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ABSTRACT 

 

Measuring the impact that domain knowledge in the form of simple ontology structures has on 

predictive modelling processes in the context of academic library virtual reference services. 

 

Jeremy Walker 

 

Using transcripts from Kansas State University Libraries’ (KSUL) virtual reference services (VRS), an 
experimental design was created to investigate the value and impact of different natural language 
processing techniques in the context of creating predictive models.  Models were created to use only the 
first few word tokens supplied by VRS patrons and predict if the overall VRS interaction would be labelled 
as “easy” or “hard” by VRS operators.  The experimental design incorporated machine learning methods 
(LDA and Doc2Vec), rules-based text processing (TF-IDF), and ontology structures as parameters in the 
modelling processes.  With a specific focus on ontology structures, experimental results indicate that 
incorporating domain knowledge into predictive modelling processes contributes in significant and 
positive ways to overall model performance.  Results also demonstrated that machine learning processes 
like Doc2Vec are capable of capturing meaningful representations of domain knowledge in abstract 
quantified vectors. 
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INTRODUCTION 
 

Project Context 

At Kansas State University Libraries (KSUL), a team of librarians, staff, and student employees 

provide library patrons and visitors with a wide variety of services and support referred to collectively as 

“Ask-A-Librarian”.  One component of these services is a virtual reference service (VRS) in which library 

patrons use an instant messenger platform to chat synchronously with library staff.  As a component of 

the VRS operations, KSUL maintains a database of almost every VRS transcript and accompanying 

metadata labels supplied by the VRS operator.  For all service interactions, virtual and otherwise, library 

staff record basic information about the service interaction and assign a variety of classification labels and 

a ‘difficulty’ rating.  In the case of chat and email services, the operator copies the full text of the entire 

interaction into the database (see Figure 1). 

 

Figure 1: VRS Operations Flowchart 

With respect to VRS at KSUL, the database of transcripts and associated metadata constitutes a 

robust and rich dataset that can be leveraged to enhance future library services.  Through the application 

of natural language processing techniques, it should be possible to develop a predictive model that uses 

only the initial few words or text strings provided by VRS patrons to reliably predict the final ‘difficulty’ 

rating, or an approximation thereof, before the VRS interaction fully commences.  Hypothetically, such a 
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model could then be incorporated into KSUL’s VRS operations by interceding every incoming VRS patron’s 

inquiry, making a prediction, and then routing the patron to an appropriate VRS operator (see Figure 2). 

 

Figure 2: VRS Operation Flowchart, Including Predictive Model 

Research Objective 

Although the full implementation of the predictive/prescriptive modelling process described 

above would necessarily entail a myriad of strategic business decisions and engineering challenges, those 

issues are not the focus of this research project.  Instead, the primary focus is centered on the evaluation 

of modelling processes and parameters used to process raw VRS transcripts, represent the data in 

meaningful ways using both rules-based methods and machine learning algorithms, and using said 

representation to generate predictions. 

Specifically, a key modelling process that will be investigated is the incorporation of domain 

knowledge, in the form of simple ontological structures, into the modelling process as a form of manual 

feature engineering.  Although automated machine learning processes are at the cutting edge of natural 

language processing, many of these tools require datasets that are immensely larger than the KSUL 

dataset.  Additionally, as noted by Craig Boman in a report commissioned by the American Library 

Association, “…few libraries and fewer librarians are prepared to take full advantage of the benefits of 

using AI” (Boman, 2019, p.21).  In this context, it may prove critical to enable librarians, who may not be 
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experts in the latest trends in machine learning and artificial intelligence, to incorporate their domain 

knowledge directly into the modelling process. 

Therefore, although this project will evaluate the value and impact of a variety of modelling 

processes and parameters, the primary goal of this project is to determine the extent to which the 

incorporation of domain knowledge, as reflected in the structure and use of a simple ontology, into the 

modelling and representation of VRS transcript data has a recognizable and significant impact on 

predictive modelling processes.  Or, stated formally in terms of null and alternative hypotheses: 

H0 : The impact of incorporating ontology labels on the performance metric of a predictive 

modelling process is not significantly different from zero. 

H1 : The impact of incorporating ontology labels on the performance metric of a predictive 

modelling process is significantly different from zero. 

Brief Dataset Overview 

The original KSUL dataset provided by the services manager at KSUL contains 15,690 VRS records.  

However, due to inconsistencies with how VRS operators record and submit data, and due to technical 

malfunctions in the VRS system that occasionally result in loss of data, not all records are fully useable for 

this project.  Some records are duplicates, some records do not contain original VRS transcripts, and some 

records have data that are so extensively edited, redacted, or modified as to render the record unusable.  

Following extensive data cleaning and preparation, 14,604 records with transcripts remained and were 

useable for the first stages of analysis and modelling.  The VRS transcripts contained in the KSUL dataset 

cover a span of five years, ranging from 2013 to 2018.  For details regarding the pre-processing and 

exploratory analysis of the KSUL dataset, see section: DATA PREPARATION & EXPLORATION. 
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User Privacy, Data Availability & IRB Approval 

 A critical administrative note with respect to this project concerns VRS patrons’ rights to privacy 

and expectations of anonymity.  By default, the KSUL VRS system does not collect personally identifying 

information on patrons.  The data preparation stages of this project were designed to ensure that any 

incidental personally identifying information provided by the patron was fully redacted from both the 

raw data and representations built upon said data.  However, because it is not possible to fully 

guarantee that 100% of identifiable VRS data has been expunged from the raw data, the data and 

models for this project will not be shared openly. 

 Institutional Review Board (IRB) review was sought at Northwestern University.  The university’s 

IRB office determined this research project to not be classified as “Human Research” and did not require 

further or ongoing review. The Northwestern University IRB-ID for this project is STU00207931. 
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LITERATURE REVIEW 

VRS TRANSCRIPT ANALYSES 

Qualitative Coding & Operator Behaviors 

The vast majority of research conducted by libraries and librarians on VRS transcripts has been 

inferential and qualitative in nature.  In studies by Ward (2003); Burger et al. (2009); Valentine and Moss 

(2017), the researchers evaluated operator behavior and communication style with respect to established 

service guidelines like RUSA’s (Reference and User Services Association) “Guidelines for Behavioral 

Performance of Reference and Information Service Providers” (RUSA, 2008b).  In other studies, such as 

those by Radford (2006); Meert and Given (2009); Koshik and Okazawa (2012); and Baumgart et al. (2016), 

researchers developed their own standards and coding schema for coding and evaluating operator 

behavior and communication. 

In each of the studies above, librarians were directly responsible for labelling and evaluating 

transcripts with no external validation from patrons.  Although this is a common trend in the research 

pertaining to virtual reference services, other studies have included analysis and data gathered from 

external parties. In both Waugh (2013) and Jacoby et al. (2016), researchers incorporated patron feedback 

and assessment into their evaluation of chat transcripts.  However, like with the other studies, the 

researchers were primarily focused on the relationship between VRS quality and the choices operators 

made as they interacted with library patrons. 

Based on the preponderance of literature surrounding the coding and evaluation of virtual 

reference transcripts based on behaviors, chat transcripts represent a potentially rich source of data for 

creating predictive models that can identify and encode operator behaviors.  There is evidence that this 

application of natural language processing already exists in the context of mental health counseling and 
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support (Althoff, Clark, & Leskovec, 2016).  Unfortunately, this approach is not possible with the KSUL 

dataset in its current form since it lacks sufficient qualitative and evaluative labels for the purposes of 

building models around operator and patron behaviors. 

Qualitative Coding & User Behavior 

Other research into VRS has focused on the core concepts and topics that manifest from patron 

behavior throughout VRS interactions.  For example, in one study, researchers identified broad categories 

of question-types that patrons brought to VRS interactions (Morais & Sampson, 2010).  In another 

example, librarian researchers analyzed chat transcripts for the purposes of evaluating library website 

usability and patrons’ perceptions of library resources (Powers, Shedd, & Hill, 2011).  In both studies, 

analyses relied heavily on subjective, qualitative coding. 

Although somewhat dated now, further and significantly more robust evidence of the qualitative 

and inferential nature of VRS research is provided by a systematic review from 2011 in which the authors 

surveyed 59 documents containing an aggregate of 149 research questions  (Matteson, Salamon, & 

Brewster, 2011).   

Distinguishing Among Categories of Chat Operators 

Another vein of research pertaining to reference services, and VRS in particular, is the evaluation 

and analysis of discrete categories of VRS operators.  “Librarians”, “Paraprofessionals”, “Assistants”, 

“Student Assistants” and many appropriate synonyms for the previous terms are used to categorize 

different types of VRS operators with respect to varying notions of cost, skill, and function within a library’s 

operations.  Definitions and distinctions are different in different studies and different institutions, but a 

common theme in the literature is that these differences present both challenges and opportunities for 

managing VRS. 
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One common topic that emerges in the literature is issues surrounding VRS operators’ referral of 

patrons to other operators.  Bracke et al. (2007); Fuller and Dryden (2015); and Maloney and Kemp (2015) 

all describe challenges associated with VRS operators consistently, competently, and quickly referring 

patrons to operators.  These referrals are often framed in terms of patrons being forwarded from less 

specialized to more specialized operators, or from non-Librarians to librarians.  King and Christensen-Lee 

(2014) discuss these issues in the context of distinguishing between “full-time” and “part-time” reference 

librarians.   

The starkest research concerning different types of VRS operators pertains to the use of 

undergraduate student employees as VRS operators in academic libraries.  In a study by Bravender et al. 

(2011), the researchers argue that the majority of analyzed VRS interactions do not require fully skilled 

librarians and that student operators are capable of fulfilling service expectations. They emphasize that 

use of students is more cost effective than use of librarians.  In research conducted by Lux and Rich (2016) 

conclude that although student employees can provide excellent VRS service if given proper training, they 

are notably deficient in referring patrons to more specialized or appropriate operators.  This is further 

confirmed by research conducted by Keyes and Dworak (2017) in which the authors conclude that 

although students are able to provide high quality VRS service, there is a need for ongoing training 

regarding referring patrons to other operators.  One critical implication of Lux and Rich (2016) and Keyes 

and Dworak’s (2017) research is that there may be immense value to be gained from the development 

and implementation of predictive models which can automatically refer and route incoming VRS inquiries 

to appropriate operators. 

 



 
 

14 
 
ARTIFICIAL INTELLIGENCE IN LIBRARIES AND VRS 

Machine Learning Use in Libraries and VRS 

 As is the case with many other industries and professions, artificial intelligence and machine 

learning are topics that are increasingly salient in the context of library services and operations.  One 

central piece of evidence comes from a 2019 report from the American Library Association titled Artificial 

Intelligence and Machine Learning in Libraries (Boman, Kim, Yelton, & Griffey, 2019).  Throughout the 

report, section authors reported on projects, challenges, and movements within the library profession.  

Subjects included topic-modelling using LDA, generating document embedding using Doc2Vec to enhance 

information discovery platforms, ethics and privacy concerns underpinning modelling processes, and the 

creation of library-managed AI labs on university campuses. 

 Further evidence of growing library interest in machine learning is represented by the relatively 

new Projects in Artificial Intelligence Registry (PAIR) online repository hosted by the University of 

Oklahoma (University of Oklahoma Libraries, 2019a).  The PAIR repository, designed to be a community 

forum for sharing information about library-centric machine learning projects, does not have many 

projects listed.  However, two of the projects listed on the website are about the implementation of 

“chatbots” in the context of library VRS operations.  On the PAIR website, the two separate chatbot 

projects, one developed at the University of Oklahoma Libraries (OU-L) and the other at the University of 

California, Irvine Libraries (UCI-L), are described as being intended to automatically respond to and answer 

common, simply, and otherwise low-level patron questions in a VRS environment (University of Oklahoma 

Libraries, 2019b, 2019c). 

 Unfortunately, there appears to be little concrete modelling information provided about the 

underlying machine learning techniques and models employed in either of these projects.  For the OU-L 
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project, other than a public test interface, there is no publicly available code or project analysis available 

(University of Oklahoma Libraries, 2019c).  For the UCI-L project, the researchers’ chatbot was 

implemented using an automated live-chat tool called Program-O (Kane, 2019).  Although the 

documentation associated with Program-O is sparse and it is unclear from the documentation what, if any, 

artificial intelligence techniques are used to drive conversation, the core design of Program-O and the 

UCI-L’s implementation of the chatbot revolves around mapping common sets of questions to canned 

responses using Artificial Markup Language files (Kane, 2019; Program O, 2019).  This very closely 

resembles the structure of a shallow ontology. The generally positive results reported in Kane’s (2019) 

research regarding VRS service quality and characteristics indicate that there is value in incorporating 

domain knowledge into machine learning modelling processes involving VRS. 

Machine Learning Analysis of VRS 

To date, one of the only instances in which  machine learning algorithms have been used in the 

context of VRS comes from the 17th Annual Brick & Click Libraries Conference Proceeding.  In a conference 

presentation, Kohler (2017) shared a variety of use-cases for different natural language processing 

methods and techniques, and described how they could pertain to VRS.  Specifically, Kohler’s 

demonstration highlighted the use of various topic modelling techniques for topic extraction and the use 

of standalone sentiment libraries for evaluating sentiment within VRS transcripts.  Most importantly, the 

presentation included data and findings showing that the application of topic modelling algorithms could 

identify latent features that correlated with difficulty ratings (see ‘READ Scale’ in next section) provided 

by VRS operators (Kohler, 2017).  Although the information available from the conference proceedings is 

relatively shallow, this research indicates that the KSUL dataset may be well suited to developing 

predictive models built upon machine-learned data representations. 
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LIBRARY REFERENCE SERVICES METADATA & VARIABLES 

READ Scale 

Among the most intuitively valuable metadata available in the KSUL dataset are the READ Scale 

ratings that are assigned to most of the recorded transcripts.  The READ (Reference Effort Assessment 

Data) Scale was first introduced in 2007 by Gerlich and Berard and piloted at Carnegie Mellon University.  

The scale is a qualitative 6-point ordinal scale that was originally developed to supplement shallow 

quantitative measures of reference services by doing more than simply counting the number of service 

interactions at a library service point.  The goal of the READ Scale was to provide a better way to capture 

and record the skill, expertise, effort, and time expended by reference librarians for every individual 

interaction with library patrons. 

In a follow-up study, the same authors conducted a nation-wide (US) study of the viability and 

utility of using the READ Scale at a variety of different institutions.  Although the authors note that 

responses from librarians at testing institutions indicated a broad acceptance and interest in continuing 

to use the READ Scale, the direct feedback shared by the authors indicates that there are methodological 

challenges built into the scale.  For instance, the authors report that multiple respondents, both in survey 

and free-form responses, expressed that they struggled with understanding and normalizing the 

subjective thresholds that distinguish between different points on the scale (Gerlich & Berard, 2010).   

Overall, based on the research reports by Gerlich and Berard’s (2007; 2010) the READ ratings 

present in the KSUL dataset may be used as an effective proxy of “difficulty.” However, the validity and 

reliability of the measure is not perfect due to the subjectivity associated with each librarian’s qualitative 

assessment of individual reference interactions. 

Question Types 
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The second key set of metadata in the KSUL dataset that may be valuable to developing models 

is the Question Type field.  Although the KSUL dataset includes twelve distinct classifications within the 

Question Type field, those distinctions are largely localized to the needs of KSUL.  National organizations 

such as RUSA and ARL (Association of Research Libraries) define library service operations much more 

broadly into “reference” and “non-reference” classifications. 

According to RUSA, a division of the American Library Association, “reference transactions” are 

defined so as to exclude library service interactions that revolve around directional, circulation, policy, or 

technical library services and operations (RUSA, 2008a). Furthermore, the most recent ARL survey 

provides instructions that define “reference transactions” as “an information contact that involves the 

knowledge, use, recommendations, interpretation, or instruction in the use [or creation of] one or more 

information sources by a member of the library staff.”  The ARL definition explicitly excludes directional 

questions from being counted as “reference transactions” (ARL, 2019).  Although not explicitly defined, it 

can be inferred that the authors of the ARL document would also exclude technical questions pertaining 

to printers, scanners, and other equipment from inclusion in the “reference transaction” classification. 

In both instances, the RUSA and ARL binary definitions of “reference” and “non-reference” 

question classifications indicate that librarians perceive an intrinsic and valuable distinction between 

these two broad categories of patron interactions.  Although KSUL’s dataset includes significantly more 

granular classifications, the same trend is present (see Table 1).  For example, the “Reference” and 

“Research Consultation” question types in the original KSUL dataset are the only two categories that 

clearly connect to the ARL and RUSA definitions of “reference.”  The remaining question types in the KSUL 

dataset either clearly represent “non-reference” questions or are not clearly connected to either of the 

two broad categories.  For further details and definitions pertaining to question classification within the 

KSUL dataset, see DATA PREPARATION & EXPLORATION and METHODOLOGY sections. 
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Table 1: Question Types - Reference vs. Non-Reference 

 

TEXT PROCESSING AND UNSUPERVISED MACHINE LEARNING METHODS 

With any data analytics process, especially in natural language processing tasks, some of the first 

key steps revolve around how to transform, filter, and represent the raw data in a meaningful way for the 

purposes of prediction and classification. 

Common Text Processing Techniques 

There are a variety of common techniques for filtering and extracting relevant terms from raw 

text.  Weiss et al.’s text Fundamentals of predictive text mining (2015) provides robust overviews of these 

methods.  The most critical, and simple, methods involve eliminating words that are too frequent or too 

rare within a corpus.  Weiss et al. (2015) also argue that retaining only a small subset of several hundred 

of the most prominent terms is sufficient for most tasks.  Additionally, the authors note that in place of 

using raw frequency counts, weighted metrics like TF-IDF (“term frequency – inverse document 

Original KSUL Question 
Types

Question Type Grouping

BUILDING NON-REFERENCE

CIRCULATION NON-REFERENCE

COPYRIGHT NON-REFERENCE

DIRECTIONAL NON-REFERENCE

K-Rex UNCLEAR

KAPI UNCLEAR

MISC NON-REFERENCE

NEW PRAIRIE PRESS UNCLEAR

REFERENCE REFERENCE

RESEARCH CONSULTATION REFERENCE

RESERVES NON-REFERENCE

TECHNICAL NON-REFERENCE

QUESTION TYPES: REFERENCE VS. NON-REFERENCE



 
 

19 
 
frequency”) are valuable for conveying a sense of individual terms’ relative importance within a corpus.  

They contend that although multiple scaling formulations exist, the general principle leads to greater 

prominence being allocated to terms that are more discrepant and important within a corpus than 

otherwise highly frequent but irrelevant terms.  

The strongest sign of the value of these approaches is reflected in the fact that prominent text 

mining and natural language processing programming packages support these functions explicitly.  In 

python packages such as Scikit-Learn and Gensim, operations like finding term frequencies, reweighting 

terms, truncating term dictionaries, and eliminating predefined and custom “stop word” lists are a rote 

component of preprocessing functions (Pedregosa et al., 2011; Řehůřek & Sojka, 2010). 

Latent Dirichlet Allocation 

First introduced by Blei et al. (2003), latent dirichlet allocation (LDA) is a probabilistic model that 

generates topic-document and word-topic distributions given a fixed number of assumed latent topics.  

The authors argue that LDA, like latent semantic indexing (LSI), is effective as a dimension reduction 

technique, but better suited than LSI for representing the underlying semantics of natural language data 

(Blei, Ng, & Jordan, 2003).  The immense popularity of LDA as a topic modelling technique is evidenced by 

a recent survey conducted by Jelodar et al. (2018) in which the authors review over two hundred articles 

concerning different implementations and formulations of the original LDA model. 

Although LDA is primarily known for its power as an unsupervised latent feature modelling 

technique, the algorithm’s value as a dimensionality reduction technique also makes it useful for 

supervised learning models.  As noted by Chang et al. (2009), LDA-generated topic distributions that are 

not inherently interpretable by humans may serve as valuable representations of data for the purposes 

of prediction.  Use of LDA representations of data for training supervised models has been shown to be 
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effective in relationship to news, social media profiles, and criminal analysis (Al-Salemi, Ab Aziz, & Noah, 

2015; Liu, Wang, & Jiang, 2016; Wang, Gerber, & Brown, 2012).  And, directly related to KSUL’s dataset, 

Momtazi (2018) provides a recent example of LDA being used to enhance classification models in the 

context of online question-answer forums. 

Word2Vec and Doc2Vec 

Two other methods for generating unsupervised representations of natural language data are the 

Word2Vec and Doc2Vec neural network architectures.  Word2Vec, developed by researchers at Google, 

was designed as an efficient method for learning fixed-length vector representations of individual words 

that retained meaningful positioning relative to other semantically related words (Mikolov, Chen, Corrado, 

& Dean, 2013).  Expanding on this research, Doc2Vec was developed as a neural network architecture for 

learning fixed-length vector representations of sentences, paragraphs, and documents of variable length 

(Le & Mikolov, 2014). 

As with LDA, the Word2Vec and Doc2Vec algorithms have shown promising results as 

unsupervised learning techniques for creating word and document representations (‘embeddings’) that 

can enhance and improve performance in predictive and classification tasks.  Recent examples include 

applications in clinical narratives, genetics research, and news analysis (Lauren, Qu, Zhang, & Lendasse, 

2018; Oubounyt, Louadi, Tayara, & Chong, 2018; Sinoara, Camacho-Collados, Rossi, Navigli, & Rezende, 

2019). 

Domain Knowledge & Ontologies 

Beyond purely rules-based and algorithmic approaches to transforming and representing 

language data, there is extensive and commonly understood value in incorporating concrete domain 

knowledge into natural language processing tasks.  For instance, multiple approaches for incorporating 
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metadata tags and labels into LDA models have been proposed (Ramage, Hall, Nallapati, & Manning, 2009; 

Zhu, Blei, & Lafferty, 2006).  Furthermore, researchers have developed algorithms and approaches to 

generating ontologies, pseudo-ontologies, and otherwise structured graph-representations of underlying 

textual data (Ibrahim & Ahmad, 2010; Kozareva, 2014; Tanev, 2014).  Additionally, there are multiple 

methods available for visualizing ontological structures (Katifori, Halatsis, Lepouras, Vassilakis, & 

Giannopoulou, 2007). 

Although these and other advanced methods are available, any predictive model built upon the 

KSUL dataset is better suited to simpler and more foundational ontological structures and assessment.  A 

technical report from Stanford University, Ontology Development 101: A Guide to Creating Your First 

Ontology, represents a starting point for amateurs (in this case, librarians) seeking to create ontologies 

(Noy & McGuinness, 2001).  The report includes thorough explanations of how to understand the core 

components of ontological structures and how to approach creating ontologies from scratch.  When 

combined with qualitative coding efforts already present in research concerning VRS, the formal definition 

and incorporation of ontologies may aide in the development of predictive models involving VRS 

transcripts.  Evidence of the utility of ontologies in predictive modelling is found in customer service 

research (Iwashita, Shimogawa, & Nishimatsu, 2011). 

The evaluation of ontological structures and reasoning in the modelling process is critical to 

understanding if ontological concepts are being captured or represented in the data.  One research paper 

in particular provides grounded methods for evaluating the presence, strength, and representation of 

ontological nodes and domain-knowledge within text and document embeddings (Alshargi, Shekarpour, 

Soru, Sheth, & Quasthoff, 2018).  Specifically, the authors’ discussion of a ‘Categorization metric’ as a 

method for evaluating document embeddings with respect to ontology concepts should be extremely 

useful for evaluating the overall quality of VRS data representations (Alshargi et al., 2018). 
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DATA PREPARATION & EXPLORATION 

TRANSFORMING AND PREPARING RAW DATA 

Data Protection & Shared Examples 

All examples of raw or transformed data drawn from the KSUL dataset presented in this report 

are both A) individual representations of processes and analyses used in this research and B) presented 

based on the condition that they do not contain any form of personally identifying information.  Further 

examples from the whole dataset are unavailable to general audiences due to the small, but real, risk that 

personally identifiable information is still present in the data. 

Data Source Wrangling and Parsing 

All of the data in the KSUL dataset was extracted from KSUL’s instance of a reference services 

tracking database; LibAnalytics.  As part of KSUL’s public service operations, all library employees are 

expected to record a variety of metadata and descriptive information about every single interaction they 

have with library patrons that is not otherwise recorded by the library’s circulation software.  In the 

context of VRS, KSUL’s operators are expected to copy and paste VRS transcripts in their entirety into 

LibAnalytics along with accompanying metadata.  

Consequently, one challenge posed by how the KSUL dataset was developed is that there is a 

significant amount of operator error manifest in the dataset.  Specifically, because VRS operators must 

manually copy and paste transcripts into LibAnalytics, and not all operators record data in the exact same 

way, it was necessary to spend a significant amount of time wrangling the data into a consolidated format. 

Once the data was sufficiently organized, raw transcript data would appear as a single large string (see 

Figure 3).  After a variety of parsing operations, the transcript was formatted into programmatic lists of 
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lists representing the timestamp, patron or operator label, and the accompanying language data (see 

Figure 4).  All of the patron’s supplied text was then assembled into a single sequential string which would 

form the base input for predictive modelling (see Figure 5). 

Figure 3: Raw VRS Transcript 

9:00 6476885001398391168263262 I'm looking for a 19th century article about women fashion in France but cant seem to find 
anything? Do you have any good links? 9:00 me hello 9:01 me Hmm...I have a few ideas! 9:01 me Are you looking for articles 
that are about 19th centruy french fashion OR articles written in the 19th century about french fashion? (the former will 
definitely be easier I think) 9:02 6476885001398391168263262 I am looking for scholarly articles about 19th century French 
fashon 9:02 6476885001398391168263262 Mainly women 9:04 me Ok, let me see what I can find! 9:04 
6476885001398391168263262 Thanks you rock! 9:04 me I am going to start with our Search It tool. Also, we have some fashion 
databases as well http://apps.lib.k-state.edu/databases/category/human-ecology/apparel-textiles/ 9:04 me Have you had a 
chance to try either of those sources? 9:05 6476885001398391168263262 Yeah I have tried.. I am no sure if im too specific or 
not specific enough. 9:06 me Gotcha. Also, do they have to be scholarly articles? Would library books work as well? 9:06 
6476885001398391168263262 Yes, I believe so. 9:07 me I found one promising book in Search It "Accessories to modernity : 
fashion and the feminine in nineteenth-century France" 9:07 6476885001398391168263262 My assignment details just say two 
scholarly sources. 9:09 me Ok, I certianly think many of the books in the library qualify as "scholarly" Obviously some will not 
(ex. Batman comics), but I think you should be able to identify if a book is a scholarly source (they will have lots of references, 
detailed info, neutral tone, etc...) 9:10 me Here is a quick video showing how I found some books.... 9:10 me 
http://screencast.com/t/s8gDSF1fm5C 9:12 6476885001398391168263262 Okay, Thank you so much! 9:12 me In that video I 
highlighted the call number for the book 9:12 me Call numbers are ordered by subject, so if you can find that book, you should 
be able to find many other relevant books right next to it 9:12 me Also, for research articles, I think the "Berg Fashion Library" 
databases may be another good place to search 9:13 6476885001398391168263262 Thank you, I appreciate it. 9:14 me Does 
that give you a good starting point? 9:16 6476885001398391168263262 Yes, Thanks! 9:17 me Great! Please don't hesitate to 
come back if you have more questions 9:26 6476885001398391168263262 Awesome thank you! 
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['9:00', 'patron', "I'm looking for a 19th century article about women fashion in France but cant seem to find anything? Do you 
have any good links?"] 

['9:00', 'staff', 'hello'] 

['9:01', 'staff', 'Hmm...I have a few ideas!'] 

['9:01', 'staff', 'Are you looking for articles that are about 19th centruy french fashion OR articles written in the 19th century 
about french fashion? (the former will definitely be easier I think)'] 

['9:02', 'patron', 'I am looking for scholarly articles about 19th century French fashon'] 

['9:02', 'patron', 'Mainly women'] 

['9:04', 'staff', 'Ok, let me see what I can find!'] 

['9:04', 'patron', 'Thanks you rock!'] 

['9:04', 'staff', 'I am going to start with our Search It tool. Also, we have some fashion databases as well http://apps.lib.k-
state.edu/databases/category/human-ecology/apparel-textiles/'] 

['9:04', 'staff', 'Have you had a chance to try either of those sources?'] 

['9:05', 'patron', 'Yeah I have tried.. I am no sure if im too specific or not specific enough.'] 

['9:06', 'staff', 'Gotcha. Also, do they have to be scholarly articles? Would library books work as well?'] 

['9:06', 'patron', 'Yes, I believe so.'] 

['9:07', 'staff', 'I found one promising book in Search It "Accessories to modernity : fashion and the feminine in nineteenth-
century France"'] 

['9:07', 'patron', 'My assignment details just say two scholarly sources.'] 

['9:09', 'staff', 'Ok, I certianly think many of the books in the library qualify as "scholarly" Obviously some will not (ex. Batman 
comics), but I think you should be able to identify if a book is a scholarly source (they will have lots of references, detailed info, 
neutral tone, etc...)'] 

['9:10', 'staff', 'Here is a quick video showing how I found some books....'] 

['9:10', 'staff', 'http://screencast.com/t/s8gDSF1fm5C'] 

['9:12', 'patron', 'Okay, Thank you so much!'] 

['9:12', 'staff', 'In that video I highlighted the call number for the book'] 

['9:12', 'staff', 'Call numbers are ordered by subject, so if you can find that book, you should be able to find many other relevant 
books right next to it'] 

['9:12', 'staff', 'Also, for research articles, I think the "Berg Fashion Library" databases may be another good place to search'] 

['9:13', 'patron', 'Thank you, I appreciate it.'] 

['9:14', 'staff', 'Does that give you a good starting point?'] 

['9:16', 'patron', 'Yes, Thanks!'] 

['9:17', 'staff', "Great! Please don't hesitate to come back if you have more questions"] 

['9:26', 'patron', 'Awesome thank you!'] 

Figure 4: Parsed VRS Transcript 

http://apps.lib.k-state.edu/databases/category/human-ecology/apparel-textiles/'%5d
http://apps.lib.k-state.edu/databases/category/human-ecology/apparel-textiles/'%5d
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Data Redaction 

As a core ethical component of research involving KSUL’s dataset, efforts were made to redact 

any personally identifiable information remaining in the VRS transcripts.  For example, for all instances in 

which a patron or operator stated, “my name is ____“, the subsequent space-delimited string of text was 

replaced with “nameredacted”.  The same policy resulted in email addresses being replaced with 

“emailredacted”.  In many instances, operators used common strings like “xxx” and “***” to redact 

personally identifying information while they were recording the VRS transcript in LibAnalytics.  These 

instances were also replaced with a unifying string: “redactedinfo”.   

Additionally, system-generated noise was fully redacted from the transcripts and not replaced 

with any strings or tokens.  For example, the VRS system used at KSUL prints a variety of messages directly 

into the chat interface and these strings are often included in the operators’ submissions into LibAnalytics.  

Examples of system-generated text include “…has left the conversation”, “transfer from…”, and 

“answered by…”.  When these statements are system-generated and properly detected within the 

transcript, they carry zero value for any form of analysis.  In order to reduce noise present in the data, 

these strings were removed entirely. 

Sample Removal 

After significant effort spent preparing and organizing the KSUL dataset, further inspections of the 

data revealed that 1,083 samples needed to be removed from the study.  Multiple problems manifest that 

led to samples not being included in the final dataset: 

I'm looking for a 19th century article about women fashion in France but cant seem to find anything? Do you have any good 
links? I am looking for scholarly articles about 19th century French fashon Mainly women Thanks you rock! Yeah I have tried.. I 
am no sure if im too specific or not specific enough. Yes, I believe so. My assignment details just say two scholarly sources. 
Okay, Thank you so much! Thank you, I appreciate it. Yes, Thanks! Awesome thank you! 

Figure 5: Full patron-supplied text 
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• Duplicate samples/records were removed. 

• Samples in which the full transcript was not available were removed. 

• Samples that did not clearly distinguish between raw transcripts and operator annotations were 

removed. 

• Samples that were so heavily edited that they could not be parsed were removed. 

• Samples that reflected operators using the VRS system to communicate internally were removed. 

Some of the samples that were removed from the dataset were identified manually upon close 

inspection of the raw data.  Other samples were identified programmatically. 

 

All of the processes and scripting used to organize and modify individual samples in the KSUL dataset are 

documented in APPENDIX I – DATA PREPARATION. 

 

HIGH-LEVEL DATA EXPLORATION 

READ Scale Rating 

At the end of every VRS interaction with patrons, KSUL’s VRS operators are expected to label each 

interaction with a READ score based on the scale developed by Gerlich & Berard (2007).  The scale is a 

qualitative ordinal scale ranging from “1” representing the easiest questions to “6” representing the most 

difficult questions.  From the dataset, 2,690 (18%) are not labelled with a READ scale rating.  Although 

unlabeled VRS transcripts could not be used for validating any supervised learning, the unlabeled VRS 

transcripts themselves could still contribute to unsupervised learning processes that would help develop 
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representations of the data.  The following table and figure provides a high-level snapshot of the 

distribution of READ Scale ratings present in the KSUL dataset (see Table 1 and Figure 6). 

 

 

Table 2: READ Scale Rating by Count of VRS Transcripts 

 

 

Figure 6: READ Scale Rating by Count – Plot 

Rating Count

1 3355

2 5431

3 2532

4 493

5 89

6 17

Unknown 2690

TOTAL 14607

READ Scale Ratings
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Question Types 

The other primary label that KSUL’s VRS operators are expected to provide for each interaction is 

the “Question Type” category.  KSUL’s service operators are expected to follow the definitions established 

by service managers when recording patron interactions in LibAnalytics (see Table 2).  Cursory review of 

VRS transcript counts and labels shows an extremely uneven distribution of “Question Type” 

classifications.  For instance, the “Reference” label represents approximately 66% of the entire KSUL 

dataset whereas niche classifications like “KAPI” and “NewPrairiePress” each represent a small fraction of 

a percent of the total dataset (see Table 3 and Figure 7). 

 

Table 3: Question Type Defintions 
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Table 4: Question Type by Count 

 

Figure 7: Question Type by Count – Plot 

Type Count

Reference 9773

Technical 1318

Misc 1246

Building 959

Circulation 659

Directional 308

Reserves 155

ResearchConsultation 80

Unknown 63

KREx 16

Copyright 14

NewPrairiePress 9

KAPI 7

TOTAL 14607

Question Type
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READ Scale Ratings x Question Types 

Although the distributions presented by the aggregate READ Scale ratings and Question Type 

classifications are heavily skewed and uneven, respectively, cross tabulation of these two key pieces of 

metadata from the KSUL dataset reveals that the data may lend itself well to predictive modelling 

applications.  Inspecting the distribution of READ Scale ratings within each Question Type category, slight 

patterns being to emerge (see Table 4, Table 5, and Figure 8).  “Reference” questions are the only category 

with sizeable proportions of READ Scale ratings above 2.  In contrast, “Building”, “Directional”, and “Misc” 

questions are markedly skewed in favor of READ Scale ratings of 1. 

These patterns echo the results identified by Kohler’s (2017).  Her research noted that once VRS 

transcripts had been decomposed into latent-feature sets, the latent features (“topics”) closely tracked 

with different READ Scale ratings (Kohler, 2017).  Even though the Question Type and READ Scale ratings 

both represent post-hoc qualitative labels, patterns that suggest different types of VRS interactions are 

correlated with different READ Scale ratings suggest that the underlying VRS transcripts may contain data 

signals that can be quantified, represented, and predicted in reliable ways. 
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Table 5: READ Scale Ratings vs. Question Type by Count 

 

Table 6: READ Scale Ratings vs. Question Type by Row-wise Proportions 
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Figure 8: Select READ Scale Rating vs. Question Type Plots 

Patron Tokens 

The natural language data present in the KSUL dataset’s VRS transcripts offer an incredible depth 

of both challenges and opportunities for the purposes of developing predictive models.  After numerous 

data explorations, two key outcomes emerged. 

Even with strict text-processing rules, the underlying data is still likely to contain significant 

quantities of statistical noise that will erode the quality of any modelling structures that are built upon 

the data.  For example, the distribution of the quantity of natural language data supplied by individual 

patrons in individual interactions is heavily skewed.  The most verbose patron’s interaction contains 1061 

space-delimited tokens, the least verbose patron’s transcript contains a single token, and the average 

number of tokens is approximately 73 (see Figure 9).   



 
 

33 
 

    

For the purposes of predictive modelling in this context, all of the patron-supplied text was 

truncated to only contain the first ten or twenty tokens (see METHODOLOGY section).  Therefore, for the 

purposes of exploring the data, the first twenty tokens of patron-supplied text were sufficient in most 

cases for examining the data and looking for patterns.  Although truncating the data eliminates noise and 

detracting data from exceptionally long VRS transcripts, exceptionally short VRS transcripts present a 

different form of noisy and challenging data.  In the two following examples, one patron simply states a 

call-number (physical location code for library materials) without seeming to engage in any further 

conversation and the other patron is potentially trolling or pranking the VRS service (see Figure 10).  While 

both examples provide data of marginal value, neither can be unilaterally viewed as useless for predictive 

modeling since they both represent authentic VRS patron engagement.  These and other similar 

Observations 14604

Average Tokens 72.70

Std.Dev 65.84

Minimum Tokens 1

25% 32

50% 54

75% 91

Maximum Tokens 1061

Descriptive Info: Patron Text

Figure 9: Distribution of Patron Supplied Tokens 
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transcripts were retained in the dataset and might be a source of statistical noise when the data are input 

into any models. 

In addition to a few exceptionally short or uninformative VRS transcripts, the dataset is dominated 

by tokens that do not necessarily carry much semantic or discriminative value on their own.  When VRS 

transcripts are tokenized and vectorized as a bag-of-words, these issues are illuminated fully.   In Table 6, 

SET#1 shows the 30 most frequently used terms from the first 20 tokens supplied by patrons in their VRS 

interactions.  Most of those 30 terms represent the most commonly used words in the English language 

and are not by themselves helpful in understanding the conceptual contents of a VRS transcript. 

For the subsequent sets (SET#2, SET#3, SET#4, SET#5), the changes in the size of the token dictionary 

(‘Observation Count’) and descriptive statistics are highly sensitive to the rules used to govern which 

individual words/terms are included or excluded from the data.  The ‘Selection Parameters’ in Table 6 are 

defined as such: 

• Minimum Token Size: the minimum character-length required for any given term to be counted. 

• Ngram: Whether to look at terms individually, in pairs, or large combinations for tokenizing. 

Short Transcript Example #1 

 ['12:22', 'patron', 'P96.742.T89 2010'] 

['12:22', 'staff', 'Hi!'] 

['12:22', 'staff', 'Are you wanted to know where this is located?'] 

 

Short Transcript Example #2 

['6:22', 'patron', 'do you have condoms?'] 

['6:22', 'staff', "Hi! We sure don't."] 

['6:23', 'patron', ''] 

Figure 10: Parsed VRS Transcript 
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• Max Doc Frequency: The maximum percentage of VRS transcripts in which a token may be present 

(i.e., document frequency). 

• Min Doc Frequency: The minimum count of VRS transcripts in which a token may be present. 

• Metric: Whether to use raw counts or TF-IDF weightings (Rajaraman & Ullman, 2011). 

Strictly looking at the first 30 terms in any given list does not necessarily indicate that high-value words 

further down in the frequency ranking will not have a strong or positive impact on any part of the 

modelling process.  However, a high preponderance of tokens that do not meaningfully contribute to 

understanding or representing the data may lead to excessively high-dimensional datasets and models 

that are overfit to noisy and irrelevant data. 

With the application of more discriminatory rulesets, as represented by SET#3 and SET#4, the high-

end of the aggregate token lists show that terms like “book” and “article” receive significantly more weight 

than they do in SET#1 and SET#2.  Further, the subtle differences in rank-order between SET#3 and SET#4 

suggest that using raw counts and TF-IDF metrics produce slightly different lists of rank-ordered tokens.  

If any processing rules were to be imposed later on in the modelling process, this finding demonstrates 

that simply using one metric to justify how the KSUL dataset is truncated may not sufficiently capture the 

most valuable tokens for modelling purposes. 

Importantly, SET#5 demonstrates the problem with attempting to use word combinations, or N-grams, 

as tokenized data.  Although using N-grams of varying size offers the potential to better represent textual 

content by maintaining syntactic order, using large N-grams like those in SET#5 results in a massive 

increase in dimensionality and sparsity in the dataset.  For SET#5 in particular, the token dictionary is 

approximately twice the size of the token dictionary of SET#1, yet the total count of the highest rank token 

in SET#5 is only a small fraction of SET#1’s highest ranked token. 
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Table 7: Counts and Weighted Frequencies of Tokens across Sets 

While N-grams may not ultimately be the best choice for the purposes of data processing and 

representation for modelling, they can be extremely helpful in identifying common linguistic structures, 

which can then be used to inform the construction of ontologies and fixed representations of the data. 

In the KSUL dataset, one easy way to begin looking for patterns in the way library patrons chat in 

VRS environments is to simply pick keywords and start reading through small windows of adjacent text.  

In Figure 11, a simple script revealed the contexts in which the keyword “article” appears in patron-
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supplied text.  By reading through printouts like these, it is relatively easy to get a conceptual sense of the 

other vocabulary used by VRS patrons when discussing specific keywords and terms. 

 

Going one step further, using the same approach as before to identify high-frequency tokens, it is 

relatively easy to identify N-grams associated with target keywords.  In Table 7, a subset of the patron-

supplied text, itself a subset of the whole KSUL dataset, is identified by finding VRS transcripts that contain 

a specific keyword or string.  Then, the texts are tokenized into N-grams ranging from 3 to 10 combinations 

of space-delimited tokens, counted, and ranked according to total frequency across all relevant 

documents. 

Using this approach reveals that there are hundreds of observations of patrons using very consistent 

language to describe their needs in a VRS environment.  With respect to the keyword “article”, many 

common utterances appear: 

• “for an article” 

• “find an article” 

• “a journal article” 

ed in accessing the full-text articles of the Journal of green buil 

helo  im look for articles published in the Journal of  

i'm i need to look at journal articles i cant 

'm having a hard time finding articles that I want! I'm researching 

 I'm looking at the following article Journal of rheology volume54  

u I'm looking for 3 different articles, but it seems like I 

'm looking for a 19th century article about women fashion in France 

paper. I am trying to find an article that talks about Olympic Stad 

I finally found and article about grad school that I coul 

            
Figure 11: Sample VRS Transcripts Containing “article” 
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These common phrases all connect to a common theme: The patron is looking for an article to fulfill 

an information need.  For the keyword “floor”, patrons use terms like “3rd floor” and “third floor”; 

terminology which is conceptually identical but computationally distinct (see Table 7).  

 

 

Table 8: N-Gram Counts for Transcripts with Target Keyword 
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For most individual keywords and potential tokens, the exploratory process above should be 

relatively intuitive to anybody, regardless of their domain knowledge in libraries.  However, librarians with 

more domain knowledge can also use these approaches to identify and collate other terms and tokens 

that may be present in the dataset.  For example, when looking at the entire set of patron-supplied text 

data, URLs and call numbers (location codes for physical library materials) stand out as examples of text-

strings that are highly varied but may in aggregate represent common concepts. 

For instance, many patrons may inquire about how to find a book and share the specific call 

number they found in the library’s online catalog (see Table 8).  As individual identifiers, these call 

numbers are probably not meaningful for the purposes of describing a VRS transcript, but, in aggregate, 

they all represent a situation where a patron may already know about the existence of a specific item and 

may need directional assistance in finding the item.  Conceptually, this is different from a patron who has 

not already identified information sources and needs help searching for books in the first place. 

With respect to the URLs that patrons copy and paste into the VRS chat window, the same line of 

logic may apply (see Table 8).  Depending on how the raw texts are tokenized, URLs may be represented 

differently.  If the tokenization step separates strings using whitespaces, then URLs would be kept entirely 

intact.  If the tokenization step separates strings using whitespaces and non-alphanumeric characters (the 

default in Scikit-Learn), then URLs will be split into large lists of tokens.  In the latter case, it is conceivable 

that URLs with common roots and directory structures will contribute to the modelling process in a 

positive way.  However, it is just as likely that meaningful URL tokens will be excluded from any 

transformed dataset if the tokens are not prevalent enough.  In which case, it may be critical for a 

modelling process to include procedures for identifying the presence of URLs and manually inserting an 

engineered feature to represent that data.  A similar process may also be necessary for other common 

texts such as DOI numbers. 
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Table 9: High Frequency URLs and Call Numbers, Top 20 

Using these processes of inspecting keywords, terms, phrases, and N-grams, demonstrates the 

variety of ways that patrons’ linguistic patterns and preferred vocabulary can be identified within the KSUL 

dataset.  Although the underlying data can likely never be represented in a purely clean or tidy way, there 

are sizeable blocks of the data that lend themselves well to value-added feature engineering and data 

transformations.  In particular, the identified processes and patterns can serve as the foundation for 

constructing a simple ontological model which should, hypothetically, add value to the final 

representation of the data and to performance of machine learning models. 

 

All of the processes and scripting used to investigate and explore the KSUL dataset are documented in 

APPENDIX II – HIGH LEVEL DATA EXPLORATION. 
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METHODOLOGY 

In order to effectively test and evaluate whether the inclusion of ontology classes and domain 

knowledge into machine learning processes is valuable, an experimental design was constructed to 

systematically test many different modelling processes.  Beginning with a corpus of strings supplied by 

the VRS patrons (S), the raw data was processed through a series of modelling steps that altered and 

transformed the data, produced unsupervised learning models, trained a neural network binary classifier, 

and generated model performance metrics (see Figure 12).  This approach allowed for the direct 

comparison of every individual modelling process and analysis of the impact on model performance 

associated with different modelling parameters. 

 

Figure 12: Overall Modelling Process 
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SET RANDOM SEED 

For each model tested, several of the algorithms employed rely on some form of random 

initialization.  The models using LDA representations rely on randomly assigned topic-document and 

word-topic distributions.  The neural-net binary classifier and the models which used Doc2Vec for data 

representation require randomly initiated weight matrices.  In order to control these random elements, a 

random seed value was fixed at the beginning of each modelling process.  Furthermore, to evaluate 

whether model performance was a consequence of converging to sub-optimal local minima, all modelling 

processes were run using twenty different random seeds. 

• Options – 0, 1 … 19. 

TRUNCATE INPUT STRINGS 

Since the primary motivation behind these modelling processes is to develop predictive models, 

the patron-supplied strings were truncated.  When looking at the space-delimited number of tokens in all 

patron-supplied texts, the 25th-percentile of patron-supplied texts had 32 tokens.  Two arbitrary cutoffs 

were then set at 10 tokens and 20 tokens in length.  This reflects the reasoning that a useful predictive 

model needs to be able to “see” the first handful of tokens of a patron’s inquiry in order to make a 

prediction or classification.  However, the selection of cutoff points of 10 and 20 is arbitrary and other 

heuristic cutoffs may be more or less appropriate in different circumstances. 

• Option 1 – Limit patron-supplied strings (Stext) to first 10 space-delimited tokens. 

• Option 2 – Limit Stext to first 20 space-delimited tokens. 



 
 

43 
 
TRAINING AND TESTING DATA SPLIT 

The truncated strings from the KSUL dataset were then split into training and testing subsets.  Since the 

KSUL dataset, and all service operations in general, exist in a time-dependent public services context, the 

dataset was sorted chronologically.  The 2,000 most recent samples were held aside for testing and 

external validation, and all of the approximately 15,000 preceding samples were used for defining 

dictionaries, model training, and internal validation.  

DETECT AND LABEL ONTOLOGY CLASSES 

The primary goal of building an ontology for this dataset is to provide a robust, structured way to 

map predictable statements provided by patrons to known sets of questions, behaviors, and needs.  The 

hypothesis is that an ontology, if structured and implemented in a focused way, can enhance the 

predictive power of a model in a statistically significant way and provide library managers with a 

mechanism for ensuring that specialized domain knowledge is reflected within the model in a meaningful 

way. 

The instructions laid out in the guide authored by Noy and McGuinness (2001) served as the 

primary tool for developing an ontology for KSUL’s VRS services and dataset.  Although research such as 

that performed by Noy and McGuinness (2001); Ibrahim and Ahmad (2010); Kozareva (2014); and Tanev 

(2014) demonstrates a variety of ways in which sprawling and intricate ontologies can be developed, the 

predictive modelling objectives pertaining to the KSUL dataset do not warrant the development of a 

complex ontology. 

Instead, the ontology developed for the KSUL dataset is intentionally kept relatively shallow and 

simple.  This ensures that the ontology remains accessible to external readers and that it can be extended 

by other librarians in the future. 
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Once the ontology was finalized, patron-supplied strings (Strain , Stest) were scanned using regular-

expression (REGEX) scripts to detect and label manifestations of ontology class representations.  This 

produced matrices for both the training and testing data (Otrain , Otest) which one-hot encoded the absence 

or presence of every ontology super-class and core-class for every sample in the dataset.  There were 

three options available for using the ontology data within the modelling process.  These options represent 

the extent to which the detection of ontology sub-classes in the patron-supplied strings is incorporated 

into model training and prediction. 

• Option 1 – No ontology data is incorporated into modelling. 

• Option 2 – Ontology data pertaining only to core-classes is incorporated into modelling. 

• Option 3 – Ontology data pertaining to both core-classes and super-classes is incorporated into 

modelling. 

Define Ontology Structure 

In the context of producing predictive models for the KSUL dataset, developing an ontology’s core 

structure is relatively simple.  The ontological super-classes at the top of the hierarchy represent the target 

dependent variable used for the final stage of the predictive model: READ Scale ratings.  Alternative 

modelling processes could explore building ontologies tailored to different dependent variables (e.g., 

sentiment), but that is beyond the scope of this project.  Then, logically, the ontological sub-classes at the 

bottom of the hierarchy consist of the raw natural language strings supplied by VRS patrons.  Core-classes 

bridge the gap between the super-classes and sub-classes in the ontology’s hierarchy (see Figure 13). 
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Figure 13: Simple Ontology Hierarchy 

 Using Noy and McGuiness’ (2001) “combination approach” of building ontologies from the 

“middle” outwards, a few core-classes need to be identified.  As a starting point, common and predictable 

sets of questions and inquiries that librarians engage with are an intuitive place to begin building an 

ontology.  Experienced librarians may be able to develop an ontology based on a general awareness of 

the common questions presented by library patrons. 

On the extreme end of the spectrum, staff at library service desks are frequently asked simple 

questions like, “The stapler is broken, do you have another?” or “Where is the printer?”  The former 

exemplifies a category of questions that are so ubiquitous across institutions that that type of question 

has achieved a certain degree of ironic fame within academic libraries (Vance, 2013).  Questions like these 

form an easy starting point for defining core-classes that represent, conceptually, common groupings of 

questions that tend to rely on predictable terminology. 

Using “Where is the printer?” as an example, a core-class may be labelled as “Printing”.  Then, all 

sub-classes, representing raw text strings present in the patron-supplied messages, may be defined as the 

text strings and REGEX patterns that conceptually reflect the idea of a question relating to library printers.  
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The core-class may then be explicitly related to an intermediary or super-class.  Candidate super-classes 

for a core-class like “Printing” could be informed by the “Question Type” metadata labels already extant 

in the dataset.  These classes, in turn, could be mapped to a final super-class representing the READ Scale 

rating most commonly associated with a particular “Question Type” (see Figure 14). 

 

Figure 14: Ontology Development Process for "Printing" Core Class 

While this approach to developing an ontology was initially intuitive, problems emerged and 

required a reworking of how the ontology hierarchy was defined.  The first major problem was that 

although the “Question Type” labels were easily identified in the dataset and intuitively understood, each 

of the types did not connect cleanly with individual READ Scale ratings.  Second, while “Printing” may have 

been an intuitive concept to categorize within an ontology containing “Question Type” classes, other 

concepts that may have manifested from the raw string data in the sub-classes did not intrinsically map 

directly to any one particular “Question Type”.  For instance, a VRS patron who states “…trouble finding 

an article…” may be having technical difficulties with library databases (“Technical” question type) or not 

have the information literacy skills necessary to search library databases in general (“Reference” question 

type). Consequently, an ontology using READ Scale ratings and “Question Types” as class definitions is 
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prone to result in convoluted structures that are sub-optimal for both computer modelling and human 

attempts to extend or interpret the ontology (see Figure 15). 

 

Figure 15: Example of Fully Connected Ontology Using READ Scale Ratings and Question Type Classes 

 A simple approach to remedying these problems was to simply replace the many READ Scale 

ratings and “Question Type” classes with a unified set of binary super-classes: “EASIER” and “HARDER”.  

As core-classes and sub-classes were explored, refined, and defined, core-classes with an average READ 

Scale rating of less than 2.0 were mapped to “EASIER” and classes with average ratings greater than or 

equal to 2.0 were mapped to “HARDER” (see Figure 16). 

This approach did not guarantee that individual samples were exclusively tagged with “EASIER” 

or “HARDER” super-classes and some samples were tagged with both depending on the strings present in 

the raw data, how those strings were defined in sub-classes, and how those classes were mapped to core-

classes and super-classes.  Although this approach did not completely eliminate the ambiguity associated 

with the first ontology draft (Figure 15), the simplified structure more readily enabled the definition of 

sub-classes that could be mapped meaningfully to higher level classes in the ontology. 
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Figure 16: Example of Simplified Ontology Structure 

Explore and Define Ontology Classes 

 Once the overall ontology structure was in place, appropriate core-classes needed to be defined 

by iteratively exploring common strings and patterns present in the raw data, defining sub-classes in terms 

of substrings or REGEX patterns, and evaluating whether these patterns reliably detect concepts related 

to the concepts represented by the core-classes.  As already mentioned, librarian expertise and domain 

knowledge can be used to define many core-classes.  For both external observers and library specialists, 

inspiration for appropriate core-classes and sub-class definitions can also come from individual term and 

n-gram frequency counts.  The metadata and form-field options available to VRS operators can provide 

clues about the types of predictable, and therefore ontologically definable, patron-interactions that may 

manifest in the dataset (see Figure 17 and Figure 18).  Although this metadata was not ultimately useful 

for the purposes of developing an ontology structure or modelling in general, it provides suggestions for 

what types of patterns to look for in the raw text data. 
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Figure 17: KSUL LibAnalytics Submission Form, Emphasis: Question Type and Tags. 
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Figure 18: KSUL LibAnalytics Submission Form, Emphasis: Predefined entries. 

 As candidate core-classes and sub-classes were identified, testing to ensure that sub-class 

definitions consistently mapped to core-class concepts was a critical challenge.  Although it may be 

common to use stemmed version of words in some text modelling processes, the nature of the data in 

the KSUL dataset did not lend itself to this approach.  For example, although the core-class for “Printing” 

VRS interactions may intuitively depend on the word “print”, that particular term may identify false-

positives if defined as a sub-class of “Printing”.  The same processes used during the data exploration 

phase can be readily employed to investigate the utility and potential pitfalls of using any particular 

definition of a sub-class (see Figure 19). 

 

looking for the print copy of Marvelous Worlds 

am able to utilize the printing services at 

is there a color printer in the library 

Do we have a print copy of it in 

Figure 19: Sample VRS Transcripts Containing “print” 
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 In order to avoid conflicting and confounding sub-class definitions, core-classes were instead 

mapped to more robust sets of sub-class definitions that made use of REGEX patterns, unstemmed 

terminology, and unambiguous phrases and n-grams.  For this project, a limited number of core-classes 

were identified along with robust sub-class definitions for the purposes of creating and incorporating an 

ontology into the modelling processes.  However, in practice, the ontology could be readily extended to 

include more core-classes and different definitions for sub-classes as appropriate for different institutions. 

Table 9 provides a high-level overview of all super-classes and core-classes, and limited examples of sub-

class definitions.  

For full ontology structure and conceptual definition of core-classes, see APPENDIX III – ONTOLOGY 

STRUCTURE.  
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Table 10: Final Ontology Outline with Limited Sub-Classes Defined 
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Detect and Tag Ontology Classes 

 After developing and fully defining the ontology, all patron-supplied strings (Strain , Stest) were 

programmatically scanned using REGEX pattern searching to detect every individual sub-class.  If an 

individual sample contained a string matching a sub-class definition, then that sample was tagged with 

both the sub-class’ parent core-class and super-class.  Subsequently, two matrices were generated (Otrain , 

Otest) representing one-hot encoded representations for all samples.  Although it is possible that any given 

individual sample may have contained multiple instances of sub-classes that mapped to the same core-

class, or multiple core-classes that mapped to the same super-class, all duplications were ignored and all 

core-classes and super-classes were represented with binary 0/1 values. 

TOKENIZE, VECTORIZE, AND REDUCE DICTIONARY 

After patron-supplied strings were truncated and then processed for ontology-class detection, the 

strings were tokenized and vectorized, and represented in matrix form.  Then, depending on which 

modelling option was being tested, either all alphanumeric tokens were retained in the vectorized data 

or rules were applied to remove some alphanumeric tokens from the matrix.  Rules included removing 

tokens which did not meet a minimum character length, meet a minimum document frequency, or were 

not ranked highly enough according to counting and weighted tf-idf metrics.  The primary objective of 

applying these rules, rules which largely follow common text processing techniques, was to radically 

reduce the dimensionality and sparsity of data (Pedregosa et al., 2011; Weiss, Indurkhya, & Zhang, 2015). 

Following tokenization, all samples (Strain , Stest) were transformed into respective matrices (Ttrain , 

Ttest) in which each sample was represented by a dictionary-length vector of term counts.  The 

dimensionality of these matrices was samples x dictionary-length.  The size and contents of the dictionary 



 
 

54 
 
used to vectorize and count term frequencies for individual samples was dictated by the following 

modelling choices.  

• Option 1 – No truncation, unfiltered 

o Strings tokenized by all non-alphanumeric characters. 

o All vocabulary retained in dictionary. 

• Option 2 – Rule-based truncation and filtering of text tokens 

o Strings tokenized by all non-alphanumeric characters. 

o Only alphanumeric tokens with a minimum length of 3 characters retained. 

o Only tokens with a document-frequency greater than 2 retained. 

o Only the top 3000 tokens from either of the following lists retained: 

 Top 3000 tokens by total count frequency across all strings. 

 Top 3000 tokens by mean TF-IDF weighting across all strings. 

The following exemplifies how different processing techniques affected the tokenization and eventual 

vectorization of patron-supplied strings: 

• Raw string 

“hi where is P105 .V913 stack? which floor?” 

• Option 1 – Example: 

['hi', 'where', 'is', 'p105', 'v913', 'stack', 'which', 'floor'] 

• Option 2 – Example 

['where', 'stack', 'which', 'floor'] 
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TRAIN REPRESENTATION MODELS AND TRANSFORM DATA 

 Following the detection of ontology classes in the raw strings (Strain , Stest), the creation of ontology 

matrices (Otrain , Otest), and the tokenization and matrix representation of raw strings (Ttrain , Ttest), machine 

learning algorithms were used to ‘learn’ new representations of the data with reduced dimensionality.  In 

both cases, these algorithms transformed the bag-of-words matrices (Ttrain , Ttest) into their final matrix 

representations (Rtrain , Rtest).  Additionally, if prior steps in the modelling process called for the inclusion 

of ontology classes, the data contained in the ontology matrices (Otrain , Otest) were incorporated into the 

training of the machine learning algorithms and final representation of the data. 

• Options 1 – LDA Representation 

• Option 2 – Doc2Vec Representation 

Although both options are unsupervised learning methods for representing data, LDA and 

Doc2Vec require different approaches for incorporating fixed domain knowledge in the form of ontology 

classes into the data modelling and representation process.  Also, the LDA and Doc2Vec algorithms as 

implemented in a variety of programming packages can be tuned with a wide variety of hyper-parameters 

such as batch training sizes, learning rates, decay, sampling methods, and many more.  Since the purpose 

of this research was not to conduct an exhaustive grid-search to fine tune the parameters of individual 

models, most hyper-parameter settings were set to the default configuration in the Gensim 

implementation of both LDA and Doc2Vec unless otherwise noted. 

LDA Representation 

 The LDA algorithm, as introduced by Blei et al. (2003), requires the definition of three core hyper-

parameters: 𝛼𝛼,𝛽𝛽, and 𝑘𝑘.  The 𝛼𝛼 and 𝛽𝛽 parameters reflect the dirichlet distribution assumptions pertaining 

to the proportion of latent topics per document and the proportion of words per topic, respectively, and 
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𝑘𝑘 represents the imposed or assumed number of latent topics.  Iterative testing of LDA topic-models using 

the Ttrain revealed perplexity metrics indicating that k = 75 was a reasonable choice for the number of 

latent topics.  LDA topic-models trained on Ttrain exhibited a sudden decrease in perplexity indicating that 

at values above k = 75, the LDA model may have been overfitting the data (see Figure 20). 

 

Figure 20: Evaluation of LDA Models' Perplexity 

 Following the selection of a value of k=75, the values for 𝛼𝛼 and 𝛽𝛽  were both then defined as 

equaling  1
𝑘𝑘

 or approximately 0.013.  These parameters were selected to ensure that any given sample 

would be associated with a relatively small number of latent topic distributions (𝜃𝜃) and that each topic 

would consist of a relatively small proportion of words (w) (see Figure 21). 
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Figure 21: Blei et al., 2003 

 

Once the final LDA topic-model was trained, the tokenized datasets (Ttrain , Ttest) were transformed 

according to the topic-word distribution vectors, resulting in two latent topic matrices (Ltrain , Ltest) in which 

every sample was represented by a fixed-length vector of size k. 

Finally, when early modelling steps indicated that ontology classes need to be incorporated into 

modelling, then Ltrain and Otrain, and Ltest and Otest were concatenated into final representation matrices 

(Rtrain , Rtest).  Other research and development into LDA models includes methods for incorporating tags 

and domain knowledge directly into the machine learning processes (Ramage et al., 2009; Zhu et al., 2006).  

However, these approaches were deemed unwieldy in comparison to simply concatenating the data (see 

Figure 22). 
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Figure 22: Concatenation of LDA and Ontology Data into Final Representations 

Doc2Vec Representation 

 The Doc2Vec algorithm is a method for representing entire documents as fixed-length vectors.  

Every document, or sample in this case, is given a unique identifier and a random vector representation.  

Although randomly initiated, these vectors represent the weight matrices in a shallow neural network 

model.  In the original paper, the Google researchers present two different model formulations for 

inferring document vector representations: PV-DM (‘distributed memory’) and PV-DBOW (‘distributed 

bag of words’) (Le & Mikolov, 2014).  These document modelling processes are analogous to the CBOW 

and Skip-Gram model architectures for the Word2Vec algorithm (Mikolov et al., 2013). 

 Extensively testing the difference in these modelling architectures was beyond the scope of this 

project.  However, since the PV-DBOW model explicitly ignores word order, it is more directly comparable 

to the alternative LDA model.  Additionally, researchers have suggested that the PV-DBOW model (see 

Figure 23) outperforms the PV-DM model in a variety of tests (Lau & Baldwin, 2016). 
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Figure 23: Distributed Bag of Words version of Paragraph Vector (PV-DBOW) 

(Le & Mikolov, 2014) 

 The Gensim implementation of Doc2Vec also enables the training of what are described as “tags” 

in the Python package (Řehůřek & Sojka, 2010).  Therefore, in addition to training the neural network 

model to find vector representations of individual documents, the same process can be applied to 

aggregated labels.  For the purposes of this project, that means that data encoded in the Otrain could be 

integrated directly into the Doc2Vec algorithm’s learning process.  By default, the training stage of the 

Doc2Vec model learns vectors of weights, representing individual samples, and weights connecting the 

hidden layer of the neural network with the word-tokens in the output layer.  These vectors are learned 

in concert throughout training.  For this project, ontology class labels could also be incorporated into the 

training stage (see Figure 24).  Consequently, during training, the model was expected to produce a neural 

network model in which the weight-matrix connecting the hidden layer and the output layer adequately 

captured the relationships between samples with similar word distributions and samples with shared 

ontology labels. 

 Following training of the Doc2Vec model, the output weights were frozen.  At this stage, all of the 

training and testing samples (Ttrain , Ttest) were fed into the Doc2Vec model as unseen samples.  Vectors 

for each sample were randomly initialized and then inferred and updated over the course of 100 training 

iterations.  During this process, the only aspect of the Doc2Vec model that updated the individual samples’ 
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vector representation.  This process yielded final representation matrices for both training and testing 

samples (Rtrain and Rtest).  Each individual sample was represented by a fixed-length vector of 75 units.  This 

vector representation also reflected the size of the hidden layer in the Doc2Vec model. 

 The selection of 75-unit vectors was arbitrary and intended to make the representations 

generated by the Doc2Vec model comparable to the topic-model representations generated by the LDA 

model.  However, whereas the LDA model explicitly encoded ontology class labels by concatenating the 

LDA (Ltrain, Ltest) and ontology (Otrain, Otest) representations, the Doc2Vec models’ final vector 

representations of individual samples did not explicitly include ontology labels.  Instead, these labels were 

implicitly encoded in the vector representations as a consequence of how the Doc2Vec model was trained 

(see EXPERIMENTAL RESULTS section). 

 

Figure 24: PV-DBOW including training of ontology tag vectors 

DEFINE DEPENDENT VARIABLE AND TRAIN AND EVAULATE BINARY CLASSIFIER 

 After all of the raw text data were processed, tokenized, tagged, and transformed using 

LDA/Doc2Vec, the final vector representations were used to train and evaluate a binary classifier.  For the 

binary dependent variable, ordinal READ Scale ratings were split and converted into a binary 

representation.  Since earlier data exploration did not indicate an obvious breakpoint in the distribution 

T 

Ontology 
Tag 
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of READ Scale ratings, two different options were used to test different modelling processes.  Any samples 

in both the training and testing sets for which READ Scale ratings were unavailable were ignored. 

• Option 1 – READ Scale rating 1 labelled as “easy” (0) and READ Scale ratings 2, 3, 4, 5, & 6 labelled 

as “hard” (1)  

• Option 2 – READ Scale rating 1 & 2 labelled as “easy” (0) and READ Scale ratings 3, 4, 5, & 6 labelled 

as “hard” (1)  

 A shallow neural network classifier was then trained using the Rtrain data and associated easy/hard 

labels.  The model architecture consisted of an input layer, a single hidden layer with ten nodes, and a 

single-node sigmoid activated output layer.  This neural network model was then used to generate 

probability predictions for each training and testing sample’s R vector represenation.  The neural network 

classifier was used due to its relative computational efficiency and ability to capture non-linear 

relationships manifest in the data.  Alternative modelling choices could have made use of support vector 

machines or non-linear regression models, but that was unnecessary in the context of building models for 

the KSUL dataset. 

MODEL EVALUATION & COMPARISON 

 Following the modelling parameters outlined in the preceding sections, 960 unique modelling 

processes were evaluated (see Table 10).  Final predictions for both Rtrain and Rtest were evaluated by 

finding the receiver operating characteristic (ROC) and associated area-under-the-curve (AUC).  Again, 

samples without valid READ Scale ratings were ignored.  The AUC metric, which evaluates the 

discriminative power of a classification model, was used as the primary performance metric for both 

training and testing datasets.  Further, the training and testing datasets were sub-divided into two subsets; 
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one representing samples that were tagged as containing at least one instance of a sub-class from the 

ontology, and one representing samples that did not contain any instances of ontology sub-classes.    

 

Table 11: Modelling Parameters 

 After running all models and collecting performance metrics, all models were paired and filtered 

into pairs of models representing ‘neighbors.’  Neighboring models represented modelling processes in 

which only one modelling parameter was different (see Table 11).  Only single-parameter neighboring 

models were identified; all other pairs were removed from the resulting comparisons table (see Table 12).  

For each pair of models, the difference (∆) between the AUC performance metrics was calculated and 

recorded (see EXPERIMENTAL RESULTS section). 

 

Table 12: Example of Pairs of Neighboring Models 

Parameter Name Label

Random Seed RAND 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

String Truncation TRUNC

Ontology - Core Classes O-Core

Ontology - Core + Super Classes O-Core+Super

Dictionary Truncation DICT

Data Representation REPRESENT

Dependent Variable READ

Modelling Options

First10 First20

FALSE

FALSE

TRUE

TRUE (only if O-Core == True)

READ1vs2 READ2vs3

LDA Doc2Vec

ALL LIMITED
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Table 13: Example of Comparison Table 

 

All of the processes and scripting used to implement experimental design and store results in flat CSV files 

are documented in APPENDIX IV – EXPERIMENTAL DESIGN, RESULTS, ANALYSES. 
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EXPERIMENTAL RESULTS 

 Examination of the pair-wise comparisons of all neighboring models produced valuable statistical 

inferences for each of the core modelling parameters.  The results indicated that incorporating domain 

knowledge in the form of ontology classes and labels into the modelling process can, in general, have a 

positive and statistically significant impact on predictive modelling.  This was a rejection of the original 

null hypothesis outlined at the beginning of the research project.  Further evidence that the impact of 

ontology labels was not spurious was demonstrated in the analysis of representation vectors (Rtrain , Rtest) 

generated from modelling processes using the Doc2Vec algorithm. 

MODEL AND PARAMETER PERFORMANCE 

Ontology Parameters – Core Classes 

 The results related to models incorporating ontological labels showed an overall positive and 

significant impact on predictive modelling performance.  However, upon close inspection of the results, 

this positive impact came with a few extremely important caveats (see Table 13).  With respect to the 

testing subset, the O-Core modelling parameter, representing the incorporation of core-class labels into 

the modelling and representation of the data, had a small but significant impact on predictive 

performance (Average ∆ AUC = +0.0029, p-value < 0.001).  The practical significance for O-Core’s impact 

on the AUC performance metric was relatively small compared to the parameters READ and TRUNC.  

Furthermore, when viewing t-scores as indicators of the magnitude of a parameter’s significance, the O-

Core parameter was still relatively small compared to others. 

 However, when segmenting the testing data into two subsets representing samples that contain 

instances of the ontology’s sub-classes and samples that do not (“Tagged” and “Untagged” respectively 

in Table 13), more practically significant results were seen.  For tagged samples, there was an average 
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increase of +0.0628 on modelling performance for models in which the O-Core parameter was enabled.  

Additionally, the O-Core parameter’s t-score was dramatically increased (t-score = 41.7515).  This was in 

contrast to the reduced practical and statistical significance of all other modelling parameters. 

 For untagged samples, the results were also noteworthy.  When the O-Core parameter was 

enabled, the results showed that there was a practically and statistically significant negative impact on 

modelling performance for untagged samples (Average ∆ AUC = -0.0235, p-value < 0.001).  When 

considered with the prior observation, this indicates that the incorporation of the ontology’s core-classes 

into the modelling process dramatically improved the performance of predictive models for tagged 

documents while decreasing predictive performance for untagged documents. One possible explanation 

for this is that during training, the neural network classifier was limited to a small, fixed number of training 

iterations.  As such, the predictive model may capture the relationships between samples tagged with 

ontology classes more quickly than it captures the relationships between untagged samples.  Owing to 

the imposed limitations on training iterations, this could have resulted in the model overfitting its 

predictions for tagged samples and under-fitting its predictions for untagged samples. 

 

Table 14: Model Test Performance, Emphasis Parameter T-Scores 
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Ontology Parameters – Super Classes 

 In contrast to the notable impact that the O-Core parameter had on model performance, the 

results associated with the O-Core+Super parameter indicate that super-classes, as defined in the 

ontology structure, did not have a meaningful impact on the modelling process and performance metrics 

(see Table 14).  The logic of the experimental design was such that O-Core+Super could only be 

incorporated into modelling processes for which O-Core was also enabled.  Thus, the results associated 

with O-Core+Super strictly reflect the value of the ontology super-classes “tagEASIER” and “tagHARDER”. 

 The original reasoning for including these super-classes into the structure of the ontology and 

modelling processes was based on the hypothesis that using high-level binary labels would ultimately help 

the binary-classification model produce more accurate predictions.  However, when looking at the testing 

subsets, this does not appear to have been the case.  For the whole testing subset, including the subsets 

with tagged and untagged samples, the incorporation of super-classes into the modelling process had a 

negligible and statistically insignificant impact on performance metrics.  Furthermore, on average, the 

incorporation of super-class labels had less of an impact on modelling performance than the modelling 

processes’ random initialization (RAND). 
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Table 15: Model Test Performance, Emphasis O-Core+Super and RAND Parameters 

Controlling Parameters 

 The modelling options available for some of the tested parameters resulted in performance 

metrics that perfectly matched expectations.  For example, the selection of the TRUNC parameter option, 

representing whether a model is limited to the first 10 or the first 20 word-tokens, had a dramatic impact 

on modelling performance.  This parameter had an average positive impact of +0.0358 on modelling 

performance for the training subset and +0.0037 on the test subset (see Table 15).  This is perfectly logical 

since, at its core, this modelling parameter represents how much data was being allowed into the model: 

more data translated to better predictions.  The same logic explains the negative impact of the DICT 

modelling parameter.  The results for the DICT parameter showed an average negative impact of -0.0079 

for the training subset and -0.0017 for the testing subset.  Although the practical impact was relatively 

small, the results were statistically significant.  Again, these results are intuitive and logical since the DICT 

parameter, when enabled, removed low-frequency terms and reduced the amount of data available 

throughout the rest of the modelling process. 
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Random Seeds 

The results from the RAND modelling parameter, simply representing the randomization seed for 

the machine learning processes (LDA, Doc2Vec, and neural net classifier), suggest that further tuning of 

model hyper-parameters is necessary before any modelling processes are implemented in practice.  In 

the results for the training and testing subsets, the RAND parameter had a very small but statistically 

significant impact on modelling performance.  This suggests that the random initialization of different 

modelling processes may have resulted in the LDA, Doc2Vec, and neural net classifier models converging 

to different local minima with respect to data representation and predictive modelling.  With specific 

respect to the neural network classifier, the Python script used explicitly stated that the model had not 

yet reached convergence (see Figure 25). 

 

Figure 25: Scikit-Learn MLP Classifier Convergence Warning 

 

However, this does not suggest that the individual models were incomparable.  Because the pair-

wise comparison of each modelling process only included comparisons of models with identical RAND 

parameter settings, any challenges associated with random initializations and model convergence were 

equally applicable to any two compared models.  Therefore, the results and inferences gleaned from other 

modelling parameters remain valid. 

Other Modelling Parameters 

 The results related to the remaining modelling parameters, READ and REPRESENT, also 

demonstrate both a practical and statistically significant impact on model performance.  However, similar 



 
 

69 
 
to the results related to the O-Core parameter, the true impact of the respective options for these 

modelling parameters was only evident when investigating the tagged and untagged subsets. 

For instance, with respect to samples containing instances of ontology sub-classes, and therefore 

potentially having been tagged with core-class and super-class labels, there was no meaningful difference 

between using LDA or Doc2Vec to generate sample vector representations (Average ∆ AUC = -0.0001, p-

value = 0.9341).  Conversely, with respect to untagged test samples, there was a clear, practical, and 

statistically positive impact on modelling performance associated with using Doc2Vec over LDA (Average 

∆ AUC = 0.0158, p-value < 0.001).  These results reflect average model performance across all pairs of 

modelling processes, including both models that did incorporate ontology tags into data representations 

and those that did not.  Consequently, this suggests that for tagged samples, the raw data were so 

consistent and predictable that there was little reason to favor LDA over Doc2Vec for predictive modelling 

purposes.  On the other hand, for untagged samples, the superior performance of modelling processes 

using Doc2Vec indicates that the Doc2Vec algorithm was better suited than LDA at learning 

representations and relationships between words and samples. 

 Similarly, for the READ parameter, the difference between the parameter’s options had a greater 

impact on modelling performance for untagged samples compared to tag samples.  Although the average 

∆ AUC for both tagged and untagged subsets was statistically significant, the magnitude of the impact was 

an order of magnitude stronger for the untagged samples compared to tagged samples (-0.0332 vs -

0.0043). 
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Table 16: Full Comparison of Model Performance with all Subsets 

Param
eter

Param
eter Setting

M
odels 

Com
pared

Average ∆ 
AU

C
Std D

ev.
T-Score

P-Value
Significance

Average ∆ 
AU

C
Std D

ev.
T-Score

P-Value
Significance

Average ∆ 
AU

C
Std D

ev.
T-Score

P-Value
Significance

DICT
Default: ALL
Alternative: LIM

ITED
480

-0.0078
0.0085

20.0827
0.0000

***
-0.0079

0.0084
20.4315

0.0000
***

-0.0078
0.0095

18.1106
0.0000

***

O
-Core

Default: FALSE
Alternative: TRUE

320
0.0085

0.0085
17.7549

0.0000
***

0.0750
0.0325

41.2383
0.0000

***
-0.0164

0.0085
34.7242

0.0000
***

O
-Core+Super

Default: FALSE
Alternative: TRUE

320
0.0006

0.0056
2.0367

0.0425
*

0.0013
0.0072

3.1294
0.0019

**
0.0003

0.0062
0.9810

0.3273

RAN
D

[0 …
 19]

9120
-0.0003

0.0073
4.5349

0.0000
***

-0.0004
0.0083

4.0732
0.0000

***
-0.0004

0.0081
4.5160

0.0000
***

READ
Default: READ 1vs2
Alternative: READ 2vs3

480
0.0046

0.0083
12.1179

0.0000
***

-0.0045
0.0107

9.1940
0.0000

***
0.0110

0.0117
20.6069

0.0000
***

REPRESEN
T

Default: LDA
Alternative: D2V

480
0.0234

0.0170
30.1665

0.0000
***

0.0001
0.0282

0.0809
0.9356

0.0333
0.0186

39.0938
0.0000

***

TRU
N

C
Default: FIrst10
Alternative: First20

480
0.0357

0.0147
53.2181

0.0000
***

0.0092
0.0243

8.2517
0.0000

***
0.0359

0.0179
44.0345

0.0000
***

Param
eter

Param
eter Setting

M
odels 

Com
pared

Average ∆ 
AU

C
Std D

ev.
T-Score

P-Value
Significance

Average ∆ 
AU

C
Std D

ev.
T-Score

P-Value
Significance

Average ∆ 
AU

C
Std D

ev.
T-Score

P-Value
Significance

DICT
Default: ALL
Alternative: LIM

ITED
480

-0.0029
0.0136

4.6681
0.0000

***
0.0024

0.0160
3.3062

0.0010
**

-0.0054
0.0170

6.9891
0.0000

***

O
-Core

Default: FALSE
Alternative: TRUE

320
0.0029

0.0065
8.0513

0.0000
***

0.0628
0.0269

41.7515
0.0000

***
-0.0235

0.0111
37.9836

0.0000
***

O
-Core+Super

Default: FALSE
Alternative: TRUE

320
0.0001

0.0055
0.3110

0.7560
0.0008

0.0095
1.5240

0.1285
-0.0002

0.0068
0.4581

0.6472

RAN
D

[0 …
 19]

9120
0.0003

0.0120
2.0867

0.0369
*

-0.0004
0.0141

2.6184
0.0088

**
0.0005

0.0148
3.0413

0.0024
**

READ
Default: READ 1vs2
Alternative: READ 2vs3

480
-0.0234

0.0123
41.5811

0.0000
***

-0.0043
0.0209

4.5538
0.0000

***
-0.0332

0.0162
44.8339

0.0000
***

REPRESEN
T

Default: LDA
Alternative: D2V

480
0.0108

0.0138
17.0472

0.0000
***

-0.0001
0.0179

0.0828
0.9341

0.0158
0.0171

20.3240
0.0000

***

TRU
N

C
Default: FIrst10
Alternative: First20

480
0.0355

0.0145
53.6624

0.0000
***

0.0183
0.0205

19.6203
0.0000

***
0.0332

0.0174
41.7511

0.0000
***

* P-value < 0.05
** P-value < 0.01
*** P-value < 0.001
DF = (M

odels Com
pared) - (Param

eters) -1

Training D
ata

10162
Testing D

ata
1753

First10
First20

Training - Tagged
1832

3033
Training - U

ntagged
8330

7129

Testing - Tagged
340

549
Testing - U

ntagged
1413

1204

Counts of Sam
ples Labelled w

ith READ
 Ratings

∆ AU
C TRAIN

IN
G DATA

∆ AU
C TRAIN

IN
G DATA - TAGGED W

ITH O
N

TO
LO

GY CLASSES
∆ AU

C TRAIN
IN

G DATA - U
N

TAGGED W
ITH O

N
TO

LO
GY CLASSES

∆ AU
C TEST DATA

∆ AU
C TEST DATA - TAGGED W

ITH O
N

TO
LO

GY CLASSES
∆ AU

C TEST DATA - U
N

TAGGED W
ITH O

N
TO

LO
GY CLASSES
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 ONTOLOGY ASSESSMENT 

 In addition to evaluating the predictive performance metrics of modelling processes with respect 

to individual modelling parameters and decisions, assessment of the ontology structure revealed that, for 

the most part, the implementation of domain knowledge was sound and meaningfully integrated into the 

modelling process. 

Similar to the analytic approach described by Alshargi et al. (2018), the ontology structure was 

evaluated using the ontology tag vectors and individual sample vectors that were produced when using 

Doc2Vec as part of the modelling process.  The following parameter options reflect the specific modelling 

process used to produce the Doc2Vec model and vectors for both tag labels and all individual samples: 

• RAND = 0 

• TRUNC = First20 

• O-Core = True 

• O-Core+Super = True 

• DICT = ALL 

• REPRESENT = Doc2Vec 

• READ = READ1vs2 

Once all tag and sample vectors were generated from the Doc2Vec model, each of the tag vectors 

representing the core-class and super-class labels were evaluated using the cosine-similarity metric (see 

Table 16).  For example, the average cosine-similarity between the vector representing “tagPRINTING” 

and the vector representations of all samples containing an instance of the sub-classes associated with 

“tagPRINTING” was compared against the average cosine-similarity between “tagPRINTING” and all other 
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samples.  Cosine-metrics closer to 1.0 represented perfect alignment and -1.0 represented perfectly 

opposed alignment.  Following earlier processes, testing and training subsets were evaluated separately. 

When inspecting the cosine-similarities between the vector representations of each ontology 

class against appropriately tagged samples and then against all other samples, the results overwhelmingly 

showed that the tag vectors for every ontology class were more closely aligned with relevant tagged 

samples than with other samples.  Furthermore, in both the training and testing subsets, the distinction 

in the cosine-similarity metrics were highly statistically significant for the vast majority of the ontology 

classes when analyzed using Welch’s t-tests (see Table 16).  These results, in general, indicated that the 

ontology structure used in this modelling process was well suited to informing how individual samples 

were transformed and represented when using the Doc2Vec model. 

There were however a few notable exceptions that appeared in the results pertaining to the 

testing subset.  First, Welch’s t-tests for the vectors for “tagSCANNER” and “tagTEXTBOOKS” indicated 

that these vectors were not as strongly aligned with relevant sample vectors as was the case with other 

core-classes.  This may have been part because there were relatively few samples in the testing data to 

evaluate or perhaps because the ontology class was not appropriately represented by its sub-classes.  

Additionally, no comparative metrics could be calculated for the vectors representing “tagLIBMATHPHYS”, 

“tagLIBSTACKS”, “tagEVIDENCEBASED”, and “tagCURRICULUM”.  For these four classes, there were not 

enough samples in the testing data to allow for evaluation or comparison. 

 When comparing the individual vectors for the core-classes directly against the vectors for super-

classes, again using cosine-similarity, all but one of the core-class vectors was more closely aligned with 

its appropriate super-class than not (see Table 17).  In the one contrary example, “tagCURRICULUM”, it is 

possible that the assumption that the sub-classes associated with “tagCURRICULUM” should have mapped 

to the super-class “tagHARDER” was erroneous.  However, this particular core-class did not have a robust 
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set of samples to investigate and may simply have represented a core-class that needed to be removed 

from the ontology or aggregated with another core-class. 
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Table 17: Cosine Similarity Comparisons between Tag Vectors and Samples 
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Table 18: Cosine Similarity Comparisons between Core-Class and Super-Class Vectors 
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IMPLICATIONS AND CONCLUSIONS 

Ontology Structures & Modelling 

 The key outcome of this research was to show that although automatic natural language 

processing techniques such as LDA, Doc2Vec, and even more simple measures like TF-IDF metrics are 

increasingly easy to use and implement, the incorporation of domain knowledge, as represented by a 

simple ontology structure, can still be a valid and valuable component of predictive modelling processes.  

In this particular project, the incorporation of a simple ontology structure and class labels into data 

representations and modelling had a positive, profound, and significant impact on predictive models 

centered around VRS transcripts in an academic library setting.  Further, the simplistic structure of the 

ontology created for this project also represents a framework from which other librarians may benefit.  

Specifically, others may be able to extend the scope of the ontology by identifying new core-classes and 

refining the definitions of sub-classes as appropriate for different VRS datasets at different institutions. 

 With respect to the ontology structure developed for this project, although the model reflects the 

nature of VRS interactions at KSUL, the structure is already out of date and may require additional 

configuration before KSUL service managers can consider implementing the model.  Although the pace 

and frequency with which different academic libraries may need to update ontology structures for the 

purposes of predictive modelling is likely to be generally slow, KSUL may require additional intervention 

earlier owing to a significant and disruptive fire that took place in May of 2018 (Hoyt, 2019).  As a result 

of the disruption, it is very likely that the ontology structure developed for this project no longer 

adequately reflects the full scope of ways in which VRS patrons describe and engage with library services 

and resources.  

Hyper-parameter Tuning 
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While all of the modelling processes presented in this research ultimately represent predictive 

models that perform distinctly better than a purely random model, the experimental design of the 

modelling processes means that no single model can be identified as “the best”.  By comparing these 

modelling processes, model parameters can be examined, measured, and evaluated for utility with 

respect to improving, and only improving, baseline model performance.  Before any model is used in a 

real-life environment, such as a triage-system built into a VRS platform, further extensive model hyper-

parameter tuning will be necessary in order to identify optimal modelling processes.  This includes more 

extensive training times for machine learning algorithms, experimenting with various sizes of VRS vector 

representations, and other hyper-parameters throughout the modelling process. 

Operational Considerations 

 Lastly, a high-level review of modelling performance suggests that libraries with VRS services may 

be able to benefit greatly from the incorporation of predictive modelling processes into their operations.  

The models experimented with in this model were built on the assumption that a predictive model 

designed to automatically route incoming VRS inquiries to different types of operators (see Figure 2) 

would be valuable and useful to library service managers.  This assumption is based on the concerns 

expressed by researchers who have identified shortcomings in student VRS operators’ skills in referring 

VRS patrons efficiently (Keyes & Dworak, 2017; Lux & Rich, 2016).  Furthermore, these models can also be 

used to inform the development and deployment of automated chatbots and recommender systems that 

have already been deployed at various institutions (Kane, 2019; University of Oklahoma Libraries, 2019c). 

 However, before any of the insights or models demonstrated in this paper can be used in a real 

VRS or predictive-modelling context, service managers must consider strategic operational factors that go 

beyond the scope of this project.  Assuming a model is developed for the purposes of incorporating a 

predictive model that triages incoming VRS patron inquiries to different levels of VRS operators according 
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to predicted READ Scale ratings, service managers must decide what the most appropriate dependent 

variable is in order for any predictive model to adequately align with an institution’s strategic and service 

objectives.  What is the appropriate decision-boundary for any given set of dependent variables?  Should 

the model be more prone to false-positives or false-negatives?  What is the minimum amount of initial 

input text that should be solicited from a patron prior to the commencement of a VRS interaction?  Prior 

to actually implementing any predictive models using machine learning, ontologies, or even traditional 

statistics, questions like these must be addressed by service managers in order to fully leverage these 

modelling processes. 
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APPENDIX I – DATA PREPARATION 

https://arch.library.northwestern.edu/concern/parent/xg94hp819/file_sets/xp68kg47r 

 

APPENDIX II – HIGH LEVEL DATA EXPLORATION 

https://arch.library.northwestern.edu/concern/parent/xg94hp819/file_sets/n296wz391 

https://arch.library.northwestern.edu/concern/parent/xg94hp819/file_sets/xp68kg47r
https://arch.library.northwestern.edu/concern/parent/xg94hp819/file_sets/n296wz391
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APPENDIX III – FULL ONTOLOGY STRUCTURE 
 

 

Super-Classes Core-Classes Sub-Classes High-Level Definitions

tags / labels attributed to 
individual samples

tags / labels attributed to 
individual samples

substring or REGEX patterns to be detected in 
raw user-supplied texts.

Subjective defintion of the broad concepts associated with core-classes 
and sub-classes in relation to VRS interactions.

        color print
        colored print
        print in color
        print something in color
        \Win color\W
        cat cash
        printer
        (?<!3D\s)\bprinting
        double.{1}sided
        catcash
        cat cash
        add money
        scanner
        \Wscan\W
        open 24/7
        what time
        the hours
        opens{01}\W
        will be open
        summer hours
        library hours
        re.escape(Math/Physics Library)
        re.escape(math and physics library)
        re.escape(Math Physic library)
        re.escape(math/physics library)
        re.escape(maths/phys library)
        re.escape(math & phys library)
        re.escape(math phys library)
        weigel
        wiegel
        vet med
        vetmed
        Hale Library
        (?<!help\s)hale
        Library Stacks
        the stacks
        in Stacks
        the reserve
        on reserve
        course reserve
        reserve textbook
        have a specific textbook
        have the textbook
        have textbook
        this textbook
        this text book
        quite loud
        super loud
        really loud
        very loud
        stop talking
        talking on
        music loud
        loud
        talking very
        talking extremely
        talking loud
        quiet floor
        quiet floor
        Quiet Zone
        quiet floors
        floor to be quiet
        whisper quietly
        be quiet
        floor to be quiet
        first floor
        1st floor
        second floor
        2nd floor
        third floor
        3rd floor
        fourth floor
        4t floor
        fifth floor
        5th floor
        hemisphere room
        Harry Potter room
        the hemi
        a-z{12}\d{24}\s{01}\.a-z\d{1}
        this book

Interactions in which a user identifies a specific, individual book.

    tagEASIER

Interactions in which the user mentions excessive noise or inquires 
about quiet places in the library.

Interactions in which the user mentions specific locations within the 
library (i.e. Hale Library)

Interactions relating to using library printers and printing services.

Interactions related to using library scanners.

Interactions in which users inquire about library building and service 
hours.

Interactions in which the Math & Physics Library is explicitly identified.

Interactions in which the Weigel Architecture Library is explicitly 
identified.

Interactions in which the Vetrinary Medicine Library is explicitly 
mentioned.

Interactions in which Hale Library is explicitly identified.

Interactions in which the users explicitly identify the "stacks".

Interactions in which textbooks and course reserve materials and 
services are mentioned.

    tagQUIET

    tagLIBLOCATION

    tagKNOWNITEMBOOK

    tagPRINTING

    tagSCANNER

    tagHOURS

    tagLIBMATHPHYS

    tagLIBWEIGEL

    tagLIBVETMED

    tagLIBHALE

    tagLIBSTACKS

    tagTEXTBOOKS
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Super-Classes Core-Classes Sub-Classes High-Level Definitions

tags / labels attributed to 
individual samples

tags / labels attributed to 
individual samples

substring or REGEX patterns to be detected in 
raw user-supplied texts.

Subjective defintion of the broad concepts associated with core-classes 
and sub-classes in relation to VRS interactions.

        peer.{1}review
        journal article
        scholarly article
        scholarly journal
        scholarly article
        peer reviewed
        re.escape(peer-reviewed)
        peerreviewed
        scholarly
        articles
        evidence.based
        kinesiology
        juv lit section
        Juvenile Literature
        re.escape(juv. lit)
        children{01}s collection
        children{01}s lit
        children{01}s stor
        re.escape(childrens boooks)
        (?<!Germany on English )children{01}s boo
        re.escape(childrens picture)
        picture book
        curriculum materials
        curriculum books
        doi\W\s{1}\S+
        doi:{01}\s{01}\d\S+
        this article
        this\s\w+\sarticle
        this paper
        doi\.\S+
        doi:{01}\s{01}\d\S+
        doi\.org\S+
        articles{01}\sabout
        books{01}\sabout
        subject
        topic
        a paper on
        help me find an{01}
        re.escape(amazon.com)
        re.escape(newfirstsearch)
        re.escape(galegroup)
        re.escape(ingentaconnect.com)
        re.escape(proquest.com)
        re.escape(ncbi.nlm.nih.gov)
        re.escape(sciencedirect.com)
        re.escape(springer.com)
        re.escape(tandfonline.com)
        re.escape(webofknowledge)
        re.escape(wiley.com)
        re.escape(books.google)
        re.escape(google.com)
        re.escape(apps.lib.k-state.edu/databases)
        re.escape(er.lib.ksu.edu)
        re.escape(er.lib.k-state.edu)
        re.escape(getit.lib.ksu.edu)
        re.escape(getit.lib.k-state.edu)
        re.escape(guides.lib.ksu.edu)
        re.escape(guides.lib.k-state.edu)
        re.escape(catalog.lib.ksu.edu)
        re.escape(catalog2.lib.ksu.edu)
        re.escape(catalog.lib.k-state.edu)
        re.escape(catalog2.lib.k-state.edu)
        re.escape(primo.hosted.exlibrisgroup.com)
        re.escape(na02.alma.exlibrisgroup)
        re.escape(searchit.lib.ksu.edu)
        re.escape(searchit.lib.k-state.edu)
        re.escape(lib.k-state.edu)
        re.escape(lib.k-state.edu)
        re.escape(doi.org)
        re.escape(http)
        re.escape(www.)

Interactions in which a user identifies a specific, individual journal 
article.

Interactions in which users ask broadly for reference/research support 
and guidance.

Interactions in which a user shares a url to any website.

    tagHARDER

Interactions in which users ask about accessing, finding, or discovering 
journal articles in general.

Interactions in which users explicitly ask about evidence-based 
biomedical and health sciences research.

Interactions in which users ask about the Juvenile Literature collection 
or inquire about the availability of children's literature more broadly.

Interactions in which users ask about the Curriculum Materials Center 
or K-12 education materials more broadly.

    tagURL

    tagARTICLES

    tagEVIDENCEBASED

    tagJUVENILE

    tagCURRICULUM

    tagKNOWNITEMARTICLE

    tagREFERENCE
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APPENDIX IV – EXPERIMENTAL DESIGN, RESULTS, ANALYSES 

https://arch.library.northwestern.edu/concern/parent/xg94hp819/file_sets/kk91fk733 

 

https://arch.library.northwestern.edu/concern/parent/xg94hp819/file_sets/kk91fk733
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