) are still required to represent the difference among experimentally-restricted consonants in

constrained vs. unconstrained vowel contexts, so this account does not fully explain the lack of a

consolidation effect for the difference among vowel contexts. It is possible that the design of our

study allowed us to gather comparatively less evidence for each phonotactic restriction, since

each experimentally-restricted consonant was only constrained to a specific position in 50% of

trials (48 for each session). This interaction may yet emerge if we were to increase the power of

the study by doubling the number of trials per day, such that each experimentally-restricted

consonant would be constrained in 96 trials per session.

We also found a significant main effect of similarity to English, such that errors made by

participants in the similar condition preserved position significantly more often than those made

by participants in the dissimilar condition. Recall that we only analyzed errors made on

consonants that originally appeared in the constrained position (coda for the similar-to-English

condition, onset for the dissimilar-to-English condition). Therefore, all position-preserving errors

https://www.zotero.org/google-docs/?BhxDeB
https://www.zotero.org/google-docs/?wlbPYb
https://www.zotero.org/google-docs/?wlbPYb
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analyzed in the similar-to-English condition were errors in which the rhyme of the target syllable

remained intact. The higher rate of position-preservation in this condition, then, may reflect a

general tendency of English speakers to preserve the structure of the rhyme in errors. This

tendency is present in errors on a short-term memory task (Lee & Goldrick, 2008) and weakly

attested in previous work using the tongue-twister paradigm (Dell et al., 2000; Laubstein, 1987;

though see Goldrick & Larson, 2008, for an exception involving /s/). Further investigation is

necessary to determine the scope of this tendency. In our data, however, we have two related

pieces of evidence in this direction:

1. When unanalyzed errors (i.e., those occurring in the unconstrained position) are

plotted together with the analyzed errors, the difference between conditions

disappears (see Figure 4). This suggests that the effect is driven mostly by our

choice to analyze codas in the English-similar condition, and onsets in the

English-dissimilar condition.

2. For unrestricted and language-restricted consonants, whose positions were not

affected by our experimental manipulations, errors on coda targets generally

preserved position more often than errors on onset targets, in both conditions (see

Figure 5). This main effect in our statistical analysis reflected this difference,

since we compared onset consonants in the English-dissimilar condition to coda

consonants in the English-similar condition, even though these consonants

appeared in the same positions with the same frequency in both conditions. This

led us to conclude that the main effect of condition was due to a more general

property of English speakers to preserve coda position more often than onset

position in errors, across all target consonants.

https://www.zotero.org/google-docs/?YcXGaR
https://www.zotero.org/google-docs/?cCEPmi
https://www.zotero.org/google-docs/?cCEPmi
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Figure 4

Position-Preservation Rates in Experiment 1, Including All Transcribed Consonants

Note. Area of each violin represents the total number of sessions in each condition. Horizontal

lines show quantiles.
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Figure 5

Coda Position-Preservation Bias across Non-Experimentally-Restricted Consonants in

Experiment 1

Note. Area of each violin represents the total number of sessions in each condition in which at

least one error on a consonant in the respective position was made. Horizontal lines show

quantiles. Only categories on the outside of the figure (English-dissimilar + onset,

English-similar + coda) were included in the statistical analysis.

2.4 Experiment 2: Prior Knowledge from Pre-Training

2.4.1 Method

2.4.1.1 Participants. We randomly selected 79 participants to participate in this

experiment after taking part in the language-dissimilar condition of Experiment 1, which served
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as the pre-training phase for this experiment. Compensation for this experiment alone was $24

($11 for Day 1 + $13 for Day 2).

A total of 39 participants were excluded due to poor audio quality (N = 12),  attrition

during the pre-training phase (N = 8), attrition between Days 1 and 2 (N = 3), experiment

software malfunction (N = 9), failing to sleep for at least 3 hours between any sessions (N = 4),

not making at least one error on the relevant syllable positions for analysis (see “Dependent

Measure,” Section 2.3.2.2.1) in both sessions (N = 4), taking more than one hour to complete any

session (N = 3), experimenter error in verifying eligibility requirements (N = 3), and/or audible

distractions during the pre-training phase (N = 2), for a final sample size of 40 participants.

2.4.1.2 Materials. Stimuli were constructed as in Experiment 1 (see Section 2.3.1.2 for

details), with two exceptions: the identity of experimentally-restricted consonants and the

phonotactic dependencies learned.

2.4.1.2.1 Sound Inventory. All sounds used in pre-training were also used in this

experiment, with the exception of the previously experimentally-restricted consonants /s/ and /f/.

Instead, /z/ and /v/ were introduced as experimentally-restricted consonants, in order to

distinguish stimuli from pre-training while creating an opportunity for transfer through similar

phonetic features (see Table 5 for examples; Goldrick, 2004, for evidence of within-session

transfer based on shared features).

https://www.zotero.org/google-docs/?fH4Q5f
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Table 5

Examples of Experiment 2 Tongue-Twister Stimuli

Experimental
condition

Counterbalancing
condition

Stimulus
Vowel

Example
tongue-twister

Illegal
subsequence

training-similar
(vowel-onset
restrictions)

i→z, a→v i zim hig vin king *iz

a vam hag zan kang *av

i→v, a→z i vim hig zin king *iv

a zam hag van kang *az

training-dissimila
r (vowel-coda
restrictions)

i→z, a→v i miz hig vin king *zi

a mav hag zan kang *va

i→v, a→z i miv hig zin king *vi

a maz hag van kang *za

Note. Examples of tongue-twisters in each condition of Experiment 2. Syllables demonstrating

the phonotactic generalization in question are bolded and appear first here for clarity, but in the

experiment itself, these syllables may appear anywhere in the tongue-twister and are not

emphasized visually. Illegal subsequences never appeared in tongue-twisters shown to

participants in the respective condition.

For each participant, the constraining vowel of every experimentally-restricted consonant

matched the constraining vowel of its voiceless counterpart in pre-training. That is, all

participants who saw stimuli following “i→s, a→f” restrictions in the pre-training phase saw

stimuli here that followed  “i→z, a→v” restrictions; similarly, participants who saw stimuli
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following “i→f, a→s” restrictions in the pre-training phase saw stimuli here that followed “i→v,

a→z” restrictions.

2.4.1.2.2 Phonotactic Dependencies. At the start of the study, participants who took part

were randomly assigned to either the training-dissimilar or the training-similar condition, with

equal probability. During the two days of this experiment, participants in the training-similar

condition saw stimuli in which experimentally-restricted consonants were restricted to onset

when they appeared in the same stimuli as their respective constraining vowel, just as in the

pre-training phase. Experimentally-restricted consonants in stimuli presented to participants in

the training-dissimilar condition, on the other hand, were restricted to coda when they appeared

in the same stimuli as their respective constraining vowel.

As in Experiment 1, in order to construct stimulus lists for each condition, we again

generated all 11,520 possible tongue-twisters in each condition. After removing tongue-twisters

containing taboo syllables (‘vag’, ‘nig’), we randomly sampled 192 tongue-twisters. Since the

phonotactic generalization learned by each participant was the same on both days, we randomly

sampled 96 tongue-twisters to present on Day 1 for each participant, and presented the remaining

96 tongue-twisters on Day 2.

2.4.1.3 Procedure. All participants took part in this experiment at least 24 hours after

beginning Day 2 of the pre-training phase (Experiment 1, language-dissimilar condition), to

allow for a consolidation of the pre-trained vowel-onset restrictions. The procedure in this

experiment was identical to that of Experiment 1 (see “Procedure,” Section 2.3.1.3 for details),

except that participants did not re-complete the KSQ on Day 3. Participants were randomly

assigned to either the training-similar condition or the training-dissimilar condition with equal

probability on Day 3.
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2.4.2 Results

2.4.2.1 Data Processing. We transcribed speech data from this experiment

simultaneously with that from Experiment 1, according to the method described in Section

2.3.2.1. We excluded data from participants who produced less than 12 clearly audible syllables

in each of the five tester trials from any session (N = 27 sessions, resulting in 12 excluded

participants).

2.4.2.2 Statistical Data Analysis. We used the same procedure for automating and

classifying errors from transcriptions and statistical model as in Experiment 1 (see Section

2.3.2.2 for details), with the exception of the similarity to English factor, which we replaced with

a similarity to training factor to reflect conditions in this experiment. This predictor was coded as

-0.5 for errors from participants in the training-dissimilar condition, and 0.5 for errors from

participants in the training-similar condition.

2.4.2.3 Audio Data Quality. A randomly selected set of 13 sessions (1248 trials) was

transcribed by both transcribers. Overall, transcribers agreed on 96.35% (N = 28,904) of all

consonants transcribed (96.99% of onsets and 95.71% of codas) in this set, with Cohen’s 𝜅 =

0.96 on all consonants, indicating almost perfect agreement (Landis & Koch, 1977). The most

frequently confused pair of consonants was /m/ and /n/, with 258 occurrences of disagreement

between transcribers.

When looking only at errors, however, transcribers only agreed on 52.54% (N = 1014) of

consonants, with Cohen’s 𝜅 = 0.45 indicating only fair-to-moderate agreement (Landis & Koch,

1977); agreement on onset errors was 48.66% (Cohen’s 𝜅 = 0.40), while agreement on coda

errors was 54.98% (Cohen’s 𝜅 = 0.47). These discrepancies in agreement between transcriptions

of errors and transcriptions of all consonants were due to (a) the smaller number of observations

https://www.zotero.org/google-docs/?eDfBe4
https://www.zotero.org/google-docs/?wzBSW1
https://www.zotero.org/google-docs/?wzBSW1
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(29,998 total vs. 1,930 in errors); (b) the fact that almost all disagreements regarding the identity

of consonants (93.23%; N = 868) involve substituting either an errorful consonant for a correct

one, or the exchange of two errorful consonants; and (c) the fact that almost half (42.36%; N =

388) of disagreements on errorful consonants were due to disagreements regarding splitting up a

trial into repetitions—that is, these consonants were transcribed by both transcribers, in the same

syllable position, but were not assigned to the same repetition and/or location within a repetition.

Each transcriber rated audio quality for each transcribed session from 1 (worst) to 5

(best). Again, 5 was the most common audio quality rating.

2.4.2.4 Speech Error Position Analysis. On average, 69.42% of errors preserved their

position across all participants and sessions (β = 0.80, SE = 0.13). We found significant main

effects of similarity to training (Figure 6), as well as unrestricted vs. restricted and

restricted-constrained vs. restricted-free (Figure 7), with models including all predictors except

each of these resulting in significant reductions in fit to the data compared to the full model,

according to chi-squared tests (see Table 6 for chi-squared test results and coefficient estimates

from statistical model described in Section 2.4.2.2). All else being equal, the odds of errors from

participants in the similar-to-training condition preserving position were approximately 0.38 (β =

-0.97, SE = 0.26) times the odds of errors from participants in the dissimilar-to-training condition

preserving syllable position (see Figure 6). This reflects the same tendency found in Experiment

1: codas (the consonants analyzed for participants in the training-dissimilar condition) are more

likely to preserve position in errors than onsets (the consonants analyzed for participants in the

training-similar condition).
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Figure 6

Probability of Errors in Experiment 2 Preserving Position, by Condition

Note. Position-preservation probability was calculated for experimentally-restricted and

unrestricted consonants in each session; area of each violin represents the total number of

sessions in each condition in which at least one error on both experimentally-restricted and

unrestricted consonants was made. Horizontal lines show quantiles. Significance marks are

derived via the significance tests described in Section 2.3.2.2.4.

***p < 0.001
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Figure 7

Consonants’ Probability of Preserving Position in Errors Made in Experiment 2

​​

Note. Position-preservation probability was calculated for each session; area of each violin

represents the total number of sessions in which at least one error involving a consonant of the

respective type-context combination was made. Horizontal lines show quantiles. Significance

marks are derived via the significance tests described in Section 2.3.2.2.4.

*p < 0.05, ***p < 0.001
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Table 6

Experiment 2 Speech Error Mixed-Effects Model Results

Predictor Estimate
(in logits)

Standard
Error

𝜒2(1) p value of 𝜒2

test

(Intercept) 0.80 0.13

session 0.01 0.16 < 0.005 0.944

restricted-constrained vs. restricted-free 0.92 0.33 6.56 < 0.05 *

unrestricted vs. restricted -1.20 0.21 22.8 < 0.001 ***

similarity to training -0.97 0.26 12.39 < 0.001 ***

restricted-constrained vs. restricted-free ×
session

0.21 0.47 0.19 0.662

restricted-constrained vs. restricted-free ×
similarity to training

1.93 0.66 8.21 < 0.01 **

unrestricted vs. restricted × session -0.60 0.32 3.43 0.064 ~

unrestricted vs. restricted × similarity to
training

-0.66 0.42 2.24 0.135

similarity to training × session 0.11 0.32 0.11 0.739

restricted-constrained vs. restricted-free ×
similarity to training × session

-1.85 0.93 3.56 0.059 ~

unrestricted vs. restricted × similarity to
training × session

-0.14 0.64 0.05 0.832

Note. Only fixed effects are shown in this table. The and p values for each predictor were𝜒2(1)

obtained via the significance testing procedure described in Section 2.3.2.2.4.
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The odds of unrestricted consonants preserving position were approximately 0.30 (β =

-1.20, SE = 0.21) times as high as those of restricted consonants preserving position. Restricted

consonants’ odds of preserving position were 2.51 times higher when they appeared in their

constrained context compared to their free context (β = 0.92, SE = 0.33), indicating that

participants successfully learned the second-order phonotactic restriction in question.

To test whether there was a significant difference in position-preservation rates between

restricted consonants in free contexts and unrestricted consonants, we again re-analyzed our data

using a version of the model that set restricted consonants in free contexts as the baseline in a

simple coding scheme, as in Experiment 1 (see Appendix B for details of model and results).

This analysis revealed a significant difference between unrestricted and restricted consonants in

free vowel contexts, with the odds of unrestricted consonants preserving position being 0.52

times those of restricted consonants in free vowel contexts preserving position (β = -0.66, SE =

0.25; = 6.33, p < 0.05). As in Experiment 1, exposing participants to stimuli in which a𝜒2(1)

target consonant was constrained to a certain position in the context of a specific vowel still

influenced their errors on that consonant, even in contexts where it was not constrained.

In the main model, we found a significant interaction between the predictors

restricted-constrained vs. restricted-free and similarity to training, such that odds of

position-preservation of errors made by participants in the training-similar condition on

experimentally-restricted consonants in constrained vowel contexts were 6.90 times higher (β =

1.93, SE = 0.66; = 8.21, p < 0.01) than would be expected, in the absence of this𝜒2(1)

interaction. Visual inspection of the data (see Figure 8) revealed that position-preservation

probability for experimentally-constrained consonants was comparable across experimental
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conditions, but errors made by participants in the training-similar condition on

experimentally-restricted consonants in free contexts were much less likely to preserve syllable

position than errors of the same type made by participants in the training-dissimiliar condition.

To determine whether this was the case, we split the data by condition, and used this data to train

a version of the model that included all fixed and random effects except for condition and its

interactions. The restricted-constrained vs. restricted free predictor was significant when this

model was trained on data from the training-similar condition (β = 1.90, SE = 0.45; = 6.68𝜒2(1)

p < 0.001), but not on data from the training-dissimilar condition (β = 0.03, SE = 0.48; =𝜒2(1)

0.004, p = 0.947). Overall, this meant a greater difference between contexts of

experimentally-restricted consonants for participants in the training-similar condition, compared

to those in the training-dissimilar condition.
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Figure 8

Position-Preservation Probability of Experimentally-Restricted Consonants in Experiment 2

Note. Figure contains data from experimentally-restricted consonants only. Position-preservation

probability was calculated within each session. The area of each violin represents the total

number of sessions in which at least one error on an experimentally-restricted consonant was

made, in a certain vowel context (constrained or free). Horizontal lines show quantiles.

***p < 0.001, **p < 0.01

2.4.2.5 Consolidation Effects. We additionally found a marginally significant9

interaction between the predictors unrestricted vs. restricted and session, such that the odds of

unrestricted consonants preserving syllable position in errors were 0.55 times as high (β = -0.60,

9 For the purposes of this discussion, we will treat marginally significant effects as reliable.
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SE = 0.32)  on Day 2 as would be expected in the absence of this interaction. Visual inspection

of the data (see Figure 9) suggested that this interaction was driven by a greater difference in

position-preservation probability between consonant types on Day 2, compared to Day 1. To

verify this, we trained a version of the model that did not include session or its interactions on

data from each day. The unrestricted vs. restricted factor was significant on both days ( Day 1𝜒2(1)

= 9.73, pDay 1 < 0.01; Day 2 = 19.54, pDay 2 < 0.001), but was larger on Day 2 (β = -1.59, SE =𝜒2(1)

0.34) than on Day 1  (β = -0.95, SE = 0.30), meaning that the difference in position-preservation

probability between restricted and unrestricted categories was indeed greater on Day 2 than on

Day 1.
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Figure 9

Position-Preservation Probability by Session and Consonant Type in Experiment 2

Note. Position-preservation probability was calculated within each session. The area of each

violin represents the total number of sessions on a certain day in which at least one error

involving a certain consonant type (experimentally-restricted or unrestricted) was made.

***p < 0.001, **p < 0.01, ~p < 0.065

We used these same models to probe the marginally significant third-order interaction

between session, restricted-constrained vs. restricted-free, and condition from our main model.

The interaction between restricted-constrained vs. restricted-free and condition was significant

on Day 1 (β = 2.76, SE = 0.93; = 8.53, p < 0.01), but not on Day 2 (β = 1.21, SE = 0.95;𝜒2(1)
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= 1.75, p = 0.186). This suggests that by Day 2, participants in the training-dissimilar𝜒2(1)

condition had overcome some of their interference, in order to attain similar performance as

participants in the training-similar condition (see Figure 10).

Figure 10

Position-Preservation Probability by Session, Condition, and Vowel Context in Experiment 2

Note. Position-preservation probability was calculated within each session. The area of each

violin represents the total number of sessions on a certain day in which at least one error

involving a certain consonant type (experimentally-restricted or unrestricted) was made.

**p < 0.01
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To attempt to establish whether these effects were tied to consolidation, we constructed

another logistic regression predicting position-preservation of errors in which we replaced the

session predictor from the original model with the interaction between session and the z-score

corresponding to the proportion of time spent in slow-wave sleep between sessions (SWS

proportion).  Since only 23 participants whose data was included in this experiment also

recorded biometric sleep data and provided full demographic information, this comparison was

performed only on data from those 23 participants. We then compared the fit of this model to that

of the original model (described in Section 2.4.2.2) on the same data, using the likelihood ratio

test described in Section 2.3.2.2.4. The addition of slow-wave sleep as a predictor did not

significantly improve fit, according to a likelihood ratio test between the slow-wave sleep model

and the full model ( = 1.96, p = 0.161), so we cannot conclude that this difference between𝜒2(1)

days is due to slow-wave sleep. That being said, the interactions with session were also not

significant in the baseline (original) model for this 23-participant sample (β = -0.88, SE = 1.08;

= 0.65, p = 0.421), so it is possible that this follow-up analysis was hampered by a lack of𝜒2(1)

statistical power.

In our follow-up analysis of Day 1 data (see Appendix D for details) we found a

significant effect of the unrestricted vs. restricted predictor (β = -0.95, SE = 0.28; = 9.73, p𝜒2(1)

< 0.01) such that the odds of unrestricted consonants preserving position were about 0.39 times

those of restricted consonants preserving position. In contrast to Experiment 1, we did not find a

significant main effect of restricted-constrained vs. restricted-free on Day 1. Instead, we found a

significant interaction between restricted-constrained vs. restricted-free and similarity to
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training, such that only participants in the similar-to-training condition preserved position less

often on experimental consonants when they appeared in their unconstrained contexts, as in the

main dataset (see Figure 11, compare to Figure 8).

Figure 11

Position-Preservation Probability of Experimentally-Restricted Consonants on Day 1 of

Experiment 2

Note. Figure contains data from experimentally-restricted consonants on Day 1 only.

Position-preservation probability was calculated within each session. The area of each violin

represents the total number of sessions in which at least one error on an

experimentally-constrained consonant was made, in a certain vowel context (constrained or free).

Horizontal lines show quantiles.

**p < 0.01
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2.4.2.6 Number of Errors. On average, participants produced 88.97 errors per session

(minimum = 12; maximum = 342). In order to test whether the number of errors in each session

may have mediated the effects we found in our analysis, we first tested whether the number of

errors per session correlated with either similarity to training or session by fitting a mixed-effects

negative binomial linear model that predicted number of errors from similarity to training,

session, and their interaction. Using the model simplification procedures described in Bates et al.

(2015), we were able to retain random intercepts by participant in the model. We used the same

significance testing procedure described in Section 2.3.2.2.4 to test whether each predictor was

significant. Results are shown in Table 7.

Table 7

Experiment 2 Number of Errors Model Results

Predictor Estimate Standard
Error

𝜒2(1) p value of 𝜒2

test

(Intercept) 4.19 0.13

session -0.03 0.06 0.29 0.593

similarity to training 0.13 0.25 0.67 0.414

similarity to training × session -0.03 0.12 0.05 0.816

Note. The and p values for each predictor were obtained via the significance testing𝜒2(1)

procedure described in Section 2.3.2.2.4.

https://www.zotero.org/google-docs/?fzMbGC
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Since we did not find any significant correlations between number of errors and any of

the session-level variables, we conclude that the results of our main model are not likely the

result of differences in the number of errors across days or conditions.

2.4.3 Discussion

In this experiment, in order to assess whether consolidation can integrate phonotactic

knowledge learned in similar contexts, we tested whether the benefits of consolidation for

phonotactic learning are modulated by newly-learned phonotactic restrictions’ similarity to

phonotactic restrictions previously acquired in a similar learning environment. As in Experiment

1, we did not find evidence of this differential benefit. We again found evidence of phonotactic

learning in this experiment, with restricted consonants preserving position more often than

unrestricted consonants in errors, and restricted consonants preserving position more often when

they appeared with their constraining vowels than in their unconstrained contexts. We also

replicated the result from Experiment 1 that participants who learned a vowel-coda restriction

preserved position more often on errors than those who learned a vowel-onset restriction. In

contrast to Experiment 1, we found that being constrained to a specific position boosted

position-preservation rate more for consonants produced by participants in the training-similar

condition, compared to those in the training-dissimilar condition, suggesting transfer from

pre-training. We additionally found marginally significant evidence that restricted consonants

preserved their position more often after a period of sleep, which signals that consolidation may

serve to overcome interference stemming from similar learning environments.

In this experiment, as in Experiment 1, we found that restricted consonants preserved

syllable position more often in errors than unrestricted consonants, and that restricted consonants

were significantly more likely to preserve position when they appeared in their constrained
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context. Taken together, these results indicate that participants did use the statistical regularities

present in the stimuli to guide their productions.

However, we discovered that the difference in position preservation rates among

restricted consonants between constrained and free vowel contexts was only significant for

participants in the training-similar condition—hence the interaction between condition and

constraining vowel context. This indicates that participants in the training-dissimilar condition

did experience interference from the tongue-twisters they recited in the pre-training phase, which

contained a vowel-onset phonotactic restriction. The primary effect of this interference in the

training-dissimilar condition was to block association of experimentally-restricted consonants

with coda. The marginally significant interaction of context and condition with session suggests

that training-dissimilar participants could overcome this interference after a period of

consolidation. In a follow-up test on data from the present experiment, we did not detect an

interaction between this effect and slow-wave sleep, but this may have been due to a

considerable reduction in power due to limitations associated with the Fitbits.

In this experiment, errors made by participants in the training-dissimilar condition

preserved position more often overall than those in the training-similar condition. Underlyingly,

however, this effect resembled the main effect of condition found in Experiment 1, such that

participants who were trained on a vowel-coda restriction appeared to make errors that preserved

position more often than those trained on a vowel-onset restriction. Again, when we inspect all

errors (and not just those made on consonants that appeared in the position targeted by the

restriction), we observe that the between-condition difference disappears (see Figure 12). We

also again observe that codas tend to preserve position more often than onsets, in both conditions

(see Figure 13)—possibly due to English speakers’ tendency to keep rhymes intact.
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Figure 12

Position-Preservation Rates in Experiment 2, Including All Transcribed Consonants

Note. Area of each violin represents the total number of sessions in each condition. Horizontal

lines show quantiles.
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Figure 13

Coda Position-Preservation Bias across Non-Experimentally-Restricted Consonants in

Experiment 2

Note. Area of each violin represents the total number of sessions in each condition in which at

least one error on a consonant in the respective position was made. Horizontal lines show

quantiles.

We found a marginally significant interaction between restrictedness and session, such

that the difference in position-preservation rate between restricted and unrestricted consonants

was greater after a period of sleep-based consolidation. This supports the view that consolidation

makes a new, contextually-bound “mini-grammar” (that is separate from the main grammar, yet

copied from it) available for syllabification (Dell et al., 2021). In this experiment, consolidation

https://www.zotero.org/google-docs/?qZHQ1r
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helped participants integrate information about the new consonants seen on Day 1 with their

memory representations of consonants from pre-training into a combined mini-grammar. In

Experiment 1, on the other hand, participants did not have access to a mini-grammar acquired in

a similar context, since the previously-learned phonotactic generalizations of English were

acquired naturalistically, during normal childhood language acquisition; this may be why we did

not find an interaction between restrictedness and session in that experiment, despite having

more statistical power. Taken together, the results of these experiments suggest that the learning

environment is important for determining whether new information will be integrated into an

existing mini-grammar. In a follow-up test on data from the present experiment, we did not

detect an interaction with slow-wave sleep, but this may have been due to a considerable

reduction in power due to limitations associated with the Fitbits.

2.5 General Discussion

In this study, we tested whether consolidation may help to integrate old phonotactic

knowledge with new, selectively benefiting new phonotactic restrictions that are similar to

previously-learned ones. Overall, we found limited support for our hypothesis. Although we

found evidence of phonotactic learning in both experiments, we were only able to detect a

significant effect of session in Experiment 2, where the environmental contexts in which prior

and novel phonotactic restrictions were learned resembled each other. We found additional traces

of interference from pre-training in the interaction between condition and constraining vowel

context from Experiment 2: despite equivalent power in both conditions, only participants in the

training-similar condition preserved position significantly more often in errors involving

restricted consonants when those consonants were in their constrained vowel context. Moreover,

we found that codas in both experiments were overall more likely to preserve position, which we
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believe may be attributed to the characteristics of English, our participants’ native language. Our

results are summarized in Table 8.

Table 8

Summary of Speech Experiment Results

Result Proposed explanation(s) for result

In contrast to previous studies, participants
were able to restrict positions of constrained
consonants on Day 1 of Experiment 1.

Lack of interference between
consonant-position mappings.

In Experiment 2, position-preservation rate
difference between restricted and unrestricted
consonants was larger after an opportunity for
sleep-based consolidation.

Consolidation enabled participants to draw
upon relevant prior knowledge from
pre-training in a similar learning environment
to overcome interference that may have
existed on Day 1 of Experiment 2.

In Experiment 2, only participants in the
training-similar condition consistently
preserved position more often on restricted
consonants when they appeared in their
constrained context, compared to when they
appeared in their unconstrained (free) context.

Transfer due to similar learning environment.
Interference in the training-dissimilar
condition due to incongruity between
pre-training restrictions and Experiment 2
restrictions.

Experimentally-restricted consonants
preserved position more often than
unrestricted consonants, even in in vowel
contexts that did not constrain their positions.

The frequency of mappings between
consonants and syllable positions are
represented both locally (with adjacent
context) and globally (independent of adjacent
sounds) to guide speech production.

Participants preserved position more often on
coda consonant errors than onset consonant
errors.

Planning differences between the first and
third response units.

Influence from participants’ native language
(English), where codas are more tightly bound
to vowels than onsets are.
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2.5.1 Consolidation’s Roles in Phonotactic Learning

2.5.1.1 Resolving Competition between Conflicting Positional Mappings. In contrast

to many other studies of second-order phonotactic learning, we did not find evidence of a

consolidation effect in Experiment 1, despite our large sample size; participants’ errors

conformed to the phonotactic restriction more often than chance, even on Day 1 (see Appendix

D), and our analysis did not indicate a strengthening of this trend on Day 2. We believe this is

due to the unique characteristics of our stimuli, and that this difference reveals one of the critical

functions of consolidation in previous second-order phonotactic learning studies.

Participants in previous second-order phonotactic learning experiments (Gaskell et al.,

2014; Smalle et al., 2017, 2021; Warker, 2013; Warker et al., 2010; Warker & Dell, 2006)

learned a set of conflicting restrictions, where each vowel restricted one consonant to onset, and

the other to coda. The mapping between restricted consonant and position was totally reversed

on trials containing a different vowel. In other words, each vowel constrained the position of

both consonants, but this position-consonant mapping was reversed between vowels. Therefore,

all associations between a restricted consonant and a given syllable position had to be

strengthened in one vowel context, and suppressed in another.10 Consolidation may serve to

overcome this competition among conflicting mappings.

In our experiments, by contrast, the difference between vowel contexts is not so stark:

both consonants can appear in the targeted position in any trial, but each consonant is

additionally permitted to appear in the untargeted position in stimuli containing the vowel that

does not constrain it. Thus, there is less conflict among vowel contexts—the mapping between

unconstrained restricted consonant and position targeted by the restriction only needs to be

10 In Warker and Dell (2006), this property is called “self-interference.”

https://www.zotero.org/google-docs/?7DyOgC
https://www.zotero.org/google-docs/?7DyOgC
https://www.zotero.org/google-docs/?6GdVKq
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inhibited on 25% of trials for successful (errorless) task performance. It is possible, then, that

participants are not engaging inhibitory attentional processes to perform this tongue-twister task

(or at the very least, inhibiting less than they would if they were learning two perfectly

conflicting restrictions), and therefore can learn the restriction on the first day, without needing

consolidation to resolve the competition between mappings. Indeed, we find that in both

experiments, participants preserved position significantly more often on errors involving

restricted consonants than those involving unrestricted consonants on Day 1, and we did not find

evidence that the difference among restricted consonants in constrained contexts and those in

unconstrained contexts was greater after a period of consolidation.

This account squares with previous research in which phonotactic restrictions affect

speech production on Day 1 in populations with depleted executive function—either through

experimental manipulation (Smalle et al., 2021) or age (Smalle et al., 2017). The theory is as

follows: in the initial session, attentional control backgrounds seemingly irrelevant information

(in this case, the vowel-dependent mappings between consonants and syllable positions) to

increase accuracy on the tongue-twister task. During sleep-based consolidation, previously

backgrounded information can be foregrounded to improve performance, if that information is

relevant to performance on a future task (c.f. Stickgold & Walker, 2013), such that the weights of

hidden units connecting vowels, consonants, and their restricted positions can be strengthened. In

our experiment, hidden units need not be “backgrounded” during the initial session, because

these mappings are not in direct conflict with each other, and so the weights can be adjusted

online, without the need for an offline consolidation period.

https://www.zotero.org/google-docs/?oixhSY
https://www.zotero.org/google-docs/?XSj9iP
https://www.zotero.org/google-docs/?IF052C
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Taken together with prior research, our results suggest that one of consolidation’s roles is

to resolve interference among mappings between consonants and restricted syllable positions that

are in direct conflict.

2.5.1.2 Using Prior Knowledge Acquired in Similar Contexts. Unlike in Experiment 1,

we found that the difference in position-preservation rates between unrestricted and restricted

consonants was greater after a period of sleep in Experiment 2, suggesting a role for

consolidation in phonotactic learning. In Experiment 2, participants had to learn to restrict a new

set of consonants (/v/ and /z/) to certain positions in order to correctly produce tongue-twisters.

The difficulty associated with learning this new restricted set of consonants was not so strong as

to prevent participants from making significantly more position-preserving errors on restricted

consonants compared to unrestricted consonants on Day 1 (see Table D1), but the increased

difference on Day 2 suggested that consolidation did confer a benefit in distinguishing these two

categories of consonants apart for speech production.

What exactly is the nature of this benefit? One possible explanation is that consolidation

allowed participants to draw upon their prior experience during the pre-training phase in order to

correctly produce tongue-twisters in the new experiment. Under Stickgold & Walker (2013)’s

“memory triage” account of consolidation, this is an example of item integration, in which

participants integrate newly learned memory representations into pre-existing schemas during

consolidation, thus “increasing the schema’s potential utility and applicability” (p. 5). For our

participants, these new memory representations are the consonants that were encountered during

Day 1 of Experiment 2, and the pre-existing schema was the distinction between restricted and

unrestricted consonants learned during pre-training (Experiment 1).

https://www.zotero.org/google-docs/?2Ce3Lx
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The precise neurocognitive mechanism by which this integration occurred is beyond the

scope of the current study, but would have important implications for the study of consolidation’s

role in phonotactic generalization across segments. For example, neuronal replay during

consolidation (Lewis & Durrant, 2011) may help participants identify overlapping unrestricted

consonants between the two phases of the experiment, thereby permitting the insight that these

consonants have the same distribution, regardless of the new consonants in the tongue-twister.

Consolidation may also help participants link shared phonological properties (in this case,

manner and place of articulation) between restricted consonants in the two phases of the

experiment. These possibilities are not exclusive; future research should test them separately.

The fact that we did not find a consolidation effect in Experiment 1 (despite having more

statistical power than in Experiment 2) suggests that similarity in the learning/task context

facilitates consolidation. This is compatible with Dell et al. (2019)’s proposal that consolidation

makes a contextually-bound “mini-grammar” available for speech production. In Experiment 1,

participants created an initial experimental mini-grammar, which was siloed off from their

experience of English by virtue of its unusual learning environment. This mini-grammar began

as a copy of English grammar, but was quickly augmented during the course of the

tongue-twister task. In Experiment 2, the experimental mini-grammar was updated to contain the

newly presented consonants, and the consolidation that occurred between Days 1 and 2 made this

update available for speech production.

It remains to be seen whether this “update” involved the creation of new mini-grammar,

specific to Experiment 2 (starting as a copy of Experiment 1), or whether the Experiment 2

consonants were actually integrated into the same experimental mini-grammar as those from

Experiment 1—in other words, were the new consonants sufficient contextual cues for the

https://www.zotero.org/google-docs/?dvHbgG
https://www.zotero.org/google-docs/?3cnS4f
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creation of a new mini-grammar? An experiment that tests whether the representations of the

restricted consonants from Experiment 1 were modified during Experiment 2 could provide the

answer, potentially having implications for the representation of associations between

environmental contexts and novel phonotactic restrictions.

2.5.2 Transfer and Generalization

In this study, we found that participants transferred experience with a consonant in one

context to other contexts and consonants. Restrictions applicable to a certain consonant in the

context of a certain vowel were generalized, influencing the distribution of errors on a different

consonant (in a different phase of the experiment), as well as to the same consonant in a different

vowel context. To our knowledge, these results are the first evidence of transfer in second-order

phonotactic learning.

2.5.2.1 Between Consonants, Across Phases. Recall that we found an interaction

between participant condition and vowel context among restricted consonants in Experiment 2

(see Figure 8 and discussion of results immediately preceding). Participants exposed to

tongue-twisters that followed restrictions similar to those from pre-training made a greater

distinction between the constrained and unconstrained contexts of restricted vowels, in terms of

position-preservation rates, compared to participants in the training-dissimilar condition. This

indicates that participants in the training-similar condition used their prior knowledge from the

pre-training phase to quickly adapt to stimuli containing novel consonants restricted to the same

syllable position, as early as Day 1 of Experiment 2 (see Table D2). For participants in the

training-dissimilar condition, on the other hand, pre-training may have interfered with the

learning of new phonotactic generalizations; a follow-up analysis on data from only this group

revealed no significant difference in position-preservation rate of errors on restricted consonants
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between constrained and unconstrained vowel contexts. We also did not find evidence that this

difference among conditions lessened after a night of sleep-based consolidation, suggesting that

consolidation could not overcome the training-dissimilar group’s difficulties (though we leave

open the possibility that we lacked the statistical power necessary to detect such a change).

The results from the training-dissimilar group are consistent with Anderson et al.

(2019)’s findings regarding reversal shift in phonotactic learning, which in turn support an

incremental account of phonotactic learning. In their single-session tongue-twister study,

participants’ speech errors exhibited reduced/slowed adaptation to a first-order phonotactic

restriction that was presented after participants had experienced 32 trials of its “reversed”

version, which inverted the positions to which experimentally-restricted vowels were

constrained. This “reversal” is analogous to the shift that our training-dissimilar participants

experienced between pre-training and Experiment 2: consonants previously restricted to coda

were now restricted to onset, and vice versa. The present study adds to our understanding of how

phonotactic restrictions are represented in the mind by establishing that second-order phonotactic

learning is also incremental: old associations between features of restricted consonants and their

constrained positions must be “unlearned” before new ones can affect production. Additionally,

our results suggest that this incrementality can unfold over an extended period of several days:

the opportunity to consolidate between and within phases does not create a representation that

allows the rapid reversal typical of category learning.

At least two factors may have promoted transfer between phases in the training-similar

condition: (1) phonological closeness between the sets of experimentally-restricted consonants

and (2) identical vowel contexts restricting each consonant. Future research will need to establish

the contribution of each of these factors, in order to determine the basis of phonotactic transfer.

https://www.zotero.org/google-docs/?zV8wMD
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2.5.2.2 Within Consonants, Across Vowel Contexts. In both experiments, we found that

errors on experimentally-restricted consonants in vowel contexts that did not constrain their

positions still preserved position more often than errors on unrestricted consonants. Although

vowel context did affect the rate of position preservation among errors on

experimentally-restricted consonants, participants did not treat experimentally-restricted

consonants in unconstrained vowel contexts as equivalent to unrestricted consonants (as they

should, if their productions veridically followed the statistical properties of the input).

This result provides support for simultaneous learning of global, first-order probabilistic

phonotactic generalizations (e.g., “/f/ appears in coda position 75% of the time, throughout the

experiment”) and local, second-order phonotactic generalizations (e.g., “/f/ is more likely to

appear in coda position, if /ɪ/ is the vowel in this syllable”), such that these generalizations

overlap to affect production. With respect to Warker and Dell (2006)’s syllabification model, this

modification of the training data allows for ambiguity of analysis, such that multiple statistical

generalizations are consistent with the new data. Since our restrictions are not self-interfering

(see discussion in Section 2.5.1.1), the system learns to downweight vowel identity as a

predictor, compared to a model trained on self-interfering data (as in previous experiments).

However, since the identity of a specific vowel is highly correlated with activation of a certain

phoneme-position combination, the system can never totally ignore vowel identity. The fact that

this result obtained even after an opportunity for sleep-based consolidation suggests that, if an

architecture like Warker and Dell (2006)’s is operant in this learning process, there are either not

enough hidden units to represent, for each consonant, each vowel context completely separately

from the other, or more training is required to overcome the effects of the added ambiguous

training data.

https://www.zotero.org/google-docs/?VYOijU
https://www.zotero.org/google-docs/?7nBZZu
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2.5.3 Native Language Influence on Speech Production

Across both experiments, errors were more likely to preserve positions of consonants that

were originally in coda, compared to consonants that originally appeared in onset position. This

was true for experimentally-restricted consonants, as well as unrestricted and language-restricted

consonants, whose syllable positions were not manipulated across conditions in either

experiment. It is unclear exactly why this effect arises, but it may be due to a general property of

English: since codas are more predictable from vowels than onsets (Kessler & Treiman, 1997),

there may be a tendency to keep the rhyme unit together in speech errors. If this is the source of

the bias, we might expect a bias in the opposite direction (onsets more likely to preserve position

than codas in errors) for native speakers of a language in which onsets are more predictable than

codas, like Korean (Lee & Goldrick, 2008). Smalle and Szmalec (2021) have documented

differences in second-order phonotactic learning in adults based on native language: errors from

native speakers of French conform to second-order phonotactic constraints before a

consolidation opportunity. It is possible that other differences by native language may be

detectable in this task, especially since the vast majority of studies using this paradigm have used

native English speakers as participants.

On the other hand, this effect may also arise from mere temporal differences: participants

have more time to plan codas before producing them, so they have more time to select the

appropriate syllable position before the sound must be produced. Chapter 3 in this dissertation

will examine and test this hypothesis.

2.5.4 Improving Data from the Tongue-Twister Paradigm

We believe there is considerable potential for methodological improvement in the

tongue-twister paradigm. First, we recommend that other researchers using this paradigm report

https://www.zotero.org/google-docs/?azJDRK
https://www.zotero.org/google-docs/?WuC8DY
https://www.zotero.org/google-docs/?2Edp8t
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agreement statistics for errors in particular (since only errors are analyzed in these experiments),

instead of merely an aggregate over the entire dataset. Although overall agreement between

transcribers was quite high (see Sections 2.3.2.3.1 and 2.4.2.3), agreement on errors was only

55.54% (Cohen’s κ = 0.49) across both experiments, indicating only fair-to-moderate agreement;

we suspect this may be the case for other studies as well, but since statistics on errors are not

usually reported separately, we have limited basis for comparison. This comparison across

studies is critical for establishing the limitations of this paradigm in detecting errors, under

various conditions (transcribers, recording conditions, etc.).

Secondly, we recommend the use of a standardized, blind transcription procedure and an

automated error-detection algorithm (such as the one we describe in Section 2.3.2.2.1), in order

to minimize the effects of researcher bias. We additionally recommend making analysis scripts,

transcriptions, and audio files (with participants’ permission) available for future analysis by

interested researchers. Open data of this type will allow re-transcription of data for reliability,

encourage development of new error-detection algorithms, and provide a training set for

automated speech-to-text software that can greatly improve the practicality of this research.

Last but not least, we advocate the development of automated speech-to-text software

that is specialized for this task. Although the web-based data collection software we developed

can quickly capture recordings from a large participant sample, transcription remains a manual

process, since current speech-to-text software generally aims to minimize disruption due to

errors in speech production instead of registering errors for further analysis. Thus, transcription

is presently the most time- and labor-intensive step of conducting research using the

tongue-twister paradigm. This high barrier to entry prevents all but a few groups from using this
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task to study phonotactic learning. In this environment, progress is slow, and replication studies

are difficult. Automated transcription would address these issues.

2.6 Conclusion

In this study, we investigated prior knowledge’s role in second-order phonotactic

learning, along with consolidation’s potential moderation of that role, using a tongue-twister task

across multiple days. We found that the opportunity for consolidation allowed participants to use

prior knowledge acquired in a similar context to help them produce speech following novel

phonotactic restrictions. Our results indicate that participants needed to unlearn the mapping

between features of restricted consonants and the syllable positions to which they were

constrained before a mapping to the opposite syllable position could affect their productions; the

rapid reversal typical of abstract category learning was absent, even after a period of

consolidation. Additionally, we find that probabilistic first-order phonotactic restrictions are

learned simultaneously with second-order restrictions; global probabilities of restricted

consonants appearing in constrained syllable positions bias participants’ responses to favor those

syllable positions even in contexts where those restricted consonants are unconstrained. Taken

together with prior work, this study’s results support a view of second-order phonotactic learning

that is incremental and probabilistic across multiple levels of representation. Consolidation, in

turn, helps participants transfer helpful prior knowledge acquired in similar contexts of learning

and resolve interference arising from sets of phonotactic restrictions that categorically map the

phonetically similar consonants to different syllable positions.
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Learning Sequential Patterns in the Absence of Structured Prior Knowledge

3.1 Introduction

In Chapter 2, we demonstrated that consolidation’s function in phonotactic learning is

modulated by the prior phonotactic knowledge that participants have about the task—its content,

as well as the context in which the knowledge was acquired. The role of consolidation in the

absence of prior knowledge, however, is underdetermined. To examine this, we attempt to

conceptually replicate Experiment 1 in a production modality where participants have little, if

any, prior knowledge regarding sequential regularities: a button-pressing task.

3.2 Learning Regularities in Keypress Sequence Production

3.2.1 Analogy to Speech Production

Speech errors have a tendency to follow phonotactic generalizations in a speaker’s

language, whether these speech errors occur naturalistically (Boomer & Laver, 1968; Fromkin,

1971; Motley, 1973) or in the lab (Motley & Baars, 1975). Studies of phonotactic learning for

speech production have leveraged this property to infer the current state of speaker’s phonotactic

knowledge, under the assumption that participants’ errors should follow a phonotactic restriction

more often than expected by chance, if that phonotactic restriction has been learned.

But sequential regularities are not exclusive to the domain of language; phonotactic

regularities are only a subset of the sequential patterns that exist throughout the natural world.

There is evidence that the same domain-general capacities may be employed when learning

sequential regularities in production, regardless of whether that production occurs via speech or a

different response modality. In particular, two recent studies (Anderson & Dell, 2018; Rebei et

al., 2019) found similarities between sequential regularity learning in speech production and

learning in a button-pressing task. Both studies found that a consolidation opportunity in the

https://www.zotero.org/google-docs/?81tZZb
https://www.zotero.org/google-docs/?81tZZb
https://www.zotero.org/google-docs/?aM7Uzo
https://www.zotero.org/google-docs/?dBj5SC
https://www.zotero.org/google-docs/?dBj5SC
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form of sleep enhances the tendency of errors to follow the sequential regularities present in the

stimuli of the experiment, but only for sequential regularities that involve the coordination of

multiple response units (phonemes for speech production, keypresses for button-pressing)—i.e.,

second-order sequential regularities. Moreover, Anderson and Dell (2018) found that first-order

constraints, which restrict a single response unit, can affect errors in button-pressing without the

need for a consolidation period—just as in speech production (Dell et al., 2000). Additionally,

Anderson et al. (2019) examined reversal shift in both speech production and button-pressing,

and found that reversed regularities are learned more slowly than initially-learned regularities in

both modalities, suggesting that the statistical learning process is incremental, regardless of

response modality.

Anderson and Dell (2018) and Rebei et al. (2019) also find critical dissimilarities

between button-pressing and speech production, which they identify as arising from differences

in structured prior knowledge across modalities. Both studies find that errors preserve position

less often overall in the button-pressing task than they do in speech production—particularly for

unrestricted consonants. In addition, though improvement was found after a night of sleep, both

studies found evidence of second-order sequential regularities affecting production on Day 1. In

Anderson and Dell (2018), restricted finger key targets preserved position in 50% of errors, and

unrestricted targets preserved position in 40% of errors, leading to a 1.51 odds ratio between

restricted and unrestricted. This odds’ ratio was 1.27 for Rebei et al. (2019). The authors attribute

the differences between response modalities to a weaker yet more flexible schema for production

of button-presses, similar to the weaker yet more flexible schema displayed by children (Smalle

et al., 2017).

https://www.zotero.org/google-docs/?av2Alv
https://www.zotero.org/google-docs/?MNQCcM
https://www.zotero.org/google-docs/?NDbohA
https://www.zotero.org/google-docs/?q6bO1H
https://www.zotero.org/google-docs/?aXb3gs
https://www.zotero.org/google-docs/?MgShox
https://www.zotero.org/google-docs/?bvd9Ei
https://www.zotero.org/google-docs/?bvd9Ei
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3.2.2 Current Study: Structured Prior Knowledge (or Lack Thereof)

In the present experiment we ask whether the effects from Experiment 1 of Chapter 2 are

domain-general or specific to language. These effects, along with their predictions for the current

experiment, are summarized in Table 9. Taken together, the results of the experiments in Chapter

2 suggest that consolidation serves to resolve interference among conflicting mappings between

response units (consonants) and temporal (syllable) positions, and that consolidation allows

participants to use prior knowledge acquired in similar contexts to guide task performance. We

have reason to believe that some of these results may arise from the demands of a production

task, rather than as a consequence of prior linguistic knowledge.
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Table 9

Summary of Speech Experiment Results (Repeated from Table 8) and Predictions for

Button-Pressing Experiment

Result from speech
experiments

Proposed explanation(s) for
result

Prediction (if phonotactic
learning results are
domain-general)

In contrast to previous
studies, participants were able
to restrict positions of
constrained consonants on
Day 1.

Lack of interference between
consonant-position mappings.

Similar; participants should
be able to restrict the position
of finger keys targeted by the
restriction on Day 1.

Experimentally-restricted
consonants preserved position
more often than unrestricted
consonants, even in in vowel
contexts that did not constrain
their positions.

Mappings between response
units and their positions are
represented both locally (with
adjacent context) and globally
(independent of adjacent
response units).

Similar; restricted finger key
targets in unrestricted (free)
contexts will preserve
position more often than
unrestricted consonants.

Participants preserved
position more often on coda
consonant errors than onset
consonant errors.

Planning differences between
the first and third response
units.

Similar; third-key errors will
preserve position more often
than first-key errors.

In Chapter 2, we hypothesized that the reason participants were able to restrict positions

of constrained consonants on Day 1 of Experiment 1 was that our mappings between restricted

consonants and their syllable positions were not self-interfering (see Row 1 of Table 9). The

restrictions could therefore influence participants’ speech errors on Day 1, without needing

consolidation to reconcile the interference stemming from inhibition of conflicting mappings. In

the button-pressing experiment, our stimuli are similarly non-interfering. If our findings from

phonotactic learning are solely driven by properties of general sequential pattern learning, we
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expect the same result: participants should be able to restrict the position of response units (in

this case, finger keys) targeted by the restriction in errors on Day 1. If, however, the lack of

interference in Experiment 1 was a consequence of the “strong yet rigid” syllable schemas that

adults have acquired over a lifetime of speech production, we expect to find limited learning of

the restriction on Day 1, when no pre-existing schema exists to guide keypress sequence

production; the restriction may only influence speech errors on Day 2, once consolidation has

resolved issues arising from needing to inhibit responses in this new task.

In both experiments of Chapter 2, we found that, although experimentally-restricted

consonants in constrained context preserve position most often overall, experimentally-restricted

consonants preserved position more often than unrestricted consonants, even in vowel contexts

that did not constrain their positions (Row 2 of Table 9). This may mean that participants

represent second-order, phonotactic restrictions simultaneously with first-order, global

phonotactic generalizations, and that both of these overlap to influence speech production. If this

phenomenon generalizes to sequence production in other modalities, such that sequential patterns

are simultaneously represented at the local (context-dependent) and global (context-independent)

levels, we expect participants’ errors in a button-pressing task to also follow this pattern.

Specifically, restricted finger key targets should appear in their constrained position more often

than unrestricted finger key targets, even in trial contexts where their distribution is

unconstrained. If, on the other hand, participants represent phonotactic generalizations this way

because it is specifically helpful for the linguistic system, we might expect them to represent the

distributions of finger key targets more veridically in this task, and avoid generalizing restricted

consonants’ distributions from constrained to the unconstrained contexts.
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Additionally, we found that coda consonants preserved position significantly more often

than onset consonants in both experiments in Chapter 2 (see Row 3 of Table 9). This may be due

to the tight relationship between vowels and codas in English (Kessler & Treiman, 1997),

coupled with our English-speaking participants’ internalization of that tight relationship in their

syllable-production schema. Another possibility is that the effect stems from the nature of

sequential planning processes more generally, and has nothing to do with language per se. If the

effect is also present in keypress sequence production, with errors involving the third target key

in a subsequence preserving position more often than errors involving the first target key, it

would serve as evidence that the effect is due to task demands, instead of English linguistic

knowledge.

3.3 Method

3.3.1 Participants

We recruited 51 adult native English speakers with no self-reported history of speech,

language, hearing, or sleep disorder or color vision impairment through flyers posted on the

Northwestern University campus, as well as via the Northwestern University Psychology

Department’s online list of paid research opportunities, which was accessible to the general

public. Each participant completed a screening questionnaire ahead of participation to establish

that they met the aforementioned demographic criteria, as well as to ensure that they had access

to the equipment required to complete the study: a computer with a USB port and headphones.

The screening survey also contained questions about availability; participants were only eligible

if they could be available for 1 hour at the same time of day for two weekdays in a row.

https://www.zotero.org/google-docs/?7ZJZg2
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All participants provided informed consent before taking part in the study. Participants

were compensated a total of $30 for both days: $13 for each day, plus an additional $4 bonus

payment for completing both days to incentivize return.

A total of 19 participants were excluded from analysis due to experiment software

malfunction (N = 2), failing to complete at least one session (N = 3), attrition between days (N =

2),  not making at least one error on both a restricted and an unrestricted key (N = 3), taking more

than two hours to complete either session (N = 4), producing either more than 40 (N = 1) or less

than 36 (N = 3) keypresses on over 50% of trials (indicating that participants may have

misunderstood the task), or producing more than 18 errors on over 20% of trials (suggesting

either an experiment malfunction or a misunderstanding of the experimental task; N = 5), for a

final sample size of 32 participants.

3.3.2 Materials

Each stimulus in the button-pressing task consisted of a tableau with three panes (see

Figure 14 for an example). Each pane represented a subsequence of keys that participants were

asked to press in a specific order: the first key was colored red, the second key was colored gray,

and the last key was colored blue.
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Figure 14

Example of Stimulus Tableau With Three Panes

Note. Order numbers are included here for clarity, but in the experiment, participants did not see

these numbers; color was the only cue to order. All participants were asked to press the keys in

red-blue-gray order.

Sequence Structure. The first and third keys always corresponded to non-thumb keys

(“finger keys” hereafter), while the second key was always a thumb, reproducing the structure of

previous button-pressing experiments that established analogies to phonotactic restrictions

(Anderson & Dell, 2018; Rebei et al., 2019). In these experiments (as in ours), thumb keys are

analogous to vowels, and finger keys are analogous to consonants. Within each tableau, the same

thumb was used in all three panes in order to encourage errors, and each finger key appeared

exactly once to allow detection of errors on these keys, which were critical to our dependent

measure. Half of the tongue-twisters that each participant saw contained the left thumb, and half

contained the right thumb.

Phonotactic Dependencies. For each participant, two randomly-selected finger keys

from different hands were designated as experimentally-restricted, as in Anderson & Dell (2018)

and Rebei et al. (2019). These experimentally-restricted consonants were randomly mapped to a

thumb key (either left or right) that restricted its position. For participants in the

https://www.zotero.org/google-docs/?jD0ncO
https://www.zotero.org/google-docs/?kdTY1N
https://www.zotero.org/google-docs/?kdTY1N
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restricted-to-first condition, each experimentally-restricted key was constrained to the first

position within a pane, in stimuli containing its respective restricting thumb key. Participants in

the restricted-to-last condition, on the other hand, saw stimuli in which each

experimentally-restricted key was constrained to the last position within a pane, in stimuli

containing the key’s restricting thumb key.
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Table 10

Examples of Button-Pressing Stimuli in Each Condition

Experimental
condition

Restrictions
(restricting
thumb →
restricted
finger)

Example stimulus
Illegal subsequence

Thumb
key Panes + Finger Key Target Types

restricted-to-first L thumb →
R index;
R thumb →
L middle

L

● restricted-constrained: R index
● restricted-free: L middle
● unrestricted: L ring, L index, R middle, R ring

R

● restricted-constrained: L middle
● restricted-free: R index
● unrestricted: L ring, L index, R middle, R ring
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Experimental
condition

Restrictions
(restricting
thumb →
restricted
finger)

Example stimulus
Illegal subsequence

Thumb
key Panes + Finger Key Target Types

L thumb →
L middle;
R thumb →
R ring

L

● restricted-constrained: L middle
● restricted-free: R ring
● unrestricted: L ring, L index, R index, R middle

R

● restricted-constrained: R ring
● restricted-free: L middle
● unrestricted: L ring, L index, R index, R middle

restricted-to-last L thumb →
R index;
R thumb →
L middle

L

● restricted-constrained: R index
● restricted-free: L middle
● unrestricted: L ring, L index, R middle, R ring
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Experimental
condition

Restrictions
(restricting
thumb →
restricted
finger)

Example stimulus
Illegal subsequence

Thumb
key Panes + Finger Key Target Types

R

● restricted-constrained: L middle
● restricted-free: R index
● unrestricted: L ring, L index, R middle, R ring

L thumb →
L middle;
R thumb →
R ring

L

● restricted-constrained: L middle
● restricted-free: R ring
● unrestricted: L ring, L index, R index R middle

R

● restricted-constrained: R ring
● restricted-free: L middle
● unrestricted: L ring, L index, R index R middle
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Note. Restriction mappings are non-exhaustive; only two out of 18 possible mappings per condition are displayed here. Bulleted lists

identifying restricted consonants in each stimulus are included for illustrative purposes only and were not shown to participants.

Likewise, panes demonstrating the phonotactic generalization in question appear first in each condition here for clarity, but in the

experiment itself, these panes could appear anywhere in the stimulus tableaux. Illegal subsequences never appeared in stimuli shown

to participants in the respective condition.
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To construct stimulus lists for each condition, we first generated all 720 possible

sequences using these restrictions in each condition. In order to keep this experiment to 97

trials11 (comparable to the length of our speech experiments), we randomly sampled 194

tongue-twisters from each condition. Since the phonotactic generalization learned by each

participant was the same on both days, we randomly sampled 97 tongue-twisters to present on

Day 1 for each participant, and presented the remaining 96 tongue-twisters on Day 2.

3.3.3 Procedure

Upon submitting the online screening survey, participants were emailed a link to the

consent form for the study. After providing their informed consent, participants booked

appointments to pick up and return the study equipment in person at the Northwestern University

Evanston campus and optionally provided their height, weight, age, and gender for use in the

activity tracker’s sleep staging algorithm. Pick-up and drop-off appointments were scheduled at

least two days apart to allow participants time to complete all experimental sessions between

appointments. At the pick-up appointment, the experimenter distributed the study equipment

(modified USB keyboard, USB-C adapter, and activity monitor), told participants to begin each

experimental session 24 hours apart, and instructed participants to wear the activity monitor

while sleeping between sessions. The experimenter then sent each participant a link to the first

session of the study no later than 30 minutes after the pick-up appointment. All experimental

sessions were completed online.

Due to the COVID-19 pandemic, we used participants’ home computers to display

stimuli and record responses, using a custom-built web application hosted on a Google Firebase

11 We initially intended to have 96 trials per session, but due to an error in programming the experimental
software and creating the stimulus lists, each session had 97 trials instead.
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server.12 We instructed participants to use either Chrome, Firefox, or Microsoft Edge to access

the study. To record responses, we provided participants with a homemade “button box” (see

Figure 15): a standard USB QWERTY keyboard that we modified to minimize keypresses on

keys that did not appear in the experiment, prevent participants from needing to reposition their

hands during the experiment, and defamiliarize the keyboard so that participants would not

gravitate toward the “home row” of keys commonly used in touch typing. Modifications were as

follows:

1. We affixed green stickers and adhered a circular plastic bump dot over all target

keys in the experiment.

2. We removed the top row of keycaps (i.e., those from the function keys) to prevent

accidental activation from participants’ wrists during the experiment.

12 Code for this application is available at https://github.com/nimirea/button-pressing-online-firebase.

https://github.com/nimirea/button-pressing-online-firebase
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Figure 15

Modified USB Keyboard for Recording Keypresses

Note. Participants were instructed to plug the keyboard into their computer’s USB port and turn

it upside-down, so that the space bar was facing away from them, as in this image.

Although these USB keyboards’ temporal resolution was slightly lower than that of the

Cedrus RB-840 response pads used in previous phonotactic button-pressing studies (10

milliseconds vs. 2-3 milliseconds; Cedrus Response Pad RB-840, n.d.), these keyboards had a

critical user-friendliness advantage, rendering them more suitable for remote data collection: all

participants successfully connected the keyboards to their home computers without needing to

install any additional firmware, drivers, or other software. Their low cost (approximately $15 per

keyboard, compared to $644.40 for the RB-840) also allowed us to collect data from multiple

participants simultaneously, greatly expediting data collection at low risk.

https://www.zotero.org/google-docs/?33ykfi
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Each experimental session lasted approximately 60 minutes, and sessions were gated

such that participants could begin Day 2 no sooner than 24 hours after having begun Day 1.

Participants were randomly assigned to a condition (restricted-to-first or restricted-to-last) with

equal probability upon loading Day 1’s session. Each session started with an interactive wizard

to verify that the participants’ keyboard was plugged in and positioned with the space bar facing

away from the participant. Participants were instructed to connect their headphones and place

their hands on the stickered keys as shown in Figure 16. They were also instructed not to remove

their hands from these keys for the entirety of the experiment, and proceeded through the task

instructions by pressing both thumb keys simultaneously to navigate. In order to familiarize

participants with the instructions and trial structure, each participant completed two guided

practice trials at the start of Day 1, and another practice trial at the start of Day 2.

Figure 16

Hand Placement Model for Button-Pressing Task
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3.3.3.1 Trial Structure. At the start of each trial, a fixation cross appeared on the screen,

accompanied by a low-pitched (703 Hz) metronome that began to play at a 1 beat per second to

signal the beginning of the trial. On the second metronome beat, the fixation cross was replaced

with the stimulus tableau. On the fourth beat, participants heard a single medium-pitched (881

Hz) “get ready” beep. On the fifth beat, the metronome increased in pitch again to 1049 Hz (to

distinguish it from the “get ready” beep), and the first pane in the tableau was highlighted with a

yellow border to indicate that it was time to key it in. Participants were instructed to press one

key per beat in each pane from left to right, leaving a one-beat pause between panes. Each fourth

beat was higher pitched (1486 Hz) to indicate that participants should pause between panes. Each

pane was highlighted by a yellow border during the three beats allotted for it. After 12 beats from

the start of the sequence (one complete pass through the 9 keypresses of the tableau, plus three

“pause” beats between panes), the metronome sped up to a rate of 2 beats per second, and

participants were instructed to repeat the sequence three times at this faster rate. After the 36 fast

beats (9 keypresses + 3 pause beats per repetition, times three repetitions), participants received

instructions to press both thumbs simultaneously to continue to the next trial. This allowed

participants to take self-timed breaks if necessary.

3.3.3.2 Surveys. At the end of each experimental session, participants were asked what

equipment they used for the session (browser, computer operating system, and headphones) to

help diagnose data quality issues during data collection. They were also asked how many hours

of sleep they received the previous night, and had an opportunity to provide other written

feedback about their experience. The Karolinska Sleep Questionnaire (KSQ; Westerlund et al.,

2014) was additionally administered after Day 1’s session.

https://www.zotero.org/google-docs/?OvI05d
https://www.zotero.org/google-docs/?OvI05d
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3.3.3.3 Sleep Data Collection. We collected sleep data using Fitbit Inspire 2 wrist-worn

activity monitors, which use body movement, heart rate, and heart rate variability to detect

sleep/wake intervals and identify different sleep stages (Stage 1, Stage 2, and Deep [Slow-Wave]

Sleep). When measured against an EEG machine, Fitbit’s algorithms using these variables are

comparable to a standard wrist-worn actigraphy device in terms of identifying slow-wave sleep

and detecting sleep intervals (Haghayegh et al., 2020). Participants were asked to wear these

activity monitors on nights between sessions, on their non-dominant hand, one finger-width up

the wrist, as recommended by Fitbit’s support website (Fitbit, Inc., n.d.). Before the pick-up

appointment, the experimenter created a Fitbit account for each participant using the provided

demographic data and paired one of the activity monitors to the account. After drop-off, the

experimenter synchronized the activity monitor with the account and copied sleep times, wake

times, and slow-wave sleep duration for all recorded sleep sessions to a CSV file.

3.4 Results

3.4.1 Button-Pressing Error Analysis

3.4.1.1 Statistical Model. To test the hypothesis that planning effects make the final

element in a subsequence more likely to preserve position, even when no structured prior

knowledge exists, we built a mixed-effects logistic regression that predicted

position-preservation of finger keys pressed in participants’ errors using session and participant

condition, as well as each pressed finger key’s context of appearance and restrictedness. We used

the lme4 package (Bates, Mächler, et al., 2015) in the R programming language (R Core Team,

2022) to fit this model.

3.4.1.1.1 Dependent Measure. Our learning measure of interest was the rate at which

keys pressed in errors preserved their position within a pane. In our logistic regression, then, the

https://www.zotero.org/google-docs/?Pha4fP
https://www.zotero.org/google-docs/?bawErx
https://www.zotero.org/google-docs/?EomSwd
https://www.zotero.org/google-docs/?1oW1Zt
https://www.zotero.org/google-docs/?1oW1Zt
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dependent measure was whether the position of each key pressed in error was the same as the

position it had in the pane where it originally appeared in the stimulus tableau (1) or not (0).

To extract and classify errors, we used an automated procedure similar to that of

Anderson & Dell (2018); however, since the beats in our fast repetitions were spaced 500ms

apart instead of 400ms apart, we used the empirical distribution of keypresses to set the analysis

window around each critical beat. The analysis window around a metronome beat contains all

keypresses that are aligned to the target key corresponding to that beat. To obtain a reasonable

window size, we first extracted the start times of the first and third metronome beats in each pane

from the fast repetitions of the sequence—our critical beats, which corresponded to the finger

keys. We then calculated the time difference between these metronome beats and each keypress

that occurred within 500ms of it, and binned each of these differences into 10ms frames. We

summed the distributions across the critical beats to identify the frames with the fewest

keypresses, on either side of the metronome beat (see Figure 17). We took these frames as our

lower and upper bounds, resulting in an analysis window starting 210ms before each critical

beat, and ending 330ms after it.13

13 Compared to Anderson & Dell (2018), this window is shifted slightly to the right.

https://www.zotero.org/google-docs/?rjRTDm
https://www.zotero.org/google-docs/?5dzWtg
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Figure 17

Distribution of Keypresses and Analysis Window around All Critical Beats

Note. Histogram is summed across all critical beats and participants. Critical beats are only the

first and third beat of each pane, within fast repetitions of the sequence. The pink box represents

the analysis window that was used to align keypresses to targets for error extraction.

To identify errors, we first extracted all non-target keypresses that occurred within

analysis windows around the first and third metronome beat of each pane, during fast repetitions

of each stimulus tableau. Since we were interested in errors on finger keys only, we removed

thumb keypresses (N = 5,498) and all presses of keys outside the experiment (N = 140) from this

sample. We classified each of the remaining errors as position-preserving if the key’s original

location within the pane where it appeared in the stimulus was the same as that of the beat during

which it was pressed. For example, if a key was pressed on the third beat of a pane, but originally

appeared as the first key in a pane of the stimulus tableau, the error was classified as
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non-position-preserving. Conversely, if that key appeared as the third key in a different pane, we

classified the error as position-preserving.

To compare our findings to those of the speech experiments (see Chapter 2), we used

only errors on keys that originally appeared in the position to which restricted consonants were

constrained, for each participant condition. In contrast to our findings in the speech experiments,

however (see Chapter 2), coda targets were not more likely to preserve position than onset

targets, according to a visual inspection. This procedure resulted in N = 1,916 errors available for

analysis.

3.4.1.1.2 Fixed Effects. Fixed effects were session, condition, and two factors encoding

contrasts among finger key targets in the context of each stimulus. We also included interactions

between all factors except those encoding contrasts among finger key targets in the context of

each stimulus.

Contrast coding for each factor was centered on zero, such that the intercept of the model

reflected the grand mean. We defined session as a within-participant factor with two effect-coded

levels: pre-consolidation (Day 1), coded as -0.5, and post-consolidation (Day 2), coded as 0.5.

We defined restriction position as a between-participants factor with two effect-coded levels:

restricted-to-last, coded as 0.5, and restricted-to-first, coded as -0.5.

In contrast to previous button-pressing studies that constrained restricted finger key

targets to a certain position in every trial, our study only constrained restricted finger key targets

to a certain position in the presence of their respective constraining thumb key targets. Our

statistical model therefore took into account differences in context among restricted finger key

targets by using a two-factor Helmert coding scheme (see Table 11), with separate fixed effects

for the difference between restricted and unrestricted finger key targets (unrestricted vs.
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restricted) and the difference between restricted finger key targets whose position was

constrained in the current vowel context and restricted finger key targets whose position was not

restricted in the current trial (restricted-constrained vs. restricted-free).

Table 11

Contrast Coding Scheme for Finger Key Target Type and Context

Finger key
target type

Constraining context Number of
finger key
targets per

trial

Fixed effect coding

unrestricted
vs. restricted

restricted-constrained
vs. restricted-free

experimentally-
restricted

constrained = in the
context of its thumb
key target

1 -0.66 0.5

unconstrained = in
the context of the
other
(non-conditioning)
thumb key target

1 -0.66 -0.5

unrestricted N/A 4 0.33 0

Note. Predictors used in the model to encode consonant type and context. Each fixed effect was

coded such that the sum of values of across consonants was zero.

3.4.1.1.3 Random Effects Structure, Convergence, and Parsimony. In addition to

aforementioned fixed effects, we initially included random intercepts and slopes for all fixed
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effects by participant.14 We used the BOBYQA optimizer (Powell, 2009) to fit model parameters

and perform convergence checks.

Because the maximal model did not converge within 100,000 iterations, we constrained

correlation parameters to zero, following the recommendations in Bates et al. (2015) to avoid

overparameterization.15 Due to singular fit issues, we removed random slopes by participant for

all second- and third-order interactions, as well as the random slope for restricted-constrained vs.

restricted-free.

3.4.1.1.4 Significance Testing. The significance of each predictor was assessed via a

likelihood ratio test, in which we compared the likelihood of the data under the full model to the

likelihood of the data under a model that did not include the predictor in question via a 𝝌2 test.

3.4.1.2 Fitted Model Results. On average, approximately 41.94% of keypresses

produced in errors preserved their syllable positions (β = -0.56, SE = 0.12). We found a

significant main effect of restricted-constrained vs. restricted-free, as well as significant two-way

interactions between session and each of the first-order predictors encoding contrasts among

finger key targets in the context of each stimulus. In addition, the three-way interaction between

restricted-constrained vs. restricted-free, restriction position, and session was significant.

Models that dropped each aforementioned factor (yet retained all other factors) resulted in

significant reductions in fit to the data compared to the full model, according to chi-squared tests

(see Table 12 for chi-squared test results and coefficient estimates from the statistical model).

15 We followed the recommendations in (Bates et al., 2015) with a single exception: we did not further
reduce the random effects structure beyond the number of principal components that cumulatively accounted for
100% of the variance in random effects. This is the most conservative version of the model.

14 In our pre-registration, we initially stated that we would use the maximal random effects structure.
However, due to the relatively homogenous pool from which stimulus items were chosen, as well as the
comparatively small number of observations per stimulus tableau (M = 2.29, SD = 2.10), relative to the number of
observations per participant (M = 82.94, SD = 134.68), we included only by-participant random effects in the model,
opting to forgo by-stimulus random effects.

https://www.zotero.org/google-docs/?TqT4Cv
https://www.zotero.org/google-docs/?pijx63
https://www.zotero.org/google-docs/?ZBeQZp
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Table 12

Button-Pressing Error Mixed-Effects Model Results

Predictor Estimate
(in logits)

Standard
Error

𝜒2(1) p value of 𝜒2

test

(Intercept) -0.56 0.12

session -0.22 0.2 1.18 0.276

restricted-constrained vs. restricted-free 0.35 0.15 5.71 0.017 *

unrestricted vs. restricted -0.19 0.2 0.87 0.35

restriction position -0.23 0.25 0.84 0.359

restricted-constrained vs. restricted-free
× session

-0.69 0.29 5.57 0.018 *

restricted-constrained vs. restricted-free
× restriction position

-0.23 0.29 0.59 0.442

unrestricted vs. restricted × session -0.49 0.24 4.21 0.040 *

unrestricted vs. restricted × restriction
position

0.04 0.39 0.01 0.911

restriction position × session 0.04 0.41 0.01 0.916

restricted-constrained vs. restricted-free
× restriction position × ​​session

1.29 0.58 4.90 0.027 *

unrestricted vs. restricted × restriction
position × session

-0.09 0.48 0.04 0.846

Note. Only fixed effects are shown in this table. The and p values for each predictor were𝜒2(1)

obtained via the significance testing procedure described in Section 3.4.1.1.4.
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Restricted finger key targets were 1.51 times more likely  (β = 0.35, SE = 0.15) to

preserve position when they were in their constrained context, compared to their unconstrained

context, indicating that participants did learn to associate restricted finger key targets in the

context of their constraining thumb key targets. Although we observed no significant main effect

of unrestricted vs. restricted, we did find a significant interaction of this factor with session (β =

-0.49, SE = 0.24), suggesting that participants may have only made this distinction on a single

day.

Since we observed significant interactions between session and three other predictors

(unrestricted vs. restricted; restricted-constrained vs. restricted-free; and the

restricted-constrained vs. restricted-free × restriction position interaction), we ran follow-up

mixed-effects logistic regressions that included all factors except session and its interactions on

data from each day.16 The restricted-constrained vs. restricted-free factor was only significant in

the Day 1 model (β = 0.35, SE = 0.15; = 16.05, p < 0.001), while the main effect of𝜒2(1)

unrestricted vs. restricted was only significant on Day 2 (β = -0.54, SE = 0.28; = 3.87, p <𝜒2(1)

0.05), with unrestricted finger key targets maintaining position only 0.58 times as often as

restricted finger key targets (see Figure 18). From Day 1 to Day 2, the position-preservation

probability of restricted-free finger key targets increased to match that of restricted-constrained

finger key targets, suggesting that the consolidation period may have caused participants to

generalize restrictions from constrained contexts to unconstrained (free) contexts.

16 We followed all procedures for ensuring convergence, avoiding overparameterization, and calculating
significance as in the main model. As a result, we constrained correlation parameters to zero in both models, and
reduced the random effects structure to exclude all second-order random slopes and the by-participant slope of
restricted-constrained vs. restricted-free in both models. The Day 1 model was trained on N = 1509 observations,
and the Day 2 model was trained on N = 1145 observations.
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Figure 18

Position-Preservation Probability of Finger Key Targets, by Day and Restrictedness

Note. For clarity, only within-day effects are shown. Position-preservation probability was

calculated within each session. The area of each violin represents the total number of sessions.

Horizontal lines show quantiles.

***p < 0.001, *p < 0.05

In addition, the Day 1 model revealed a significant interaction between

restricted-constrained vs. restricted-free and restricted position (see Figure 19), with participants

in the restricted-to-last condition maintaining position on restricted finger key targets in

constrained contexts only 0.42 times as often as expected in the absence of this interaction (β =

-0.86, SE = 0.36; = 5.87, p < 0.05). To further investigate this interaction, we split the Day𝜒2(1)

1 data according to participant condition (and again reduced the model formula, this time
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excluding session and its interactions). The restricted-free vs. restricted-constrained main effect

was only significant in the model fit to errors from participants in the restricted-to-first

condition, who were approximately 3.14 times more likely to preserve position on errors

involving restricted key targets in their constrained position, compared to when those restricted

key targets appeared in their unconstrained position (β = 1.14, SE = 0.25; = 22.30, p <𝜒2(1)

0.001). By contrast, participants in the restricted-to-last condition were not significantly more

likely to preserve position on errors involving restricted key targets in their constrained position

(β = 0.24, SE = 0.25; = 0.91, p = 0.341). These outcomes indicate that restrictions which𝜒2(1)

bind finger keys to first position are more readily learned, suggesting that the advantage in

position-preservation of onset consonants in the tongue-twister task (see Chapter 2) is

language-specific. The fact that we did not observe this difference between conditions on Day 2

(despite comparable power) suggests that consolidation may help participants in the

restricted-to-last condition “catch up” such that the restrictions could inform their button-presses

on Day 2—though this may also be an artifact of the greater number of errors made on that day

by errors in that condition (see Section 3.4.1.3 below).
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Figure 19

Position-Preservation Probability of Restricted Finger Key Targets on Day 1, by Condition

Note. Data from Day 1 only. For clarity, only within-condition effects are shown.

Position-preservation probability was calculated for each participant’s Day 1 session. The area of

each violin represents the total number of sessions in which at least one error on a finger key

target of the type shown on the x-axis was made. Horizontal lines show quantiles.

***p < 0.001

3.4.1.3 Number of Errors. On average, participants produced 86.36 errors per session

(minimum = 5; maximum = 1376). In order to test whether the number of errors in each session

may have mediated the effects we found in our analysis, we first tested whether the number of

errors per session correlated with either restriction position or session by fitting a mixed-effects

negative binomial linear model that predicted number of errors from restriction position, session,
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and their interaction. Using the model simplification procedures described in Bates et al. (2015),

we were able to retain random intercepts by participant in the model. We used the same

significance testing procedure described in Section 2.3.2.2.4 to test whether each predictor was

significant. Results are shown in Table 13.

Table 13

Button-Pressing Experiment Number of Errors Model Results

Predictor Estimate Standard
Error

𝜒2(1) p value of 𝜒2

test

(Intercept) 4.35 0.14

session -0.50 0.27 3.24 0.072

restriction position -0.41 0.27 2.28 0.131

restriction position × session -1.37 0.54 0.12 < 0.05 *

Note. The and p values for each predictor were obtained via the significance testing𝜒2(1)

procedure described in Section 2.3.2.2.4.

We found a significant interaction between of session and restriction position, such that

participants in the restricted-to-last condition made significantly fewer errors on Day 2 than

would be expected, in the absence of this interaction. To investigate the extent to which this may

have influenced the outcome of our main model, we ran a follow-up version of the model that

included all predictors from the original model, plus the main effect of number of errors

(transformed via the natural log, then centered on a mean of 0 and scaled to a standard deviation

of 1) and its interaction with restricted-constrained vs. restricted-free. The restricted-constrained

https://www.zotero.org/google-docs/?esXJ1p
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vs. restricted-free effect was still significant in this follow-up model (β = 0.34, SE = 0.15; 𝜒2(1)

= 5.40, p < 0.05), as was its interaction with session (β = -0.66, SE = 0.30; = 4.86, p <𝜒2(1)

0.05). The interaction between session and unrestricted vs. restricted was also significant  (β =

-0.48, SE = 0.24; = 4.08, p < 0.05).𝜒2(1)

However, the three-way interaction between restricted-constrained vs. restricted-free,

session, and restriction condition was not significant (β = 1.12, SE = 0.64; = 3.06, p =𝜒2(1)

0.080) with the addition of the interaction between restricted-constrained vs. restricted-free and

number of errors. This result suggests that the putative consolidation benefit in the

restricted-to-last condition may instead be an artifact of the greater number of errors on Day 2 in

that condition, compared to the restricted-to-first condition.

3.4.2 Sleep Data

3.4.2.1 Data Quality. We collected biometric sleep data from 13 participants between

Day 1 and Day 2 using activity trackers. Of these, 11 participants (84.62%) provided their height,

weight, age, and gender when signing up for the study. Since Fitbit uses this demographic

information to calculate heart rate zones for each participant, (M. Considine, personal

communication, March 19, 2021), we omitted the 2 participants who did not provide full

demographic information from our analysis of sleep data.

3.4.2.2 Testing for Consolidation Effects. To attempt to establish whether this effect is

tied to consolidation, we constructed another logistic regression predicting position-preservation

of errors in which we replaced the session predictor from the original model with the interaction

between session and the z-score corresponding to the proportion of time spent in slow-wave

sleep between sessions (SWS proportion).  Since only 11 participants whose data was included in

https://www.zotero.org/google-docs/?NAG207
https://www.zotero.org/google-docs/?NAG207
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this experiment also recorded biometric sleep data and provided full demographic information,

this comparison was performed only on data from those 11 participants. We then compared the

fit of this model to that of the original model (described in Section 3.4.1.1) on the same data,

using the likelihood ratio test described in Section 3.4.1.1.4. The addition of slow-wave sleep as

a predictor did not significantly improve fit, according to a likelihood ratio test between the

slow-wave sleep model and the full model ( = 3.85, p = 0.427), so we cannot conclude that𝜒2(1)

this difference between days is due to slow-wave sleep. That being said, the interactions with

session were also not significant in the baseline (original) model for this 11-participant sample,

so it is possible that this follow-up analysis was hampered by a lack of statistical power.

3.5 Discussion

This experiment investigated the possibility that effects found in Experiment 1 of Chapter

2 may have been due to domain-general properties of sequential pattern learning. Table 14

summarizes our findings.
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Table 14

Predictions for Button-Pressing Experiment (Repeated from Table 9) and Outcomes

Result from speech
experiments

Proposed explanation(s)
for speech experiment

result

Prediction (if phonotactic
learning results are solely

driven by sequential
pattern learning)

Evidence
for

prediction
found?

In contrast to previous
studies, participants were
able to restrict positions
of constrained
consonants on Day 1.

Lack of interference
between
consonant-position
mappings.

Similar; participants
should be able to restrict
the position of finger
keys targeted by the
restriction on Day 1.

Yes

Experimentally-restricted
consonants preserved
position more often than
unrestricted consonants,
even in in vowel contexts
that did not constrain
their positions.

Mappings between
response units and their
positions are represented
both locally (with
adjacent context) and
globally (independent of
adjacent response units).

Similar; restricted finger
key targets in unrestricted
(free) contexts will
preserve position more
often than unrestricted
consonants.

Yes, but
only on
Day 2

Participants preserved
position more often on
coda consonant errors
than onset consonant
errors.

Planning differences
between the first and
third response units.

Similar; third-key errors
will preserve position
more often than first-key
errors.

No

3.5.1 Consolidation Resolves Interference among Conflicting Mappings Between Response

Units and Sequential Position

On Day 1, participants’ errors on restricted finger key targets in constrained trial contexts

preserved position significantly more often than their errors on the same consonants in

unconstrained trial contexts. This indicated that participants did successfully learn the

phonotactic restrictions on Day 1, suggesting that the lack of conflict among mappings between

response units and sequential positions may promote sequential pattern learning more generally.

The lack of improvement in this metric after consolidation implies that consolidation may have
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resolved the mapping conflict in Anderson and Dell (2018) and Rebei et al. (2019), in contrast to

this experiment. Nevertheless, further research using a controlled experiment and a common

statistical model is necessary to confirm this, since the lack of improvement can stem from many

sources.

3.5.2 Consolidation Aids in Schema Creation, Promotes Transfer across Trial Contexts

In this experiment,  restricted finger key targets in unrestricted (free) contexts will

preserve position more often than unrestricted consonants, but only after an opportunity for

sleep-based consolidation. We take this as evidence that the opportunity for sleep-based

consolidation creates novel, structured representations of targets that participants can generalize

across to improve performance—i.e., new schema. In contrast to the speech experiments

(Chapter 2), participants bring very little (if any) prior knowledge to this experiment. Therefore,

participants must learn to chunk each pane in the sequence into a hierarchical representation in

order to efficiently represent the panes (Sakai et al., 2003) and achieve optimal performance on

the task. Sleep-based consolidation appears to aid in the development of this hierarchical

schema, as expected under Stickgold and Walker (2013)’s selective processing account of

consolidation. This is compatible with previous research on schema development that implicates

sleep-dependent consolidation, as well as the brain structures typically active during

consolidation (Tse et al., 2007).

What evidence do we have to support schema creation? On Day 1, the primary distinction

that participants make is among restricted finger key targets. Errors containing restricted finger

key targets preserve position more often when they appear in constrained thumb contexts,

compared to when they appear in unconstrained thumb contexts. There was little difference

between unrestricted consonants and restricted consonants in unconstrained contexts, signaling

https://www.zotero.org/google-docs/?XM3ha5
https://www.zotero.org/google-docs/?NlBbDI
https://www.zotero.org/google-docs/?jyetkY
https://www.zotero.org/google-docs/?DgJT83
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that participants’ errors faithfully mirrored the distribution of targets, according to the

second-order regularities present in the stimuli. On Day 2, however, the unrestricted vs.

restricted distinction was in play: participants’ errors preserved position more often on restricted

finger key targets, compared to unrestricted finger key targets. This separation by finger key

class suggests that consolidation has allowed participants to integrate statistical information

regarding position of appearance in order to create an efficient representation in which the two

classes of target response units (restricted and unrestricted) have different distributional

properties. Moreover, the distinction among restricted consonants based on context is attenuated:

transfer across contexts within finger key targets has occurred, as we would expect if participants

had learned to chunk and associate each finger key with the position it occurs in most often,

globally.

3.5.3 Tendency to Keep Rhymes Intact in Errors May Be Language-Specific

We did not replicate the difference by participant condition from the speech experiments;

there was no significant main effect of condition on position-preservation in errors, and

specifically, no evidence of greater position-preservation in errors made by participants whose

restricted finger key targets were restricted to the final position, within each pane. If anything,

participants in the restricted-to-first condition were more likely to preserve position on restricted

key targets in their constrained position than those in the restricted-to-last condition. Although

our dataset contained fewer errors in this experiment (and therefore less power), we did find

significant effects in this experiment that were smaller than the effects of condition in the speech

experiments, leading us to believe that if this data did contain a difference of comparable size,

we would be able to detect it using our statistical method. Ultimately, this means that the

tendency to keep syllable rhymes intact in errors may be an English-specific property due to the
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high predictability of codas, given onsets (Kessler & Treiman, 1997), though future research

should attempt to falsify this using participants from different native language backgrounds.

3.5.4 Methodological Innovation in Remote Research

On a practical note, this experiment is the first button-pressing regularity study that uses

home computers and adapted QWERTY keyboards for data collection. We present this as a

proof-of-concept for researchers who may be facing barriers to lab-based data collection using

button-boxes and sound-isolated booths—be it from pandemics, budgetary concerns, or other

obstacles. Future studies should attempt to replicate well-attested lab-based findings remotely, in

the vein of recent remote replications of speech production work (see Fairs & Strijkers, 2021 for

an example). This work has the potential to allow researchers to collect data from understudied

populations of participants for whom lab-based data collection is not feasible, thereby capturing

a more complete picture of human cognitive diversity and empowering more individuals to

participate in scientific advancement.

3.6 Conclusion

In this experiment, we tested whether the functions of consolidation that we identified in

our speech experiments were also operative in a domain with little (if any) prior structured

knowledge: a sequential button-pressing task. We found evidence of another role for

consolidation: schema creation, after which transfer of distributional information among

identical response units across contexts is possible. We do not find evidence of the general

tendency to keep rhymes (second + third sequential positions) together in errors, which was

present in our earlier speech experiments (Chapter 2); this suggests that the tendency is a

linguistically-driven effect, possibly arising from distributional characteristics of participants’

native language. Overall, in the absence of prior knowledge regarding sequential regularities,

https://www.zotero.org/google-docs/?aLScMK
https://www.zotero.org/google-docs/?TDx6v3
https://www.zotero.org/google-docs/?TDx6v3
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sleep-based consolidation allows participants to chunk information into a representation that is

helpful for future production.
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Conclusion

In this work, we examined the role of prior knowledge in the consolidation of

second-order phonotactic restrictions for speech production. We tested the hypothesis that new

phonotactic restrictions which are dissimilar to previously-learned phonotactic generalizations

may be more difficult to consolidate during sleep, and therefore benefit less from sleep-based

consolidation. We investigated this in a speech production task (Chapter 2) as well as in a

non-linguistic sequential action task (Chapter 3) where participants had no structured prior

knowledge, in order to assess whether results from our speech production task were due to

properties of the linguistic system, or to more domain-general planning and production

processes.

In Chapter 2, we tested two sources of prior phonotactic knowledge: participants’ native

language (Experiment 1) and pre-training in the experimental setting (Experiment 2). We found

that consolidation did enable transfer from prior phonotactic knowledge, but only when that

knowledge was acquired in a similar environment as the task itself (i.e., pre-training). In contrast

to previous second-order phonotactic learning studies where mappings between restricted

consonants and the positions they appeared in interfered with each other, we found evidence of

phonotactic learning on Day 1 of each experiment, suggesting that consolidation’s role in

previous studies had been to resolve interference between conflicting mappings. Participants

tended to keep syllable rimes intact in speech errors; we failed to replicate this in a non-linguistic

sequential action task (button-pressing; see Chapter 3), suggesting that this tendency stemmed

from distributional characteristics of participants’ native language (English). We additionally

found evidence that participants generalized second-order phonotactic restrictions to

context-independent first-order constraints that bound restricted consonants to a particular
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syllable position more often than chance even when not constrained by their immediate vowel

context; in button-pressing, this generalization was only evident after a consolidation period.

4.1 Implications

4.1.1 Representing Phonotactic Patterns

Across both our speech experiments, we found that participants tended to produce

restricted consonants in their restricted positions, even in stimuli where their position was not

constrained by the vowel. This indicates that participants represent associations between

consonants and syllable positions at two levels: global, context-independent, first-order

generalizations (e.g., “/f/ appears in coda position 75% of the time”) and local,

context-dependent, second-order phonotactic generalizations (e.g., “/f/ is more likely to appear in

coda position if /ɪ/ is the vowel). These representations overlap to affect production; in our

example, /f/ would be most likely to appear in coda in errors on stimuli containing /ɪ/, but also

more likely to appear in coda in errors on stimuli containing /æ/ than an unrestricted consonant.

This is the case even after an opportunity for sleep-based consolidation, indicating that

consolidation may not be able to perfectly separate these contexts to create a veridical

representation of consonant distributions. This effect may arise from the fact that both

generalizations are largely consistent with the presented data, and so both are simultaneously

used in production.

We found transfer effects in our second speech experiment, such that the difference in

position-preservation rate on restricted consonants by vowel context was larger for participants

in the training-similar group than for those in the training-dissimilar group. The similarity

among restrictions across phases gave the training-similar group an advantage in learning.

Results from the training-dissimilar group, on the other hand, suggested that this group needed
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to unlearn previously-formed associations between restricted consonants and the syllable

positions to which they had been constrained in pre-training before new, conflicting restrictions

could affect speech production. These conclusions, along with Anderson et al. (2019)’s findings

regarding reversal shift in phonotactic learning, support an incremental account of phonotactic

learning.

4.1.2 Role of Sleep-Based Consolidation Depends on Task and Extant Prior Knowledge

Each of our experiments uncovered a different role for consolidation, depending on the

characteristics of the task, as well as the nature of prior knowledge. In our first speech

experiment, the role of consolidation was minimal, despite our large sample size; participants’

speech errors followed the phonotactic restrictions in question even on Day 1. This was

surprising, since previous studies of second-order phonotactic learning had found consolidation

effects (Gaskell et al., 2014; Smalle et al., 2017, 2021; Warker, 2013; Warker et al., 2010; Warker

& Dell, 2006) in undistracted adults. We believe this is due to a difference in how our stimuli

were constructed. In previous experiments, the mapping between each restricted consonant and

its syllable position was completely reversed on trials containing a different vowel; therefore,

participants were tasked with learning two conflicting associations between consonant and

syllable position. In our stimuli, by contrast, both consonants could appear in the targeted

position in any trial, but each consonant was additionally permitted to appear in the opposite

position on trials that did not include its constraining vowel. The mapping between

unconstrained restricted consonants and position targeted by the restriction only needed to be

inhibited on 25% for successful (errorless) performance. This lessened inhibition on Day 1 may

have reduced the need for participants to foreground previously-backgrounded information

during consolidation, as they would under situations of direct conflict (see Smalle et al., 2021 for

https://www.zotero.org/google-docs/?irUs3e
https://www.zotero.org/google-docs/?8WNm6C
https://www.zotero.org/google-docs/?8WNm6C
https://www.zotero.org/google-docs/?zobGP4
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an example and discussion of executive control’s role in backgrounding). This account explains

why participants could successfully learn the phonotactic restrictions in this experiment before

consolidation. In light of previous work, the results of this experiment suggest that

consolidation’s role in past studies has been to resolve interference between directly conflicting

consonant-position mappings.

In our second speech experiment, consolidation made previously-learned information

available for speech production. Specifically, the difference in position-preservation rate between

errors on restricted and unrestricted consonants was larger after an opportunity for sleep-based

consolidation; in addition, the increase in position-preservation rate between errors on restricted

consonants in constrained context compared to unconstrained context was larger for participants

in the training-dissimilar condition after an opportunity for sleep-based consolidation. The

difference between this experiment and Experiment 1 suggests that consolidation does enable

participants to draw upon prior knowledge for speech production, but only when that prior

knowledge has been acquired or activated17 in a similar environmental context. This supports a

view of phonotactic learning in which restrictions are stored in tandem with their contexts of

acquisition. We suspect that effect was not observed in Experiment 1 because participants’ native

language was acquired and mainly used in naturalistic environments that were very different

from the experimental context. Taken together, these results support Dell et al. (2019)’s proposal

that sleep-based consolidation makes a contextually-bound mini-grammar available for speech

production.

17 Our paradigm did not disambiguate the context of acquisition from the context of usage/activation. Thus,
the extent to which the initial learning environment may be privileged with respect to phonotactic transfer remains to
be seen. It is possible that this effect is driven by similarity between usage environments instead.

https://www.zotero.org/google-docs/?zobGP4
https://www.zotero.org/google-docs/?mnFFS0
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Our button-pressing results suggest that consolidation may have created a new schema,

such that responses were more in line with our speech production results after a period of

consolidation. On Day 1 of the button-pressing experiment, participants had not generalized the

restriction applicable to restricted finger key targets in constrained contexts to the same targets in

different trial contexts. This suggests that consolidation allowed participants to integrate

statistical information regarding position of appearance in order to create an efficient

representation that represents both first- and second-order sequential generalizations

simultaneously, as in the speech experiments. Together with results from the speech experiments,

our evidence suggests that consolidation was needed because participants lacked the structured

prior knowledge from a lifetime producing syllables; consolidation thus created a “syllable-like”

schema for button-presses.

4.1.3 Possible Effects of Native Language on Speech Errors

In both of our speech experiments, participants’ errors on coda consonants tended to

preserve position more often than their errors on onset consonants. This effect was not present on

either day of the button-pressing experiment, despite comparable power, indicating that it does

not arise due to domain-general sequential action planning processes. Instead, we propose that it

may be due to a general property of English: since codas are more predictable from vowels than

onsets (Kessler & Treiman, 1997), there may be a tendency to keep the rime unit intact in speech

errors. Studies of second-order phonotactic learning in adults have found differences by native

language (Smalle & Szmalec, 2021), so it is possible that the task may reflect other

characteristics of speakers’ native languages—especially since the vast majority of studies using

this paradigm have only been conducted on native English speakers.

https://www.zotero.org/google-docs/?h5hVQi
https://www.zotero.org/google-docs/?DCbcbD
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4.2 Limitations

Although we took steps to minimize the amount of noise present in our speech data,

agreement on errors was only 55.54% (Cohen’s K = 0.49) across both experiments. Recording in

a cleaner environment (e.g., a sound-isolated recording booth with a high-quality microphone)

may have yielded more consistent data than our remote data collection procedure.18 Nevertheless,

since statistics on errors are not usually reported separately from agreement metrics on

non-errors (and our agreement on non-errors was almost perfect), we cannot at present establish

the amount of noise that remote recording may have introduced. As a step toward minimizing

noise and potentially quantifying the limitations of the tongue-twister paradigm, we recommend

that other researchers report agreement statistics on errors alone and use a blind transcription

procedure and a common error-detection algorithm (such as the one described in Section

2.3.2.2.1) to minimize the effects of coder bias and human error.

Our studies also suffered from a lack of power in biometric sleep data. Due to logistical

concerns regarding synchronizing the activity monitors during drop-off, participants were not

compensated separately for providing sleep data; instead, their compensation solely depended on

completion of the experimental sessions. We recommend that future studies employing a similar

hybrid data collection method include a bonus payment in their compensation scheme in order to

incentivize participants to wear the activity trackers between sessions.

18 Goldrick (2004) found an agreement rate of 77.8% on errors from a tongue-twister task with a similar
consonant inventory that was recorded in a sound-attenuated chamber. Comparison to our agreement rate suggests
that our remote recording procedure did introduce noise. However, Goldrick (2004)’s dataset only contained 9
jointly transcribed errors (compared to 3001 across both our speech experiments). More data would provide a less
noisy agreement estimate.

https://www.zotero.org/google-docs/?ffjpsy
https://www.zotero.org/google-docs/?DyobWH


132

4.3 Future Directions

Results from our second speech experiment suggest that similarity between learning

environments can encourage integration of information into an existing schema during

consolidation. This raises several questions regarding the dimensions of “similarity” that are

relevant for integration during consolidation. How similar must two environmental contexts be

for integration? Under a selective processing account of consolidation (Stickgold & Walker,

2013), task-relevant similarities (e.g., the consonant inventory in tongue-twisters) should be

more critical for promoting integration during consolidation than task-irrelevant similarities (e.g.,

the color of the text on the screen). Future research should examine this possibility, in order to

determine the extent to which contextual information can affect consolidation. Beyond its

intellectual significance, this research could have practical implications for language pedagogy.

Dell et al. (2019)’s theory implies that participants created an initial experimental

mini-grammar during the first speech experiment that could be “siloed off” from the rest of the

English language, such that updates to that mini-grammar did not change participants’ English

phonotactics. Since the circumstances that trigger formation of a new mini-grammar are

undefined, it is unclear whether this was the case for the second speech experiment as well. Was

the replacement of two consonants in the inventory a sufficiently salient context cue to trigger

the creation of new, contextually-bound mini-grammar for Experiment 2, separate from the

Experiment 1 mini-grammar? If this is the case, then the restrictions learned in Experiment 2

should not override those from Experiment 1; if participants were again exposed to

tongue-twisters with the same consonant inventory and phonotactic restrictions as in Experiment

1, they should have little difficulty reverting to their Experiment 1 mini-grammar, even if they

were exposed to conflicting restrictions in Experiment 2.

https://www.zotero.org/google-docs/?7pIwr2
https://www.zotero.org/google-docs/?7pIwr2
https://www.zotero.org/google-docs/?yvOckz
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Defining the precise neurocognitive mechanism that facilitated this integration of

information from pre-training may help clarify this point, as well as other open questions

regarding the role of prior knowledge in phonotactic learning for speech production. For

example, neuronal replay during consolidation (Lewis & Durrant, 2011) may help participants

identify overlapping unrestricted consonants between the two phases of the experiment, thereby

permitting the insight that these consonants have the same distribution, regardless of the new

consonants in the tongue-twister. Consolidation may also help participants link shared

phonological properties (in this case, manner and place of articulation) between restricted

consonants in the two phases of the experiment. These possibilities are not exclusive; future

research should test them separately. Discovering the source of these effects would clarify the

role of consolidation in language learning, with potential implications for learning of other

linguistic phenomena as well.

Finally, the reason for simultaneous representation of first- and second-order

generalizations throughout our experiment is still unclear. Results from the button-pressing

experiment suggest that this pattern is an artifact of the production schema, which in turn may

mean that the generalization within identical response units may be necessary to efficiently

represent second-order sequential patterns, even beyond speech production. It remains to be seen

whether this generalization is only useful during the early stages of acquisition (and thus can be

overcome with sufficient exposure), or whether it arises from other biases that persist as long as

the schema for production is in place. Clarifying this point can have important implications for

the study of sequential action patterns and how they are learned.

https://www.zotero.org/google-docs/?lHq4Ky
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4.4 Conclusion

This work investigated prior knowledge’s role in consolidation of second-order

phonotactics for speech production, by analyzing production errors made in two sequential

action domains. Our results indicate that first-order and second-order sequential patterns are

simultaneously represented in production, and that this may be a necessary property of the

schema for structured sequential action, in both speech and keypress sequence production. We

found evidence of transfer from phonotactic restrictions that had been previously learned in a

similar environmental context, supporting an incremental account of phonotactic learning

(Anderson et al., 2019) as well as a view of phonotactic learning in which restrictions are stored

together with their contexts of acquisition (Dell et al., 2019). Our results also suggest that

consolidation’s main function in phonotactic learning for speech production is to resolve

interference among multiple conflicting mappings between consonants and their syllable

positions. Moreover, we found evidence that participants’ native language (English) may have

affected their speech errors. More research is necessary to clarify the function of environmental

context in phonotactic transfer and learning, as well as the neural mechanism underpinning

phonotactic transfer and the timecourse of generalization (and possible eventual inhibition)

across contexts in non-self-interfering second-order sequential patterns. Overall, this research

demonstrates that prior knowledge’s complex role in sequential pattern learning, which depends

not only on similarity to new information and opportunity for consolidation, but also on the

environment in which that prior knowledge was acquired.

https://www.zotero.org/google-docs/?qj0V9g
https://www.zotero.org/google-docs/?j3wqsj
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Appendix A: Note on Empirical Logits

Many of our violin plots visualize position-preservation probability in empirical logit

units. In these figures, each point in each violin is a summary of errors involving a single

consonant type (usually indicated along the x axis), within a single session. To create this

summary (i.e., to calculate the empirical logit), we use the formula , where is𝑙𝑛 𝑃 + 0.5
𝑇 − 𝑃 + 0.5( ) 𝑙𝑛

the natural log function, P is the number of position-preserving errors in the session involving

the specified consonant type, and T is the total number of errors in the session involving the

specified consonant type (Barr, 2008). This formula is roughly equivalent to the standard logit

transformation , but avoids complications when approaches 0 or 1, since𝑙𝑛
𝑃
𝑇

1 − 𝑃
𝑇

( ) 𝑃
𝑇

- and is undefined. As in the standard logit transformation, an empirical logit𝑙𝑛( 0
1 ) =  ∞ 1

0

value of 0 represents an equal number of position-preserving and position-altering errors (

), and higher values represent a higher proportion of position-preserving errors.𝑃
𝑇  =  0. 5

Although we use empirical logits to produce visualizations of our data, we used logistic

regression on the raw observations to calculate the significance of our predictors. In other words,

empirical logits are used throughout this work to plot position-preservation probability only, and

not for statistical analysis.

https://www.zotero.org/google-docs/?jMzWvL
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Appendix B: Free-Context-as-Baseline Model

In order to directly compare position-preservation probabilities of unrestricted consonants

to those of restricted consonants in unconstrained (free) vowel contexts, we ran a version of our

model on the same data in which the Helmert codings corresponding to consonant type and

context were replaced with a 3-level simple contrast coding scheme (see Table B1).

Table B1

Contrast Coding Scheme for Consonant Type and Context, in Free-Context-as-Baseline Model

Consonant type Constraining
context

Number of
consonants

per trial

Fixed effect coding

unrestricted vs.
restricted-free

restricted-constrained
vs. restricted-free

experimentally-
restricted

constrained = in the
context of its
conditioning vowel

1 - 2
3

5
6

unconstrained = in
the context of the
other
(non-conditioning)
vowel

1 - 2
3 - 1

6

unrestricted N/A 4 1
3 - 1

6

Note. Predictors used in the free-context-as-baseline model to encode consonant type and

context. Each fixed effect was coded such that the sum of values of across consonants was zero.
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Speech Experiments

Experiment 1

Due to convergence issues, we constrained all correlation parameters to zero and

removed the following random slopes by participant from the model:

● restricted-constrained vs. restricted-free × session

● restricted-constrained vs. restricted-free × session × similarity to English

● unrestricted vs. restricted-free × session × similarity to English

Results from the model are shown in Table B2.
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Table B2

Experiment 1 Free-Context-As-Baseline Results

Predictor Estimate
(in logits)

Standard
Error

𝜒2(1) p value of 𝜒2

test

(Intercept) 0.73 0.12

session 0.02 0.13 0.02 0.889

similarity to English 1.40 0.25 28.00 < 0.001 ***

restricted-constrained vs. restricted-free 1.11 0.25 19.46 < 0.001 ***

unrestricted vs. restricted-free -1.27 0.21 32.53 < 0.001 ***

similarity to English × session -0.15 0.26 0.29 0.590

restricted-constrained vs. restricted-free ×
session

-0.27 0.41 0.43 0.514

restricted-constrained vs. restricted-free ×
similarity to English

-0.34 0.48 0.39 0.530

unrestricted vs. restricted-free × session -0.36 0.39 0.82 0.365

unrestricted vs. restricted-free × similarity
to English

-0.48 0.43 1.29 0.256

restricted-constrained vs. restricted-free ×
similarity to English × session

-0.78 0.82 0.87 0.352

unrestricted vs. restricted-free × similarity
to English × session

-0.23 0.79 0.08 0.775

Note. Only fixed effects are shown in this table. The and p values for each predictor were𝜒2(1)

obtained via the significance testing procedure described in Section 2.3.2.2.4; p values are not

adjusted for multiple comparisons. Predictors were coded according to the scheme in Table B1.
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Experiment 2

Due to convergence issues, we constrained all correlation parameters to zero. We were

able to retain all random slopes in the model. Results from the model are shown in Table B3.
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Table B3

Experiment 2 Free-Context-As-Baseline Results

Predictor Estimate
(in logits)

Standard
Error

𝜒2(1) p value of 𝜒2

test

(Intercept) 0.80 0.13 NA NA

session 0.01 0.16 0.01 0.935

similarity to English -0.96 0.26 12.38 < 0.001 ***

restricted-constrained vs. restricted-free 1.01 0.28 11.35 < 0.001 ***

unrestricted vs. restricted-free -0.66 0.25 6.33 < 0.05 *

similarity to English × session 0.10 0.32 0.09 0.767

restricted-constrained vs. restricted-free ×
session

0.21 0.46 0.21 0.645

restricted-constrained vs. restricted-free ×
similarity to English

1.78 0.56 9.16 < 0.01 **

unrestricted vs. restricted-free × session -0.50 0.42 1.38 0.241

unrestricted vs. restricted-free × similarity
to English

0.18 0.51 0.13 0.721

restricted-constrained vs. restricted-free ×
similarity to English × session

-1.75 0.89 3.76 0.053

unrestricted vs. restricted-free × similarity
to English × session

-0.98 0.83 1.33 0.249

Note. Only fixed effects are shown in this table. The and p values for each predictor were𝜒2(1)

obtained via the significance testing procedure described in Section 2.3.2.2.4; p values are not

adjusted for multiple comparisons. Predictors were coded according to the scheme in Table B1.
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Button-Pressing Experiment

Due to convergence issues and to avoid overparameterization, we constrained all

correlation parameters to zero. To avoid a singular fit, we removed all second-order random

slopes by participant, as well as the random slope by participant for the restricted-constrained vs.

restricted-free contrast from the model.
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Table B4

Button-Pressing Experiment Free-Context-As-Baseline Results

Predictor Estimate
(in logits)

Standard
Error

𝜒2(1) p value of 𝜒2

test

(Intercept) -0.56 0.12

session -0.22 0.2 1.18 0.276

restricted position -0.23 0.25 0.84 0.359

restricted-constrained vs. restricted-free 0.35 0.15 5.71 < 0.05 *

unrestricted vs. restricted-free -0.01 0.22 < 0.01 0.955

restricted position × session 0.04 0.41 0.01 0.916

restricted-constrained vs. restricted-free ×
session

-0.69 0.29 5.57 < 0.05 *

restricted-constrained vs. restricted-free ×
restricted position

-0.23 0.29 0.59 0.442

unrestricted vs. restricted-free × session -0.84 0.31 7.39 < 0.01 **

unrestricted vs. restricted-free × restricted
position

-0.07 0.44 0.02 0.876

restricted-constrained vs. restricted-free ×
restricted position × session

1.29 0.58 4.9 < 0.05 *

unrestricted vs. restricted-free × restricted
position × session

0.55 0.61 0.81 0.368

Note. Only fixed effects are shown in this table. The and p values for each predictor were𝜒2(1)

obtained via the significance testing procedure described in Section 3.4.1.1.4; p values are not

adjusted for multiple comparisons. Predictors were coded according to the scheme in Table B1.
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To probe the nature of the interactions with session, we ran follow-up analyses that split

the data by day. When analyzing data from each day, we used the same formula as in the main

free-context-as-baseline model, but removed session and its interactions from the predictors.

Day 1

To avoid overparameterization, we constrained all correlation parameters to zero. To

avoid a singular fit, we removed all second-order random slopes plus the random slope of the

restricted-constrained vs. restricted-free contrast by participant. Results from this model are

shown in Table B5.

Table B5

Button-Pressing Experiment Free-Context-As-Baseline Results: Day 1

Predictor Estimate
(in logits)

Standard
Error

𝜒2(1) p value of 𝜒2

test

(Intercept) -0.44 0.15 NA NA

restricted position -0.25 0.3 0.73 0.393

restricted-constrained vs. restricted-free 0.71 0.18 16.05 < 0.001 ***

unrestricted vs. restricted-free 0.46 0.24 3.60 0.058

restricted-constrained vs. restricted-free ×
restricted position

-0.86 0.36 5.87 < 0.05 *

unrestricted vs. restricted-free × restricted
position

-0.25 0.48 0.27 0.604

Note. Only fixed effects are shown in this table. The and p values for each predictor were𝜒2(1)

obtained via the significance testing procedure described in Section 3.4.1.1.4; p values are not

adjusted for multiple comparisons. Predictors were coded according to the scheme in Table B1.
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Day 2

To avoid overparameterization, we constrained all correlation parameters to zero. To

avoid a singular fit, we removed all second-order random slopes plus the random slope of the

restricted-constrained vs. restricted-free contrast by participant. Results from this model are

shown in Table B6.

Table B6

Button-Pressing Experiment Free-Context-As-Baseline Results: Day 2

Predictor Estimate
(in logits)

Standard
Error

𝜒2(1) p value of 𝜒2

test

(Intercept) -0.68 0.17

restricted position -0.15 0.34 0.21 0.648

restricted-constrained vs. restricted-free -0.04 0.24 0.02 0.877

unrestricted vs. restricted-free -0.56 0.32 3.18 0.075

restricted-constrained vs. restricted-free ×
restricted position

0.32 0.47 0.47 0.495

unrestricted vs. restricted-free × restricted
position

-0.07 0.64 0.01 0.91

Note. Only fixed effects are shown in this table. The and p values for each predictor were𝜒2(1)

obtained via the significance testing procedure described in Section 3.4.1.1.4; p values are not

adjusted for multiple comparisons. Predictors were coded according to the scheme in Table B1.
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Appendix C: Restoration from Sleep

We attempted to explore the connection between slow-wave sleep and questionnaire

responses regarding restoration from sleep described in Westerlund et al. (2013). To do this, we

analyzed sleep data from the 56 participants who provided full demographic information,

recorded at least one night of sleep data using the activity tracker, and responded to the KSQ. In

order to temper the influence of outliers on the data, we excluded eight instances in which

activity trackers recorded a deep sleep duration that was more than two standard deviations away

from the mean—i.e., less than 6 minutes or greater than 139 minutes—leaving 130 sleep

instances available for analysis. As in Westerlund et al. (2013), we mapped questionnaire

responses onto a 6-point numeric scale19 and averaged the responses to KSQ questions 9B, 9H,

and 9L to form the “restoration from sleep” index (KSQ-RS), We then calculated the Spearman’s

rank correlation between the KSQ-RS and the number of minutes in deep sleep on each night.

We observed no significant relationship between KSQ-RS and deep sleep duration (𝜌 = -0.135, p

= 0.125), failing to replicate Westerlund et al. (2013)’s results.

In order to check whether any of the components of the KSQ-RS correlated with deep

sleep duration, and to make use of the within-participant variability in sleep data at our disposal,

we ran an exploratory mixed-effects linear regression predicting deep sleep duration from 9B,

9H, and 9L, with a random intercept by participant. We used the same software, model

convergence procedure, and significance testing criteria as in the speech error model (see

described in Section 2.3.2.2 for a description).

19 Never = 1; Rarely = 2; Sometimes = 3; Often = 4; Mostly = 5; Always = 6

https://www.zotero.org/google-docs/?a865lw
https://www.zotero.org/google-docs/?CPLnzi
https://www.zotero.org/google-docs/?qRyeUf
http://2.3.2.2
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Results from this model are reported in Table C1. The model revealed a significant effect

of question 9H, such that participants who reported more instances of not feeling refreshed when

waking up had significantly lower sleep durations (𝛽 = -6.64, SE = 2.92; = 8.97, p < 0.01).𝜒2(1)

Table C1.

Slow-Wave Sleep Duration Mixed-Effects Model Results

Predictor Estimate Standard
Error

𝜒2(1) p value of 𝜒2

test

(Intercept) 86.80 10.29

9B—Difficulties waking up -0.14 2.30 3.50 0.061

9H—Not feeling refreshed when waking up -6.64 2.92 8.97 < 0.01 **

9L—Feeling exhausted when waking up 2.08 2.91 4.49 0.034

Note. Only fixed effects are shown in this table. The and p values for each predictor were𝜒2(1)

obtained via the significance testing procedure described in Section 2.3.2.2.4.
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Appendix D: Analysis of Day 1 Data

In order to determine whether the phonotactic restrictions used by participants affected

their productions on Day 1, we ran a version of our model which excluded session and all its

interactions on data from Day 1 of each experiment.

Experiment 1

To avoid singular model fit, we removed the restricted-constrained vs. restricted-free ×

similarity to English random slope from the model. Results are shown in Table D1.

Table D1

Experiment 1 Day 1 Model Results

Predictor Estimate
(in logits)

Standard
Error

𝜒2(1) p value of 𝜒2

test

(Intercept) 0.67 0.13

restricted-constrained vs. restricted-free 1.19 0.40 7.84 < 0.01 **

unrestricted vs. restricted -1.53 0.26 23.42 < 0.001 ***

similarity to English 1.39 0.26 20.56 < 0.001 ***

restricted-constrained vs. restricted-free ×
similarity to English

0.10 0.78 0.02 0.874

unrestricted vs. restricted × similarity to
English

-0.15 0.5 0.09 0.759

Note. Only fixed effects are shown in this table. The and p values for each predictor were𝜒2(1)

obtained via the significance testing procedure described in Section 2.3.2.2.4; p values are not

adjusted for multiple comparisons.
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Experiment 2

To avoid convergence issues, we set all correlation parameters to zero. To avoid singular

model fit, we removed all second-order random slopes from the model, as well as the random

slope by participant for restricted-constrained vs. restricted-free.

Table D2

Experiment 2 Day 1 Model Results

Predictor Estimate
(in logits)

Standard
Error

𝜒2(1) p value of 𝜒2

test

(Intercept) 0.81 0.15

restricted-constrained vs. restricted-free 0.74 0.46 2.31 0.128

unrestricted vs. restricted -0.95 0.28 9.73 < 0.01 **

similarity to training -0.95 0.3 8.96 < 0.01 **

restricted-constrained vs. restricted-free ×
similarity to training

2.76 0.93 8.53 < 0.01 **

unrestricted vs. restricted × similarity to
training

-0.63 0.55 1.25 0.264

Note. Only fixed effects are shown in this table. The and p values for each predictor were𝜒2(1)

obtained via the significance testing procedure described in Section 2.3.2.2.4; p values are not

adjusted for multiple comparisons.


