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ABSTRACT

Towards Quantum Applications

of Integrated Photonic Devices

Vesselin Velev

Chip-based photonic devices are doing for optics what integrated circuits have

done for electronics. By directly combining many individual components in a com-

pact, scalable and robust way, photonic chips open the possibility for creating op-

tical and electro-optical devices that could not be practical with discrete compo-

nents. The applications for this technology are broad and far-reaching, ranging

from commercial telecommunications uses to fundamental experiments which probe

the physical nature of light.

In this work, we focus on novel devices targeted for quantum optics applica-

tions that harness the advantages of these integrated systems towards problems in

information processing and fundamental research. In order to achieve these goals,

we target devices that manipulate and generate quantum states of light. This work

will present simulation and experimental results form a host of integrated materials

and layouts.
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First we will discuss simulation efforts for a receiver design that can selectively

manipulate high-dimensional photonic signals in overlapping temporal modes. This

lithium-niobate waveguide based experiment relies on precise pump waveforms to ex-

tract the target signal mode with high selectivity. The simulation and optimization

efforts presented here support the experimental work carried out by other members

of this group.

To complement our receiver scheme, we present a CMOS-compatible platform

for telecom C-band photon pairs. This chip is based on a novel integrated waveguide

which uses hydrogenated amorphous silicon as the guiding material. This short, 8-

mm chip produces photon-pairs in far-detuned multiple wavelength channels simul-

taneously with a coincidence-to-accidental ratio as high as 400. With insignificant

Raman scattering over a spectrum of at least 5 THz, this material holds promise

for large-scale quantum applications, especially those based on multiplexed photon

sources.

Next, we present work in silicon nitride ring and disk resonators. With a

moderate χ(3), but no two-photon absorption for light near 1550 nm, this material

has been shown to be highly versatile for chip-based based nonlinear optics in the

near infrared. In this work, we investigate all-optical switching behavior which can

route and filter quantum signals without introducing degrading in-band spontaneous

noise. Finally, we present simulation and preliminary experimental work towards

phase-sensitive stimulated and spontaneous cascaded four-wave mixing which can be

used to manipulate frequency comb generation of classical or quantum signals.

In full, we show progress towards integrated devices which can be the basis of

sophisticated large-scale chip-based quantum photonic circuits communicating via

optical fiber interconnects.
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pulses is on the order of watts. . . . . . . . . . . . . . . . . . . . . 67

3.3.3 Conversion efficiency matrix for ten signal modes. The n-th pump

mode is optimized to maximize selectivity of the n-th signal mode.

Off-axis terms represent cross-talk due to imperfect selectivity. . . 68

3.3.4 (a) The signal modes, ψ± = 1/
√

2(ψ1±ψ5). (b) The corresponding

pump modes for ψ± are Ψ±. These pump modes are not simple

superpositions of the non-rotated basis pumps. (c) The conversion

efficiency performance in the ‘superposition’ basis is nearly identical

to that in the original basis. . . . . . . . . . . . . . . . . . . . . . . 69
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fundamental grating, Λph, so that the spatial frequency is (∆β −
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1 Introduction

The manipulation of light in dielectric media has taken on ever greater importance.

From the underpinnings of the information revolution [1, 2] to the most stable

frequency sources [3] known, manipulation of optical systems has become a funda-

mental building block for classical communications technology and experiments for

fundamental scientific understanding.

The invention of the laser [4] made powerful, coherent optical fields accessible

which allowed the experimental study of the nonlinear dependence of material po-

larization on electric field to follow quickly thereafter [5]. Nonlinear interactions

have been extensively studied in bulk materials [6] and linear cavities. whispering

gallery mode (WGM) resonators are especially of interest because they offer longer

light confinement [7].

With advances in fabrication techniques, devices with especially small modal

confinement and impressively long photon lifetimes have been demonstrated across

a variety of materials [8, 9, 10, 11, 12]. This directly leads to a large cavity enhance-

ment which allows novel nonlinear optics regimes to be probed [12, 13, 14, 15, 16,

17, 18, 19].

At the same time, interest in harnessing quantum mechanics for information

processing has intensified tremendously [20, 21]. The implementations of funda-

mental elements of these protocols have been demonstrated in optical, atomic, and
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condensed matter systems [21]. However, all suffer to some extent with issues of

stability and scalability. One way to address these concerns for optical systems is

on-chip integration using fabrication techniques shared with classical photonic chip

devices and the electronics industry.

Leveraging the maturity of silicon chip fabrication, honed over many decades for

transistor fabrication to manipulate quantum states of light in on-chip devices com-

bines all these advances. In this prospectus, we will discuss two materials that share

this integrability: silicon nitride (Si3N4) and hydrogenated amorphous silicon (a:Si-

H). Work to integrate lithium niobate (LN) is also progressing [22, 23, 24].

With a mature fabrication capability, Si3N4 devices promise extremely low loss

and good nonlinear properties [25, 26, 27]. Unlike crystalline silicon (c-Si) devices,

for example, Si3N4 does not suffer from two-photon absorption in the telecom spec-

tral C-band (roughly 1527 to 1568 nm), making fiber-compatible parametric pro-

cesses possible[28, 29, 30]. We have proposed efficient on-chip sources for the gen-

eration of temporally long photon pairs and photon manipulation in this material

precisely for this reason [17].

In contrast, a:Si-H has shown extremely high optical nonlinearities, 2 orders

of magnitude higher than Si3N4 [31, 32, 33]. Phase-sensitive amplification [34] and

picosecond all-optical switching in resonators has been demonstrated in this material

[35]. The low deposition temperature of this material leaves the door open for its

integration with other dielectrics and electronic elements. Despite its amorphous

nature, Raman gain is moderate in the telecom C-band of the optical spectrum.

We demonstrated this by observing high-purity photon-pair generation at two wide

detunings [36].
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1.1 Chapter Guide

In Chapter 2, general properties of integrated optical systems are discussed. We

highlight the mode structure of waveguides (WGs) and resonators. We introduce

the phase-matching relations for χ(2) materials in traveling wave devices. Specific

emphasis is placed on periodic poling to achieve quasi-phase match (QPM) for para-

metric processes because we refer back to this concept in Chapter 3. Switching to

resonant systems, we discuss the concepts of quality factor (Q-factor), free-spectral

range (FSR), and finesse to describe the linear properties and field enhancement

present in these systems, with an emphasis on the compact, thin, rectangular cross-

section devices typical on chip. Finally we discuss the necessary conditions for FWM

in these structures. Chapters 6, 7, 8 are based on these concepts.

In Chapter 3, we cover work related to the mode-selective receiver design. This

device combines the uses the tailored waveform of a pump signal, which when in-

cident on a WG (LN in this case), selectively upconverts a single signal mode.

We solve the nonlinear Schrödinger equation (NLS) equations using the split-step

Fourier method solver. When we combine this with a random-walk optimization

routine, we can create optimized pump shapes to maximize mode-selectivity. This

receiver also has the advantage of upconverting the signal light from the telecom

C-band to the visible spectrum, allowing the use of efficient silicon single photon

counters.

In Chapter 4, we discuss the experimental generation of photon pairs in the

C-band using FWM. In collaboration with Johns Hopkins University (JHU), we

test a novel a:Si-H WG chip which has exceptional effective optical nonlinearity.

We characterize the coincidence-to-accidental ratio (CAR) of the pair source and

investigate the Raman gain present at two different pump detunings. Despite small
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measured Raman gain, we measured exceptionally high CAR of up to 400. In this

metric, we compete with cryogenic-cooled optical fiber sources with a 8-mm long,

room-temperature, complementary metal-oxide-semiconductor (CMOS)-compatible

WG.

Chapter 5 is an overview of resonator simulation. This work focuses on the

eigenmode solver developed within the commercial finite element method (FEM)

solver COMSOL. With our implementation, the model assumes only rotational sym-

metry of the system to solve for the eigenmodes of a resonator with arbitrary cross-

section. We use this code to predict the dispersion and mode volume of the chip-

based Si3N4 devices in our possession to estimate their nonlinear properties.

In Chapter 6, we cover preliminary work for the chip-based resonator experi-

ments to follow. As these devices were fabricated by Dr. Ryan Camacho’s group at

Sandia National Laboratory, the author’s on-site experience is detailed. We discuss

details of the design of our chip coupling setup and it’s performance.

In Chapters 6, 7, 8, we study nonlinear interactions in Si3N4 devices. The

first chapter focuses on the enclosure and alignment setup to couple light into the

resonator. The second discusses an all-optical switching scheme. The final chapter

focuses on experiments designed to seed a cascaded FWM interaction with a 3 pump

waves with a fixed phase relationship.
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2 Waveguide and Resonator Basics

In order to discuss the propagation of light through dielectric optical medium, we

must begin with Maxwell’s equations. From these, we will derive the optical wave

equation which will be key in understanding the nonlinear interactions in our de-

vices.

After setting this basic framework, we will discuss nonlinear interactions in a

second-order nonlinearity (χ(2)) WG device. The phase-matching (PM) require-

ments of the device will be considered, along with a method to overcome this limi-

tation. This background forms the foundation for the simulations of sum-frequency

generation (SFG) in Chapter 3.

We will also cover the unique properties of microresonator devices discussed in

greater detail in Chapter 5. A mathematical understanding of the cavity enhance-

ment factor will be shown. We will describe the mode structure basics. Next, the

polarization properties of the device will be discussed. Finally, the PM conditions

will be introduced.
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2.1 Maxwell’s Equations

Maxwell’s equations, written in SI units are

∇ ·D = ρ, (2.1.1)

∇ ·B = 0, (2.1.2)

∇×E = −∂B
∂t
, (2.1.3)

∇×H =
∂D

∂t
+ J, (2.1.4)

where D is the displacement field, E is the electric field, H is the magnetic field,

and B is the magnetic flux density [37, 38, 39]. We are interested in the solution to

the wave equation in a material in which there are no free currents (J = 0) and no

free charges (ρ = 0). The linear constitutive relations are H = 1/µ0B and D = εE,

because in the materials we are interested in, the magnetic permeability is equal to

that of the vacuum [6, 1]. In order to derive the wave equation for the optical light,

we now take the curl of the Maxwell-Faraday equation, (2.1.3):

∇× (∇×E) = ∇(∇ ·E)−∇2E

= ∇× (−∂B
∂t

)

= − ∂

∂t
(∇×B)

=
εr
c2

∂2E

∂t2
, (2.1.5)

where c = 1/
√
µ0ε0 and εr = ε/ε0 [39, 6]. With a straightforward substitution,

this will also explain the optical nonlinearity effects due to a modification of the

constitutive relation for the electric field [6, 1].
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2.1.1 Boundary Conditions

We need to consider the interaction of the electric field at the interface between two

materials. The guiding properties of the devices and the evanescent coupling of light

between them depends on the boundary conditions.

The fields behave according to the following relations at the interface of two

materials:

ε1E
⊥
1 = ε1E

⊥
2 , (2.1.6)

E
‖
1 = E

‖
2, (2.1.7)

B⊥1 = B⊥2 , (2.1.8)

1

µ1
B
‖
1 =

1

µ2
B
‖
2. (2.1.9)

The subscript denotes which side of the interface the field refers to. The relations

differentiate between the components of a field parallel (‖) and perpendicular (⊥)

to the boundary [39, 6, 40].

For the materials considered here the permeability of each part is equal to that

of the vacuum (µ1 = µ2 = µ0). Therefore the magnetic fields and densities are

continuous on either side of an interface, a property which we will exploit when

solving the wave equation numerically to determine the modes of a microresonator

later in this work [40].

2.1.2 Optical Nonlinearity

The optical nonlinearity enters the Maxwell equations through a modification of

the linear constitutive relations. As the intensity of an optical beam increases, the
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nonlinearities in the response of the atoms that constitute the material become more

apparent [6], but even the vacuum becomes nonlinear under a high enough electric

field [41, 42]. A coherent superposition can form, leading to radiation at a different

frequency in a well-defined beam.

Assuming an isotropic material for clarity, the dielectric tensor simplifies to a

scalar. The relation between the displacement field (D) and the electric field (E)

contains the nonlinear polarization, PNL as

D = ε0εrE + PNL, (2.1.10)

where the first term on the l.h.s represents the linear effect due to the refractive

index. A simple perturbative expansion of PNL in terms of the electric susceptibility

of the material (χ), is

PNL = ε0

[
χ(2)E2 + χ(3)E3 + . . .

]
, (2.1.11)

with the number of relevant terms in the expansion constrained by the strength of

the field and the particular material properties. While all materials have odd-order

nonlinear coefficients (χ(n) for n = 1, 3, . . . ), materials which are centrosymmetric

have zero even-order bulk nonlinearities, which is true for described microresonator

work. The updated wave equation including the nonlinear polarization is

∇2E− εr
c2

∂2E

∂t2
=

1

ε0c2

∂2PNL

∂t2
. (2.1.12)
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2.2 Waveguide Interactions

A WG, is quite simply, a structure that can guide electromagnetic waves. The in-

tuitive understanding of the operation of these devices does not vary greatly across

the many orders of magnitude for electromagnetic oscillation, from radio waves to

x-rays, but here we confine ourselves to optical devices in the visible and telecom-

munications (from roughly 500 nm to 2 µm in wavelength) frequency bands [43].

The two most common devices we are most familiar with are the ubiquitous optical

fiber and waveguides, either bulk crystal or on a photonic chip.

Compared to other easily-accessible media, such as optical fiber, bulk or chip-

based waveguides promise much higher effective optical nonlinearity which allows

meaningful nonlinear interaction in a compact space at lower pump powers. Waveg-

uide devices are used for efficient frequency-conversion processes, such as SFG, and

second-harmonic generation (SHG) in devices with a strong χ(2) or FWM, two-

photon absorption (TPA), and third-harmonic generation (THG) in materials due to

the third-order nonlinearity (χ(3)) [6, 1]. While these processes can be convincingly

described by classical electrodynamics, other processes such as spontaneous para-

metric down-conversion (SPDC) [44, 45] or quantum frequency conversion (QFC)

[46] cannot. With the help of quantum mechanics, the same optical nonlinear mate-

rial properties can be used to generate entangled photons (SPDC) or translate the

carrier frequency of quantum signals (QFC), for example. There are just too many

examples of waveguide uses to list.

2.2.1 Waveguide Nonlinear Interaction

In order to solve for the nonlinear interaction in a χ(2) WG, we start with Eq. 2.1.12.

We first assume that the electric field, E, can be represented by only the amplitude
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of the wave, A(z), where ẑ is along the length of the WG as

E(r, t) = E(z, t) = A(z)ei(kz−ωt) + c.c., (2.2.1)

where k is the wavevector, defined as n(ω)ω/c, and ω is the oscillation frequency.

This is valid for devices that have single spacial modes, which in itself is critical for

good performance. The applied fields are represented as Ei(z, t) where i = 1, 2 for

the two input optical frequencies of light, while the SFG is i = 3. The amplitude of

the nonlinear polarization is

PNL = 4ε0deffA1A2e
i(k1+k2)z (2.2.2)

under the assumption of a constant geometry with a fixed polarization. deff is the

effective optical nonlinearity which is a function of the χ(2) strength and the overlap

of the spacial distributions among the 3 modes. Eq. 2.1.12 can now be simplified

to

d2A3

dz2
+ 2ik3

dA3

dz
= −4deffω

2
3

c2
A1A2e

i∆kz, (2.2.3)

where ∆k = k1 + k2 − k3, the phase difference due to wavevector mismatch. The

slowly-varying amplitude (SVA) approximation allows us to neglect the first term

of the the left side as, generally

∣∣∣∣
d2A3

dz2

∣∣∣∣�
∣∣∣∣
dA3

dz

∣∣∣∣ . (2.2.4)

Integration of the resulting equation gives the amplitude of the resulting wave at a

frequency of ω3 = ω1 + ω2,

A3(L) =
2ideffω

2
3

k3c2
A1A2

∫ L

0
ei∆kz dz =

2ideffω
2
3

k3c2
A1A2

(
e−i∆kL − 1

i∆k

)
. (2.2.5)
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I(∆k) ∝ L2sinc2
(

∆kL
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Figure 2.2.1: (a) Shows a typical channel WG geometry. The blue element represents
the guiding dielectric, while the grey slab is the cladding. (b) The intensity of the
sum-frequency wave scales with the square of the length of the WG (L) while the
phase-matching curve narrows in frequency with L.

From this equation, it is easy to see that the intensity of the upconverted light,

I3(L) ∝ L2sinc2

(
∆kL

2

)
, (2.2.6)

is very strongly connected to the wavevector mismatch.

2.2.2 Waveguide Phase Matching Considerations

In order to overcome the limitations of natural PM as described in the previous

subsection, QPM gratings were developed [6, 47]. If ∆k 6= 0, as the light propagates

through the material, the nonlinear mixing process oscillates between generation and

depletion of the sum frequency wave. However, a spacial periodic inversion of the

c-axis of the material effectively changes the sign of the deff term. When a grating

with the correct poling structure is implemented, the inherent wavevector mismatch

can be compensated for and PM will be achieved as shown in Fig. 2.2.2.
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Figure 2.2.2: (a) A periodically-poled WG, where Λ is the polling period. The axis
of the crystal is inverted, changing the sign of the effective nonlinearity as shown
by the arrows. This is the most straightforward type of QPM structure. (b) Three
different types of PM conditions are shown here. In the negligible pump depletion
case, with ideal PM (∆k = 0), the amplitude in the sum-frequency grows linearly.
In a structure of the type shown in (a), the amplitude increases monotonically but
only to a level 2/π as high as the ideal case. For a case with phase mismatch, the
output amplitude is likely near zero.

The simplest grating structure is a inversion of the sign of deff following a

square-wave function with a period of Λ,

d(z) = deff sign [cos(2πz/Λ)] , (2.2.7)

where d(z) is the spacial dependence of the coupling coefficient. Analytically, it is

very revealing to construct the Fourier series of the grating,

d(z) = deff

∞∑

m=−∞
Gme

−imkz, (2.2.8)

where km = 2π/Λ is the magnitude of the grating vector. The Fourier coefficients
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for a uniform grating of the form in Eq. 2.2.7 are given by

Gm =
2

mπ
sin(mπD), (2.2.9)

where D is the duty cycle of the grating. Typically, we are only interested in the first

term (m = 1), as this has the largest coefficient and is therefore the most efficient.

With a duty cycle of 50%, the QPM first-order grating term is

d(z) =
2

π
deffe

ikz. (2.2.10)

By replacing deff with d(z) in Eq. 2.2.5, and completing the integration, we show

that the intensity depends on length in the original sinc squared fashion as shown

in Fig. 2.2.1b, but the phase mismatch is given by ∆kQPM = ∆k − 2π/Λ and the

amplitude is decreased by a factor of 2/π [6]. From here it is easy to show that

Λ =
2π

∆k
(2.2.11)

for a periodically poled grating.

We should note that there are many other forms of QPM gratings possible

[48, 49]. The goal of these schemes is typically to increase the extinction of the PM

curve, which is poor near the secondary maxima of the sinc function, to narrow or

broaden the peak, or to introduce multiple PM peaks [50].

2.3 Whispering-Gallery Mode Microresonators

Axisymmetric dielectric resonators guide light in so-called WGMs near the res-

onator’s periphery. A unique property of these devices is that they only support
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ẑ

ρ

r

z

φ

(a)

R

h

(b)

Figure 2.3.1: Two types of geometries will be discussed in this work. (a) is the typical
geometry associated with our Si3N4 devices. The pedestal mounted disk resonator
is surrounded by air on all sides. (b) is a microdisk mounted on a cladding, similar
to the WG devices shown earlier. This is the typical geometry for a:Si-H devices,
though some are rings and not disks. In both cases, the coupling (bus) WGs are
not shown.

certain eigenmodes of optical radiation. These eigenmodes constitute the eigenfre-

quency of the resonance, along with the spacial distribution of the electromagnetic

field of the radiation. The cavity has a discrete spectrum of eigenmodes, with fi-

nite (though sometimes quite long) lifetimes. A WG device however, supports a

continuum of frequencies in a band for which it guides a particular spatial eigen-

mode.

For the eigenfrequency, light coupled into this cavity relies on total internal

reflection from the curvature of the walls of the cavity to form a standing wave. The

corresponding eigenmodes are called WGMs because of an identical phenomena

observed for sound waves in St. Paul’s Cathedral in London by Lord Raleigh [51].

Optical materials that support WGMs have been shown in various materials and

configurations for a wide range of applications [52, 53, 54, 7, 10, 55, 56, 17]

In this dissertation, we focus on optical resonators made of Si3N4. These mate-

rials have the advantage of CMOS compatibility, which allows them to be grown on

a silicon wafer. These devices can then be integrated into larger photonic circuits in
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{110, 3, 1}: λ = 1481.7 nm

Figure 2.3.2: The mode shape depicted here in cross-section is typical for a in-
tegrated chip-based Si3N4 device. The geometry parameters are R = 20µm and
h = 300 nm. The mode number is {110, 3, 1} and has TE polarization. The plot
shows the absolute value of the electric field magnitude.

order to build scalable and ultra-stable circuit-like implementations. Both of these

materials are centrosymmetric and possess a leading order χ(3) nonlinearity.

2.3.1 Mode Families

The geometry of the resonator constrains the spatial distribution of the electromag-

netic field. However, the axial symmetry of the device manifests itself in symmetries

of the eigenmodes themselves. This lends itself to a simple characterization based on

three integers, {m,n, k}. While most devices also support two orthogonal polariza-

tions for each mode number (as long as the mode itself is guided), the polarization

basis will be dealt with explicitly in a later subsection.

Mode number m is especially important as it plays the role of the wave-vector

in a resonator. While the linear momentum, k is not well defined in a cylindrical

geometry because it depends on the radial position, ρ, which varies between eigen-

modes, the angular momentum is. Due to the axial symmetry of the ideal WGM

resonator, the electric field of the resonator mode depends on this value explicitly,
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as E ∝ eimφ, where φ is the azimuthal coordinate. The rest, {n, k}, correspond

to the number of maxima, or lobes, of the electric field in the ρ̂ and ẑ directions,

respectively. It is important to note that some ring structures, by design, support

only the fundamental eigenmode {m, 1, 1}. Similarly, thin disks may only support

one mode in the ẑ direction, which is true for most disk devices we will discuss. The

notation will be shorted from {m,n, 1} to {m,n}, where the last term is implicitly

1.

While a group of modes with a common m can be considered of the same family,

only the primary mode, {m, 1, 1} of a given polarization, will have the smallest mode

volume within this family. It will also have the lowest eigenfrequency. These primary

modes are important because they will maximize the cavity enhancement and have

the best performance for nonlinear interactions [13, 17, 57].

2.3.2 Quality Factor

It is only an approximation that the frequency spectrum of a resonator constitutes

discrete delta functions. In any real cavity, there is a narrow band of frequencies

around the central eigenfrequency which are supported. The important source of this

broadening of the cavity line width is due to dissipation of energy in the dielectric

material of the cavity or scattering with the walls. The Q-factor is defined as

Q = ω0
U

PL
(2.3.1)

where ω0 is the center frequency of the resonance, U is the energy in the optical

mode, and PL is the power dissipated out of the resonator. As PL = −dU/dt, a

simple restatement of the above equation leads to the solution of the energy in the

mode as a function of time, U(t) = U0e
−ω0t/Q. Therefore, the Q-factor can also be
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expressed as

Q = ω0τ =
ω0

γ0
, (2.3.2)

where τ is the relaxation time for the cavity and γ0 is the full-width at half-maximum

(FWHM) of U(ω). While this formula for the Q-factor is very much general, in ex-

perimental settings, the material absorption, surface scattering, bending losses, and

and resonator-to-WG coupling all contribute individual γ terms that sum construc-

tively [9, 58]. These terms represent individual Q-factors whose reciprocals sum as

1

QT
=

1

QI
+

1

QC
. (2.3.3)

QT represents the total Q-factor factor, which can, for example, be measured on

a coupled system by sweeping a tunable-frequency laser and measuring the width

of the resonance, δω on an optical spectrum analyzer (OSA), as δω = γT. It is

comprised of the resonator-WG coupling Q-factor, QC and the intrinsic resonator

Q-factor which is broken up via

1

QI
=

1

QR
+

1

QS
+

1

QA
(2.3.4)

where QR is due to bending loss, QS is due to scattering, mainly due to surface

imperfections, and QA is due to material absorption [58, 59].

The Q-factor will play an important part in all discussions of cavity performance

in the rest of this dissertation. It is the key to a micro-resonator’s filtering and an

integral part of its cavity enhancement as shown below.
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Figure 2.3.3: This is the transmission spectrum from a bus WG critically coupled
to a microresonator. The dips are due to light coupling into the cavity. The FSR of
a resonator is the frequency difference of two primary modes. The inset shows that
the linewidth of a coupled cavity is δω, which is related to the total Q-factor of the
cavity via Q = ωm/δω.

2.3.3 Free-Spectral Range and Finesse

The FSR of a cavity is defined as the frequency spacing, ∆ωFSR between modes.

This can be defined between different mode numbers, such as the spacing in eigen-

frequency between the {m+ 1, n, k} and {m,n, k} mode. However, as shown in Fig.

2.3.3, we will define it as the difference between the primary modes. This parameter

is proportional to the inverse of the radius of the disk. For a square Si3N4 microdisk

resonator of radius 30 µm and a thickness of 350 nm (similar to that in Fig. 2.3.2),

the FSR in the telecommunications C spectral band is 6 to 7 nm.

A key advantage of axial-symmetric cavities is the large build-up of photons in
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their eigenmodes. This build-up is proportional to the finesse, F , defined as

F =
∆ωFSR

δω
. (2.3.5)

The circulating power scales with finesse as F/(2π)PC, where PC is the power

coupled into the resonator from the external WG. For the same cavity used in the

example above, F ≈ 5, 000 for QT = 1×106, so if PC = 1 mW, the circulating power

is over 750 mW. Intuitively, this enhancement is due to the standing wave formed

inside the resonator by the large difference between the time light takes to complete

a round trip compared to the time it remains in the cavity on average.

2.3.4 Polarization of Whispering Gallery Modes

Even a resonator fabricated from a homogeneous material can support modes of

two polarizations in the same way a WG can. The accepted definitions of trans-

verse electric (TE) and transverse magnetic (TM) modes are as follows: TE modes

have Ez = 0 everywhere, while TM modes have Bz = 0 everywhere. In a WGM

resonator, the same conventions hold only approximately, especially for devices that

have lower symmetry (a shallow wedge shape, for example [60]). Fig. 2.3.4 shows

the different shapes for an example mode with the same mode number, but for dif-

ferent polarizations. The results are from a full-vector numerical solver discussed in

Ch. 5 [17, 40].
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Fρ(ρ, z) iFφ(ρ, z) Fz(ρ, z)

H(ρ, z)

E(ρ, z)
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E(ρ, z)

R = 10µm, h = 300 nm, Mode number: {110, 1, 1}

TE mode: λ = 1608.2 nm

TM mode: λ = 1330.2 nm

Figure 2.3.4: The numerical simulation for two eigenmodes differing only in polar-
ization of a Si3N4 resonator is shown here. Note the difference in eigenfrequency.
The columns show the different components (ρ, φ, z) of the field vectors, while the
rows show the E and H fields of the two polarizations. The color scale represents
the field magnitude (each component is only real) of that component only. The scale
is relative.

2.3.5 Phase Matching in Micro-Resonators

For a FWM interaction, the energy conservation condition is easily stated in a

frequency-equivalent manner (as E = ~ω) as

ω1 + ω4 = ω2 + ω3, (2.3.6)

where each frequency ωi, i ∈ {1, 2, 3, 4} is an eigenfrequency of the micro-resonator,

monotonically increasing. The best performance requires four simultaneous res-

onances, although this is not strictly necessary [61]. Momentum conservation is
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expressed as

m1 +m4 = m2 +m3, (2.3.7)

where mi is the modal number. Because for a given m, the frequency-dependent

dispersion properties of the material govern the corresponding eigenfrequency of the

primary mode, meeting both of these conditions in practice is somewhat difficult.

This is especially true for smaller devices.

There are various methods used to overcome this challenge, these fall into two

categories: quasi-phase matching, and geometry engineering. For the devices of

interest, we will use geometry engineering (or polarization mode selection) as it

preserves the high optical nonlinearity of the material. Another consideration is

that generally even moderate pump powers needed for FWM will disturb the cavity

due to thermal effects.



52

3 Quantum Frequency Conversion

Simulation

The combination of nonlinear media with strong classical waveforms has opened up

new applications for manipulating quantum signals [16]. Similarly, fiber optics is a

strong candidate for the exchange of information between nodes of a quantum net-

work. Tools are needed with are capable of manipulating and measuring spatiotem-

poral modes of a quantum optical signal. Using QFC, we propose a mode-selective

quantum signal upconverter. In this chapter, we simulate a receiver which is capable

of manipulating arbitrary optical waveforms while, in principle, exhibiting extremely

low loss and noise. Our technique relies on a SFG process in a χ(2) WG where the

pump pulse is generated in an arbitrary waveform. The signal is a waveform com-

prised of a set of orthogonal yet spatially, spectrally and temporally overlapping

time modes indicative of those generated by an entangled photon source. The sim-

ulation work aims to optimize the waveform of the pump in order to select out an

individual mode of this basis by frequency upconversion [62, 63, 16, 64, 65].
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3.1 Quantum Optical Arbitrary Waveform Manipula-

tion Simulations Introduction

We present numerical simulations for an optical technique capable of temporal mode

selectivity for quantum signals. Various applications such as ultradense quantum

coding or high-speed quantum computing can benefit from this optical technique

[66, 67].

An entangled photon source, such as a SPDC crystal, naturally produces pho-

tons in superposition of overlapping temporal modes. We harness this mode-set

for our system. This simulation specifically focuses on the receiver properties,

which performs mode-selective QFC of the carrier frequency of the target mode

(ωr = ωs + ωp, where r is the upconverted light) [46, 68]. QFC is a process where

the carrier frequency of the photon is translated without disturbing its quantum

state; it is the quantum analog to SFG for classical waveforms. The receiver also

has the advantage that the upconverted light is in the near visible spectral range,

which can then be detected by a relatively low-cost and efficient silicon-based single-

photon detector (SPD).

Experimentally, the upconversion is performed in a periodically-poled potas-

sium titanyl phosphate (PPKTP)[69] or reverse proton exchange patterned LN WG

[70, 71] on which the signal modes and the pump is incident. Various schemes for

the layout of WG and pumps have been studied as shown in Fig. 3.1.1 [50], but

the core functionality is the same. With a large material χ(2) and tight mode con-

finement compared to bulk crystals, the WG at the center of the experiment has

a high effective nonlinearity. Ridge-loaded or patterned LN on-chip WGs promise

even higher efficiencies and even compact footprints, not to mention integration with

other optical elements [72, 23, 73]. Our simulation outlined here applies to any χ(2)
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system.

In order to ensure phase-matching, our device needs to be poled as discussed

in subsection 2.2.2. This allows us to operate with a strong classical pump and

signal in the telecom C-band with a sum-frequency below 800 nm for only a 2/π

reduction in the optical nonlinearity. Finally, because we aim for telecom signals

and pumps, our input beams can leverage fiber optics for transmission and readily

available filters and amplifiers for pump preparation.

We need to tailor the temporal shape of our pump waveform for signal mode

selection. We accomplish this experimentally by manipulating the optical waveform

in the frequency-domain by cascading a radio frequency (RF)-driven phase and

amplitude modulator-based frequency-comb source [74, 75] with an optical arbitrary

waveform generator (OAWG) which modulates the phase and amplitude of each

comb line independently [76]. This gives us control of the pump pulse up to the

bandwidth limited by the RF comb which performs the desired operation efficiently

with minimal cross-talk [76, 77, 78]. Finally, a erbium-doped fiber amplifier (EDFA)

amplifies the resulting pump pulses to the required power level necessary for the

conversion process.
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Figure 3.1.1: Two different schemes for the experimental implementation of the
receiver. Both share pumps generated via a OAWG which up-converts an individ-
ual mode of the signal. (a) is a sequential scheme, which would require multiple
waveguides for the signal to pass through. (b) is the parallel scheme, where one WG
with n PM peaks can upconvert n modes of a signal into n different frequencies.
Simulations for both schemes are discussed in this chapter.

We are interested in simulating the waveguide interaction in order to iteratively

optimize the shape of of the mode-selective pumps. Our comb-source bandwidth is

B = n × fcomb. Experimentally, our modulator driving frequency and therefore

spectral line spacing is fcomb = 20 GHz, while we are limited to n = 17 comb lines,

for a total bandwidth of B = 340 GHz. However, larger bandwidths are accessible

and some simulation work will reflect this as pump bandwidth is a fundamental

constraint on the system. Another is the parameters of the waveguide in terms of
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its dispersion but also its fabrication. We also address the problem of WG width

variations which perturb the waveguide dispersion through a statistical model in

Appendix B.

3.2 Simulation Overview

The simulation effort focuses mainly on the WG nonlinear optical interaction central

to the receiver. Our goal is to select out via frequency upconversion only a single

temporal mode of the signal set via pump shaping. In order to solve this inverse-

design problem, we have two numerical components; the numerical SFG solver,

and the optimization routine which uses this solver in order to design the pump

shape.

Subsection 3.2.1 covers solution of the nonlinear equations of motion, while

3.2.2 discusses the optimization routine to determine pump waveforms. Appendix

A contains the full MATLAB code and some notes on its performance.

3.2.1 Propagation Solver

To quantify the performance of our receiver, we need to simulate the efficiency of

upconverting a given signal mode from a temporal mode set based on a pump wave-

form in a χ(2) WG. We use the split-step Fourier method [1] to solve the equations

of motion because of its proven efficiency compared to finite-difference methods

(FDMs) . The algorithm relies on very efficient, parallelized, fast Fourier transform

(FFT) algorithms. We use Matlab’s built-in implementation of the FFTW library

(see Appendix A.3 for more details).

In this simulation, we simplify the equations of motion by assuming that the
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Figure 3.2.1: Schematic of the OAWG device. A frequency comb is demultiplexed.
Each individual line is modulated in both amplitude and phase. The output wave-
form is generated after the modified lines are multiplexed together.

waveguide is single-mode for all wavelengths of interest. We also assume that the

group-velocity mismatch between the upconverted light and the signal/pump pair

is the only significant form of chromatic dispersion . This naturally implies that

the dispersion of each of the three pulses is negligible over the frequency span of

the pulse. However, additional dispersion terms can be added if the process under

investigation warrants it. The equations of motion for the signal and idler in the

undepleted pump regime are:

(
∂

∂z
+ βr

∂

∂t

)
Air(z, t) = iγAp(t− βpz)Ais(z, t), (3.2.1)

(
∂

∂z
+ βs

∂

∂t

)
Ais(z, t) = iγA∗p(t− βpz)Air(z, t), (3.2.2)

where Ap(t) represents the pump amplitude at frequency ωp, while Air and Ais are

the amplitudes of the upconverted and signal light for temporal mode i, respectively

[62, 64]. βi, i ∈ {r, s, p} is the inverse of the group velocity for each of the three
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Figure 3.2.2: A split-step Fourier solver numerically solves for the interaction of the
3 optical waves in the waveguide. The device is divided into N segments of length
h. (a) shows the standard split-step Fourier method, while (b) shows the symmetric
version.

waves. We operate under the condition that βr 6= βs = βp, as stated above. γ

depends explicitly on the optical nonlinearity of the WG and the overlap of the

spacial modes of the three electric fields in the device.

The split-step Fourier method relies on the approximation that dispersion terms

and nonlinear terms of the equations can be treated independently. Re-writing the

NLS as

∂A

∂z
= (D̂ + N̂)A, (3.2.3)

where D̂ is the differential operator that accounts for dispersion and loss, while N̂
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is responsible for the nonlinear interaction in the medium. While in general both

operators act together over the length of the WG, a good approximation can be

made by dividing the WG (length l0) into N parts and assuming each operator

acts independently over the a small distance h = l0/N . Numerically, the step from

position z to z + h can be written as:

Az+h(t) ≈ ehD̂ehN̂Az(t), (3.2.4)

≈ ehD̂A′z(t). (3.2.5)

By replacing the operator ∂/∂t with −iω, D̂ can be evaluated exactly in the Fourier

domain via:

ehD̂A′z(t) = F−1
[
ehD̂(−iω)F [A′z(t)]

]
, (3.2.6)

where F denotes the FFT. Figure 3.2.2 shows a schematic of the simulation.

An improved version, the symmetrized split-step Fourier method, reduces the

error of the approximation to third-order in the step size h. This method estimates

the effect of the optical nonlinearity in the middle of the segment of length h, instead

of at the start in the method outlined above. Finally, we note that the code has been

extended to allow arbitrary QPM gratings and multiple pump and signal waveforms.

This ability allows us to study both schemes shown in Figure 3.1.1.

3.2.2 Optimizer

In order to optimize the performance of the receiver, distinct pump waveforms are

needed for each operation. We optimize the amplitude and phase of the individual

comb lines that constitute the pump shape via a random walk method [79].

The iterative method works by taking the initial state of the comb lines and
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Figure 3.2.3: The flow of the optimizer routine for system efficiency. One lap of the
above loop represents one iteration of the solver. l represents the current iteration
index, while Bl is the metric used to evaluate performance, as described in subsection
3.3.1.

randomly tuning them. We randomly select a comb line then randomly modulate

both its amplitude and phase individually. This new state of comb lines corresponds

to a pump which is propagated through the WG via the solver described in the

subsection above. Performance of the new pump is checked via a metric against

the previous solution. If the new pump performs better, it is then used as the

initial condition for the next iteration of the loop. One iteration is shown in Fig.

3.2.3.

A conditional statement implemented in the solver allows an iteration to, in

effect, take a step backwards. This step accepts a pump with lower performance than
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the previous iteration with a probability given by one minus the ratio of current and

previous performance. With this step, the optimization routine can avoid settling

in a local minimum of the optimization problem.

The optimization adjusts the amplitude and phase of each line of an arbitrary

comb source in order to tailor the pump shape. The comb lines are related from one

iteration to the next by

Cil = Cil−1

(
1 + δaRaei(2πδφ)Rφ

)
, (3.2.7)

where Cil is the complex amplitude of the i-th comb line at the l-th iteration of the

optimization loop. δa (δφ) is the tuning parameter representing maximum possible

variation of the amplitude (phase) while Ri is an independent random number

uniformly distributed between −1/2 and 1/2.

The initial condition for the pump shape is based on the mode that it will up-

convert. This waveform is superimposed with the shape generated by a comb source

with equal amplitude in each line. Because each comb line has a non-zero amplitude

compared, random modulations of any line will have an effect on the performance

of the receiver. An initial condition based on only a subset of available comb lines

will be limited to those lines because of the way amplitudes are updated. Figure

3.2.4 contrasts a typical signal mode with the initial condition for the optimization

for it’s pump waveform.

3.2.3 Quasi-Phase Matching Grating and Nonlinearity

The solver supports arbitrary QPM gratings and optical nonlinearity. While a

traditional square pattern is efficient, as seen in Section 2.2.2, other distributions can
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Figure 3.2.4: The pump initial condition is a combination of the profile of the target
signal mode combined with a flat spectrum. The temporal, (a), and spectral, (b),
profile of the target signal is shown with the corresponding initial condition for the
pump temporal, (c), and spectral, (d), waveform

be advantageous. Chirped gratings reduce undesirable effects from other nonlinear

interactions due to the sinc(x)2 phase-matching spectrum. The ability to simulate

waveguides with multiple PM peak waveguides is leveraged in Section 3.6. Changing

the nonlinearity scales the pump amplitudes uniformly so it’s exact input value is

not relevant to us.

3.3 Simulation Results

Here we show the results of simulation work for mode-selective upconversion. We

simulate the operation of our receiver design on an example quantum signal mode

set which can be generated with a phase-matched SPDC source driven by a 15-
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ps duration pump pulse with fifth-order super-Gaussian spectral shape. Using the

optimization routine outlined above and the phase-matching information of our

waveguide, we generate optimized pumps for mode-selective QFC.

3.3.1 Performance Metrics

The performance of the receiver comes down to conversion efficiency. Converting

the modes we need to measure without converting those we do not need. We denote

conversion efficiency as the ratio η(i,j), which is the ratio of power of light upcon-

verted by pump j from signal mode i over the input signal power in mode i in

the classic optical wave case. In the quantum regime, this efficiency represents the

probability of upconverting a photon that is in mode i by pump mode j.

In order to understand the holistic performance of the receiver in presence of

many signal modes, three new metrics are considered:

Sk =
η(k,k)∑n
i=1 η(i,k)

, (3.3.1)

Bk = η(k,k) × Sk =
η2

(k,k)∑n
i=1 η(i,k)

, (3.3.2)

D =

√√√√
n∑

i=1

n∑

j=1

(
η(i,j) − ηT(i,j)

)2
. (3.3.3)

Sk is the system selectivity. It measures the ability of the receiver to select one and

only one mode, k. The sum over η is over the total number of modes generated by the

entanglement source. ηT(i,j) are the target efficiencies, or goal of the final result. Bk

extends this measure into one value that attempts to characterize the overall system

efficiency by combining the system selectivity with the efficiency of converting the

mode of interest. A high selectivity but low system efficiency describes a device that
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only selects the correct mode with high effective loss. Finally, we use D to represent

the geometrical distance between the current set of conversion efficiencies and the

target performance. For example, the ideal receiver would satisfy target efficiencies

ηT =




1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1



, (3.3.4)

where ηT is square of size n and
∑n

k=1 Sk = n,
∑n

k=1Bk = n, D = 0. This device

would convert the target mode with 100% efficiency and only this target mode across

the whole temporal overlapping signal set.
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Figure 3.3.1: In these three test cases, the results of optimizations based on distance
(D) and weighted selectivity (B) are shown.

We typically optimize to minimize distance, as this one parameter summarizes

the performance of receiver, as seen in Fig. 3.3.1. Generally the other metrics trend

with D. However, we can modify the target efficiency matrix to tune the goal of the

simulation.

In the (classical) validation of the receiver, individual signal modes can be
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prepared by an OAWG in the same way pump pulses are generated, allowing us to

directly measure each conversion efficiency independently.

3.3.2 Selectivity Results

The first simulation of the receiver is also the most basic. We show the ability of

our method to mode-select via QFC a single or a superposition of input modes. For

our example, we consider the Schmidt modes of a two-photon state generated via

SPDC driven by a 15-ps duration, fifth-order super-Gaussian pump pulse [80]. The

signal/idler spectral windows are defined by rectangular 5.4-nm filters.

We numerically optimize pump pulse shapes for the photon modes described

above for a commercial 6-cm long WG with a inverse group velocity difference of

2.54 ps/cm and negligible group velocity dispersion. Fig. 3.3.2, the first, fifth, and

tenth mode signal modes (a) are plotted and their corresponding pumps (b). The

desired phase and relative amplitude of the OAWG manipulated comb lines for the

first and fifth mode is shown. Extending this further, the conversion efficiency of all

10 modes for each of the 10 pumps is shown in Fig. 3.3.3. Each mode is upconverted

with over 90% efficiency, however cross-talk increases (selectivity decreases) as the

mode number increase.

In order to show the flexibility needed for operation of this receiver in a quan-

tum communication setting, it is important to show that performance is maintained

across arbitrary coherent superpositions of these modes. We consider the superposi-

tion ψ± = 1/
√

2(ψ1±ψ5) as an example. The performance of the receiver for modes

re-optimized for this superposition basis is shown in Fig. 3.3.4. The performance

is nearly identical to that of the previous Schmidt basis. We note that the pump

amplitudes and phase of the newly optimized pumps are significantly different than
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Figure 3.3.2: (a) is the first, fifth, and tenth signal modes. (b) is the corresponding
simulated pump modes generated via OAWG in order to maximize selectivity of the
receiver. (c) and (d) are the amplitude and phase of each individual comb line for
the first (c) and fifth (d) pump waveform. The pump amplitudes here are arbitrary,
however for a typical LN or PPKTP WG, the peak power of the pump pulses is on
the order of watts.

a simple superposition of the non-superposition pump shapes.

In the mode-resolved photon counting scheme shown in 3.1.1(a), after passing

through a stage of receiver, the mode profiles of the upconverted photons may

be modified. However, numerical simulations show that the modes maintain their

orthogonality. Fig. 3.3.5 shows that receiver can overcome this distortion also if we

optimize pump shapes at each stage to match the evolving signal set.
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Figure 3.3.3: Conversion efficiency matrix for ten signal modes. The n-th pump
mode is optimized to maximize selectivity of the n-th signal mode. Off-axis terms
represent cross-talk due to imperfect selectivity.

3.4 Waveguide Width Variations

It has been shown that variations in WG width due to fabrication inconsistencies

are a leading cause to distortions in the shape of the phase-matching bandwidth

of a WG [48]. Because our devices suffer from this distortion measured via SHG

with a tunable wavelength pump, we modified the numerical solver discussed in

subsection 3.2.1. By including a position-dependent phase-mismatch, ∆k → ∆k(z),

we can simulate the effects that these variations have on the performance of our

receiver.

Because we cannot make the direct measurement of the complex transfer func-

tion (CTF) of our device (as done in [48]), we instead built a statistical model to

simulate these effects. Comparing the spectral PM dependence calculated from the

model to the measured dependence of the conversion efficiency of our WG for SFG

allows us to select a small range of CTFs that are representative of the physical de-
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Figure 3.3.4: (a) The signal modes, ψ± = 1/
√

2(ψ1 ± ψ5). (b) The corresponding
pump modes for ψ± are Ψ±. These pump modes are not simple superpositions
of the non-rotated basis pumps. (c) The conversion efficiency performance in the
‘superposition’ basis is nearly identical to that in the original basis.

vice used in the experiments. Measuring the phase relationship between the input

and output light would give us an exact model to feed into the simulation. Appendix

B describes the details of this statistical model.

3.4.1 Width Variation Compensation

The waveguides used in these experiments were fabricated by Martin M. Fejer’s

group from Stanford University, who are world leaders in poling and chip fabrication.

Despite this, our devices suffer from non-ideal PM curves, as shown in blue in Figure.

3.4.1. Because we do not have a sum-frequency generation cross-frequency resolved
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Figure 3.3.5: (a) The fifth signal mode after one stage, ψ5, and the corresponding
pump pulse, Ψ5. The amplitude is arbitrary. (b) A plot of η(i,5). The conversion
efficiency is roughly 10% for mode four and six.

optical grating to directly measure the phase of the WGs SHG light [48], we built a

model which estimates the CTF and comparing how well it matches the measured

response.
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Figure 3.4.1: The measured PM curve of the actual waveguide used in the experi-
ment is shown in blue. The red curve shows an ideal curve, proportional to sinc2(ω),
for a square QPM grating. The yellow curve represents a numerical estimate of the
measured curve based on varying the width of the waveguide as a function of its
position.

The simulation to generate candidate CTFs starts by estimating the correlation

length and size of width variations in the waveguide. These width variations lead to

local differences in group index, ng, which distort the grating. Because the devices

are 46 mm long, we randomly poll either 23 or 46 times a normal distribution

centered around the expected ∆k with various standard deviations. From this the

CTF can be calculated. See Appendix B for the details of the simulation. In Figure

3.4.1, the best estimate, calculated via sum of least squares from 1000 trials is shown

in yellow.

Ultimately, we are interested in the how these PM distortions affect the mode-

selective receiver. Because the distortion is relatively small, our simulations show

that the optimization algorithm can compensate to some degree and recover some
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of the unperturbed or ideal grating performance. Figure 3.4.2 shows an example of

the simulation results. Here a pump optimized for signal mode 3 is used. When the

exact same pump mode is used with the perturbed grating, the conversion efficiency

of the target mode drops but others increase, which constitutes a drop in selectivity.

After running the optimization algorithm with the perturbed grating, performance

recovers to roughly half way between the ideal case and using the ideal pumps with

the perturbed grating. Expanding this to other pumps in the mode set, Figure.

3.4.3 shows that re-optimization can compensate for a perturbed grating to recover

selectivity and efficiency for each pump simulated.
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Figure 3.4.2: We compare the results between the ideal and perturbed gratings for
a pump optimized to upconvert mode 3 from a signal set. We compare the original
pump shape, the original pump shape on the perturbed grating, and a re-optimized
pump specifically for the perturbed grating. Conversion efficiency and selectivity
increase after the re-optimization despite the non-ideal shape.
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Figure 3.4.3: (a) shows the selectivity, Sk, and (b) shows the system efficiency, Bk.
While Figure 3.4.2 looked at individual conversion efficiencies for a select pump on
the sample signal mode set, this looks at any degradation caused by the perturbed
grating on 5 pumps optimized to upconvert the first 5 signal modes. Colors represent
the same grating as in the previous figure.

3.5 Dispersion Tolerance

In every simulation shown up to now, the signal source and receiver have been

connected with a idealized link which causes no distortion of the signal waveforms.

However, in any realistic communication system, optical fiber will be used which

has non-negligible dispersion. During fiber transmission, even a small amount of

residual dispersion (due to imperfect dispersion compensation, for example) in the

fiber links can significantly disrupt the overlapping time-frequency modes and induce

cross-talk between them, resulting in information error on the receiver end. Figure

3.5.1 shows the system under simulation.
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Figure 3.5.1: Schematic of the simulated system. 100 km of SMF is used to for
the transmission fiber. DCF is added as part of the receiver system in order to
compensate for the inherent dispersion in such a long transmission line.

3.5.1 Fiber Link

The fiber link consists of 100 km of transmission fiber, with loss and dispersion con-

sistent with TrueWave Reduced-Slope fiber. After the fiber link, there is a spool of

dispersion-compensating fiber (DCF) to reduce chromatic dispersion effects caused

by the transmission fiber. However, there is a residual 2% slope mismatch between

the transmission and compensation fibers which leads to 8 ps/nm of residual disper-

sion, typical of a real-world scenario. This residual dispersal dispersion is the cause

of the pulse changes in Figure 3.5.2
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Figure 3.5.2: Three signal modes, and their superpositions are shown before (top
row) and after (bottom row) transmission in the fiber link. Despite the presence of
DCF, the final pulses are distorted.



76

3.5.2 Simulation Results
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Figure 3.5.3: The pump mode shapes needed for the standard case, (a), and the
superposition case, (c). (b) and (d) show the respective conversion efficiency matrix
for the 3 pumps.

For practical considerations, consistent with our experimental implementations, we

use an OAWG with 20 comb lines spaced at 10 GHz as the input to shape the pump

waveforms. The QFC process occurs in a 8-cm-long periodically-poled lithium nio-

bate (PPLN) waveguide with 3-ps/cm group-velocity difference between the pump

and the up-converted (sum-frequency) light. As shown in Figure 3.5.3, high selec-

tivity is possible despite the residual dispersion. The upconversion efficiency for the

target signa mode is over 95% for each of the 3 cases shown, while selectivity is over

85%. Performance of the receiver is broadly similar for the superposition modes

shown in Figure 3.5.2, which is crucial for quantum communications. Furthermore,
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this result showcases the generality of our scheme for any basis of orthogonal tem-

poral modes.

3.6 Multi Phase-Matched Waveguides

In order to implement the multiplexed scheme shown in Figure 3.1.1, we need a

parallel QFC implementation [50, 16]. With each pump at a distinct central wave-

length, λi, the WG needs to be poled in such a way that it has multiple QPM peaks.

Each peak corresponds to a pump which corresponds to a signal mode which will

be upconverted to a unique wavelength. The major advantage of the parallel vs

sequential layout is that the former requires one WG, making it more compact and

dramatically reducing the transmission loss of the quantum signal input. While loss

scales linearly with the number of signal modes in the sequential case, it is con-

stant in the parallel case. However, the requirements for poling are stringent and

may introduce higher cross-talk (reduced selectivity) because of the nature of the

phase-matching spectrum of the mutli-peaked WG, as shown in Figure 3.6.1.
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Figure 3.6.1: The x-axis of this plot is normalized to the wavelength of the funda-
mental grating, Λph, so that the spatial frequency is (∆β −KQPM)/(2π/Λph). For
SHG with a pump in the telecom C-band in this waveguide, the peaks are roughly
2 nm apart in optical wavelength. Each peak has a sinc2 shape. The inset shows
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3.6.1 Preliminary Results

Simple 2x2 simulation results, using a 20-GHz spaced 20-line comb are shown in

Figure 3.6.2. In this case, the two adjacent PM peaks were used to see if cross-talk

would increase. The conversion efficiency for the target signal mode was roughly

85%, while no cross-talk terms were greater than 10%. These results can be further

improved by increasing the total bandwidth of the comb either by increasing it’s

spacing or number of comb lines [50].
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Figure 3.6.2: The signal and matched pump modes for the preliminary simulation.

3.6.2 Conversion Efficiency and Cross-Talk

Experimentally, our comb-source for this multi-peaked WG was initially limited

to only 17 comb lines spaced 20-GHz apart. The results presented here show the

simulated performance of the device in this configuration. However, we will also

show that the system can benefit from increased optical pump bandwidth.

In the experiment, the signal modes are classical signals generated in the exact

same way as the pumps, using an OAWG. The 4 signal modes are based on realistic

modes that would be produced by a SPDC source but produced in this way to

ease study of the system. Modes can be sent in as a complete set or individually,

and we can measure the upconversion with a simple powermeter [62]. With these

pre-determined signal modes as our target mode-set, we optimize the pump shapes

using the simulation to estimate the performance of the device. Presented below

are the results of this simulation work under the constraints of the experimental
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setup.

Conversion efficiency and selectivity for the initial 17-line 4-by-4 system is

shown in Figure. 3.6.3. After 200 iterations of the optimization algorithm, the

selectivity and conversion efficiency start to plateau. Figure 3.6.5 shows that ex-

actly, with a further 500 iterations providing no improvement in the key metrics.

As another test of the waveforms, in Figure 3.6.4, we vary only the intensity of the

pump, keeping its shape the same. We see that conversion efficiency and selectiv-

ity tend to both peak near 1, which is equal to the pump power generated by the

optimization routine.

Another consideration is whether adjacent nonlinear processes (in spatial fre-

quency) will have a higher cross-talk. Figure 3.6.6 shows that at least in an ideal

situation, this is not the case. Optimization produces roughly the same perfor-

mance for both modes whether the pumps are in adjacent spectral peaks (case 1)

or at either end of the QPM spectrum (case 2).

Finally, as we saw in the 17-comb line case, the ultimate performance of our

device is bandwidth limited. In Figure 3.6.7 we increase the bandwidth of our pump

without increasing the number of parameters in our optimization by increasing the

RF spacing of the lines. While a 160 GHz spacing supported by an RF comb is

unrealistic, this spacing is easily accessible with a WGM resonator-based frequency

combo or an RF-based device with a lower frequency but increased comb lines.
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Figure 3.6.3: Conversion efficiency, (a), and selectivity, (b), for the 4-by-4 system
simulated after 200 iterations of the optimization loop.
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mized waveform. We vary only the intensity of the pump, not the waveform for this
simulation.
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Figure 3.6.5: Running the optimization for another 500 iterations produces no sig-
nificant increase in performance.
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Figure 3.6.6: Simplifying the system to two pumps, we change the separation be-
tween adjacent QPM peaks in case 1 against farthest peaks. The results are nearly
identical. Cross-talk due to the unique poling is negligible in this simulation.
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Figure 3.6.7: Increasing the spacing of the comb increases the bandwidth without
an increase in the number of parameters that the optimizer needs to contend with.
As an exercise, even unrealistically high RF frequencies are included because the
total bandwidth may be realizable with a different comb-number vs comb-spacing
tradeoff. (a) shows the conversion efficiency of pump 1, while (b) shows the same
for pump 2.
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Figure 3.6.8: This is the selectivity complement to Figure 3.6.7.



84

4 Photon-Pair Generation Experi-

ment

We have demonstrated a a:Si-H WG for photon-pair generation. The measured

CAR is as high as 400 for multiple signal-idler channels. The multiple advantages

of this material, as outlined earlier, are its very high optical nonlinearity, CMOS

integrability, and very low TPA [31, 32, 33]. We harnessed these properties in the

telecommunications C-band to show CAR performance at two different detunings

(15 and 20 nm) at room temperature. Previous work in this material showed a much

lower CAR due to higher linear loss and a lower nonlinear coefficient, γ [81].

Compact sources of photon pairs have been developed in c-Si WGs, however

the practical performance of these devices is limited by strong TPA and free-carrier

absorption (FCA) effects [28, 29]. The high deposition temperature required for

c-Si chip integration is another disadvantage to this material because it complicates

integration with other chip features such as electrical devices.

4.1 Device Details & Experimental Setup

The a:Si-H WG used in this experiment was fabricated by Mark Foster and Amy

Foster’s research groups in the electrical and computer engineering department at

JHU. The experiment was carried out at Northwestern. The device is 8 mm long and
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has inverse tapered edge couplers to reduce chip-to-fiber coupling loss. The cross-

sectional geometry (215 nm by 500 nm) gives a group-velocity dispersion (GVD)

of roughly 350 ps/(nm km) at the pump wavelength of 1555.8 nm which is chosen

for efficient FWM. Using the cutback method on a device from the same batch,

we estimate the loss to be ≈ 3.2 dB/cm, but it may be possible to reduce this

to less than 1 dB/cm by using a different cladding material [82] or modifying the

fabrication technique to reduce WG wall surface roughness[83]. By using a classical

FWM measurement of conversion efficiency, we directly measured the γ of our device

to be 1260 W−1m−1 which is an order of magnitude better than a typical c-Si WG

(roughly five orders of magnitude than silica). Our collaborators have fabricated

devices with γ ≈ 3000 W−1m−1 [31], which if it can be reliably combined with

lower loss, will lead to a lower required pump power and increased photon-pair

brightness.

The experimental setup is shown in 4.1.1. A mode-locked femotsecond laser

(IMRA CX-20) with a repetition rate of 50 MHz is filtered via wavelength-division

multiplexing (WDM) filters centered at 1555.8 nm with a non-Gaussian pass-

bandwidth of roughly 1 nm. A combination fiber polarization controller (FPC)

and fiber polarization beam splitter (FPBS) is used to control the output power

of the laser. A second FPC is used in order to ensure correct polarization of the

input pump because the designed geometry of the WG is tuned for TE-polarized

FWM. To couple light into the chip, a standard lensed fiber is used, while the output

coupling is done via a lens-collimator assembly that transmits the light from the chip

into single-mode fiber (SMF). The polarizer inside the free-space output coupling

removes any cross-polarized light. The fiber-to-fiber efficiency is roughly 8 dB, split

roughly evenly between the input and output coupling. A free-space triple-pass

grating filter (TGF) serves two functions. First, it isolates the pump by over 100
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Figure 4.1.1: The experimental setup is shown above. Left inset: Scanning electron
microscope image of WG. Right inset: The simulated electric field profile of the
device for the TE polarization.

dB, which is key to the function of the InGaAs avalanche photodiode SPDs. Finally

it defines a Gaussian-like bandwidth of roughly 0.65 nm for the signal/idler pair.

The loss through the filter is 2.6 dB and can be manually tuned over a range of

detunings.
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4.2 Raman Measurements

The photon counts at two different pump-signal detunings, 15 and 20 nm were taken

as the pump power was varied in order to characterize the Raman noise contribution

to the photon-pair generation rate. In Fig. 4.2.1, the detection efficiency corrected

single-photon counts are plotted as a function of input pump peak power for a

detuning of 20 nm. The overall detection efficiency , ≈ 2.7% for the Stokes (and

≈ 1.9% for the anti-Stokes) channel, is due to the losses of the coupling system,

filter setup, and sub-unity (near 15%) quantum detector efficiencies. Detector dark-

counts were also subtracted from the signal counts [84], which for our InGaAS SPDs

were greater than 5 kHz per detector channel.

In a low-conversion regime, γP0L � 1, where P0 is the instantaneous pump

power and L is the interaction length of the WG, the Raman scattering contribu-

tion to the photon count is linearly dependent upon the pump power. However,

the FWM photon generation rate is quadratic with pump power, which gives us a

straightforward way to characterize these two distinct processes. We fit our data

(as shown in Fig. 4.2.1) with

nu = ∆νu

∫ (
|γP0L|2 + P0L|gr|Nu

)
dτ, (4.2.1)

where u = s, a refers to the Stokes or anti-Stokes channels [45]. δνu is the filter

bandwidth that defines the bandwidth of the channels (the bandwidth of the TGF).

Nu is the phonon population given by the thermal distribution as shown:

Na(Ω, T ) =
1

e~|Ω|/(kbT ) − 1
(4.2.2)

Ns(Ω, T ) =
1

e~|Ω|/(kbT ) − 1
+ 1 (4.2.3)
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Figure 4.2.1: Measured single counts as a function of pump power for a detuning
of 20 nm after dark-count subtraction. Also shown is the count in the absence of
Raman noise photons.The statistical error bars are within the marks.

where Ω = ωp − ωs and T is the temperature of the WG (room temperature in our

case). The integral in 4.2.1 is over the temporal duration of the pump pulse to yield

the photon number per pulse.

The fit shown in Fig. 4.2.1 is a least-squares fit of Eq. 4.2.1 with only |gr|,

the magnitude of the Raman gain coefficient as a free parameter. The calculated gr

is 28 ± 3 W−1m−1 for the Stokes channel, and 38 ± 3 W−1m−1 for the anti-Stokes

channel at 20 nm. For 15 nm, the values are 30 ± 5 W−1m−1 and 45 ± 8 W−1m−1

for the Stokes and anti-Stokes channels, respectively.
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4.3 Coincidence-to-Accidental Ratio Results

The dark-count subtracted CAR is plotted in Fig. 4.3.1, and the corresponding

coincidence and accidental counts per pulse are plotted in Fig. 4.3.2 for both de-

tunings. For a detuning of 15 nm, the maximum CAR is nearly 400 for 2.8 × 106

pump photons per pulse. This is a photon-pair generation rate of 1.3×10−3 photons

per pulse. In the 20 nm case, the CAR is almost 170 for a slightly higher pump

power and photon-pair generation rate (2.2× 10−3 photons per pulse). In compar-

ison, previous work with this material achieved a CAR of less than 10 due to very

high loss [81]. Fiber sources on the other hand, require specific detunings to avoid

Raman gain peaks and cryogenic temperatures to reduce the phonon population

enough to achieve similiar CAR values [85]. Our WG achieves this performance

for a compact, room-temperature device which promises scalability and integration

with other optical elements.

The a:Si-H WG we studied has demonstrated efficient photon-pair generation

over a large detunning (Ω). Despite the amorphous structure, which results in

spectrally broader Raman gain, compared to c-Si, the large nonlinearity and low

two-photon absorption facilitates the generation of high-quality pairs are gener-

ated.
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4.4 Conclusion

We have shown photon-pair generation using a a:Si-H WG with exceptional CAR

over multiple, widely detuned wavelength channels. Because of the high optical

nonlinearity of our device, the pump power requirement is lower than competing

χ(3) systems which are CMOS compatible. Despite the presence of moderate Raman

gain for the two detuning presented, no cryogenics are needed for high CAR of up

to 400.

Based on our result, we see promise for this material in future large-scale in-

tegrated quantum optics applications. Because of its compact size of our device,
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this material is especially well suited to traveling wave designs. A possible future

application is a large multiplexed heralded single-photon source which would be an

enabling technology for many quantum optics experiments.
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5 Microresonator Eigenmode Simu-

lation

We study the linear properties of a WGM resonator by first solving for the eigenfre-

quencies and electromagnetic field distributions of the supported resonator modes

using a FEM solver [40]. Our simulations described in the following sections are

critical to understanding the dispersion of the cavity and modal volume of the res-

onant modes. These parameters are crucial to the nonlinear interactions simulated

in later chapters. We also compare the numerical model to an analytic one based on

an effective index method. Finally, we use coupled mode theory (CMT) in order to

understand the evanescent coupling between a WG and the microring or microdisk

[86, 87].

5.1 Numerical Method Framework

A simple rearrangement of Maxwell’s equations will produce the magnetic field wave

equation,

∇×∇×H = − εr
c2

∂2H

∂t2
, (5.1.1)

which is the basis on which the simulation is built [39]. This equation is used over

the typical electric field wave equation because as long as each element has the same

magnetic susceptibility, the magnetic field will be continuous across interfaces [40].
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Next, we assume that the resonator’s components are temporally invariant, besides

the general sinusoidal oscillation at frequency ω. The magnetic field solution takes

the form

H(r, t) = H(r)e−iωt. (5.1.2)

where H(r) is the temporally invariant spacial distribution of the magnetic field.

As the relative magnetic permeability is 1, the constitutive relation for the magnetic

field is simply B = µ0H as before. Because of the axial symmetry of the resonator

structure, the accumulated round-trip phase must be periodic for a supported mode,

therefore H(r) ∝ eimφ, where m ∈ Z and represents the mode’s azimuthal mode

number. This is the first of two (or three) mode numbers.

5.1.1 Simulation Setup

Based on previous work [40, 88], we implemented a fully-vectorized numerical solver

in the FEM software, COMSOL. This allowed us to solve for the resonant WGMs

by only assuming the radial symmetry of the device. While analytic modes work

well for spherical or toroidal resonators, our numerical method has proven to be

more accurate for the planar disks and resonators typical in integrated platforms

like ours.

One of the advantages of this model is that the user can set m so that only a

certain family of modes can be studied, which as an example, simplifies parameter

searches for satisfying PM conditions. Other than the restrictions inherent in the the

2-D axial symmetric geometry and those listed above, the solution of the eigenmode

of the resonator is of the form below:

H(r) = eimφ{Hρ(ρ, z), iHφ(ρ, z), Hz(ρ, z)}. (5.1.3)
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From this solution the corresponding electric fields can easily be solved for.

We should note that the model does not completely ignore the tensor nature of

the electric relative permittivity. However, this method constraints it to its diagonal

form,

εr = {ε⊥, ε⊥, ε‖}, (5.1.4)

where ε‖(ε⊥) is in the axial direction (in the transverse plane). This allows us

to simulate devices that have birefringence as long as the material is z cut, which

extends the scope of this method beyond the the χ(3) results shown here. Strekalov et

al. used our model to calculate the geometry needed for a lithium niobate resonator

to be naturally phase-matched for both frequency doubling and parametric down

conversion [15].

5.1.2 Refractive Index
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Figure 5.1.1: The refractive and group index of bulk Si3N4 are shown. The material
has anomalous dispersion only above 1585 nm.
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The model relies on the Sellmeier equations for index as a function of wavelength

to simulate the dispersion of the cavity. In the case of Si3N4, we use an expression

for the index of refraction of the form,

n2(λ) = 1 +
3.0249λ2

λ2 − 135.34062
+

40314λ2

λ2 − 12398422
, (5.1.5)

which is valid from 310 to 5504 nm [89]. The result is plotted in Fig. 5.1.1. This

is input directly into the numerical model as-is as the refractive index (Re{εr} =

n2(ω)).

The Taylor series expansion of the mode-propagation constant, β, gives relations

for the group velocity, vg, and the group index of light, ng, via the first derivative

with respect to the angular frequency, ω:

β1 =
1

vg
=
ng

c
=

1

c

(
n+ ω

dn

dω

)
, (5.1.6)

ng = n+ ω
dn

dω
. (5.1.7)

The derivative of the inverse group velocity with respect to angular frequency is the

GVD term:

β2 =
1

c

(
2
dn

dω
+ ω

d2n

dω2

)
, (5.1.8)

which is proportional to the dispersion parameter D. The bulk material has normal

dispersion throughout the wavelengths of interest.

5.1.3 Geometry and Meshing

The model relies on the geometric simplification from a three-dimensional ring or

disk to a two-dimensional cross-section in the r̂ − ẑ plane. While this dramatically
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Figure 5.1.2: The geometry of a typical Si3N4 disk simulation is shown here. The
colors represent the mesh element size for the given meshing parameters, dmax =
25µm, cvac = 2.

speeds up computation compared to a full 3-D solver, it complicates the study of

racetrack-shaped resonators or scattering which breaks the axial symmetry of the

resonator. Regardless, once we select a cross-sectional geometry of interest, we can

draw it and have it meshed.

The mesh quality affects both the solution precision and computation time

dramatically. In general, a finer mesh results in a more accurate eigenfrequency.

However, the computation time increases roughly as 1/d̄2, where d̄ is the average

length of a mesh element. A balance needs to be struck between precision and

computation time in order to ensure the best real-world performance of the model.

The general rule of thumb for FEM computations of electromagnetic fields is

five elements per wavelength in the material. Because of the material indexes and

the wavelengths of interest (generally 500 nm to 2µm in vacuum), the maximum

element dimension, dmax, should range from 50 nm to 200 nm in the dielectric.
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cvac = 1.2.

Generally, we do better than this because we have the computational resources and

the precision of the result becomes important for high-Q-factor devices.

We consider two different regions of our geometry when it comes to meshing,

the dielectric element and the vacuum element. Since most of the energy of the

wave is concentrated in the high-index dielectric part, we base the mesh size on this

region. In the vacuum, the maximum mesh size is the dielectric value multiplied

by a constant, cvac. The behavior of various values of cvac and dmax are used to

calculate solution time and convergence in Fig. 5.1.3. The meshing around the

domain boundaries are controlled by the internal COMSOL meshing algorithm.

Results show that good performance is usually met with values of dmax = 25µm,
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cvac = 2, but there is some model to model dependency here.

5.2 Eigenmode Simulation Results

The FEM numerical results are split into two related categories. First is the study

of the modal shapes themselves. This is useful for understanding the resonance

spectrum of the device and how it relates to the order of the modes, {m,n, l} and

the FSR of the structure. It is so important for determining the mode volume and
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Figure 5.2.1: A plot of the change in wavelength for the primary mode, {m, 1, 1},
TE-polarized, for changes in the azimuthal mode number and the radius of a Si3N4

disk. The thickness of the simulated structure is 360 nm.

overlap between different modes. This ties directly into the second part of the results,

which is engineering a geometry so that a nonlinear optical process can be driven.

We shape the disk or ring by adjusting its geometry, polarization and cladding in

order to satisfy both momentum and energy conservation conditions.

The modal structure, characterized by the mode numbers {m, l, 1} and the

polarization are the solutions to the fully-vectorized field equation. The dispersion

of these modes is set by a combination of the material bulk properties and effects

due to light-confinement of the structure. This controls the FSR and the linewidth

of the cavity, crucial parameters to understanding the nonlinear performance of the

device. It should be noted that some estimates on the Q-factor of the resonator can

be made from these simulation results [40, 90, 91].
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Figure 5.2.2: The same as the previous figure, except here the height of the disk is
varied, not the radius. The radius of this simulation is 25 µm.

5.2.1 Natural Phase Matching For Nonlinear Processes

We propose two different methods for achieving natural phase-matching for FWM in

these microresonator structures. One relies on the inherent differences in the disper-

sion between the devices TE and TM modes, while the other uses a wedged resonator

in order to effectively tune the waveguide geometry with respect to frequency. Pol-

ing is also possible for certain materials like LN. These effects are combined with

the inherent dispersion due to cross-section and bending radius in order to satisfy

the energy conservation and momentum conservation relations:

ωp1 + ωp2 = ωs + ωi (5.2.1)

mp1 +mp1 = ms +mi (5.2.2)
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Figure 5.2.3: This plot complements Figure 5.2.1, because it is the primary TM-
polarized mode. Comparing the two side-by-side shows how the guiding dispersion
has a smaller effect on this polarization.

where p1 and p2 correspond to the two pumps, and s and i are for the signal and

idler.

On-chip resonators typically only support a limited number of spatial modes,

especially rings which can be designed to be single mode. Because of the discrete

nature of the spectrum of the resonator, finding modes which satisfy the momentum

conservation equations is relatively straightfoward. However, because of dispersion

in the cavity, it can be difficult to satisfy the energy conversation relation. In order

to be considered phase-matched, difference in the r.h.s. of Equation 5.2.1 has to be

close to zero or negative, so that a strong pump can bring the total sum to be less

than the resonance linewidth, ∆ω.



103

200

300

400
300

400
500

600

1,000

2,000

3,000

Azimuthal Mode Number (m)
Height (nm)

W
av

el
en

gt
h

(n
m

)

500

1,000

1,500

2,000

2,500

Wavelength (nm)

Figure 5.2.4: Similarly, we compare this plot of the TM polarized mode to Figure
5.2.2.

Resonator Wedge

For a given cross-section, restricting ourselves only to primary modes, higher-

frequency light has a smaller mode volume. We can use this property to our advan-

tage by wedging the edge of the resonator. Because of the variation in the thickness

of the resonator, the fundamental mode is deeper into the wedge. In essence, a

higher frequency mode sees a smaller cross-section of greater radius than a lower

one. Figure 5.2.6 gives an example of the change in mode-shape for different wedge

angles. This counter-acts the natural dispersion of the material in such a way that

with proper choice of θ, the wedge angle, natural PM can occur [57].

The FSR for various angles and thicknesses is shown in Figure 5.2.5. The eigen-

modes for primary TE excitations are shown in 5.2.6. The distortion of mode shape
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can be clearly seen. As an example, simulations show that a Si3N4 resonator with a

parameters of R = 20µm, h = 500 nm, θ = 18◦ can satisfy both PM conditions for

QFC with a signal/idler pair at 1200 nm/640 nm.

We should note that a high precision in resonator wedge angle can be difficult

to achieve. Practically the angle depends on the details of the etch process that

defines the resonator. This etch process also determines the sidewall roughness

of the device, which is a major if not primary contributor to intrinsic loss rate.

A tradeoff between between these parameters is important to understanding the

performance of the device.

Polarization

Due to the difference in GVD between the two polarizations as discussed earlier, it

is possible to use the resonator’s TE and TM modes to satisfy the necessary PM

relations. In the example shown below, the lower frequency modes are TM-polarized

while the the higher frequency pair is TE. FWM can be used to frequency convert a

signal with a large detuning using two pumps located in the two central wavelengths.

This necessarily means that the pump pairs are cross-polarized. While the inter-

mode overlap is decreased compared to single-polarization FWM, this process can

phase-match spectrally distant modes. Figure 5.2.7 shows the different field profiles

of the four modes.
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5.2.2 Estimating Quality Factors

By using perfectly-matched layers (PMLs), the numerical code can estimate the

radiative loss of the resonator. These layers correspond to domain elements placed

on the edges of the simulated volume that have complex impedances in order to

eliminate reflections from the edges of the vacuum box that the simulation takes

place in. Using this method, bending loss can be calculated from the imaginary

part of the now complex eigenfrequency.

5.3 Comparison to Analytic Models

Analytic models for spherical or toroidal geometry cavities describe WGMs well.

However, for a device where the resonator resembles a flat disk, these same analytic

models are invalid. In order to compare our numerical FEM solutions to an analytic

expression, we need one that better takes into account the cylindrical symmetry of

the device.
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This method is based on the Helmholtz equation in cylindrical coordinates for

the axial field of the WGMs. This equation is

∇2F =
n2(r)

c2

∂2F

∂t2
(5.3.1)

where F is the field in the ẑ direction. For TE modes, F = Hz while for TM

modes, F = Ez[59]. While this method represents the exact solution for an in-

finitely tall cylinder, we can use an effective-index method to account for the finite

thickness of the resonator. We estimate the effective index of the device by simu-

lating the resonator as a WG in the z-direction. Because of the boundary condition

on the interface of the device, the solutions consist of Bessel functions of the first

kind, Jm(k̃1r) inside the dielectric, and Hankel functions of the first kind, H
(1)
m (k̃2r)

outside it.
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This model and the FEM eigenmode solutions typically agree within a few

percent in terms of absolute frequency. However, the FEM model directly gives the

full field equations and does not split the calculation. We need less assumptions to

construct the FEM model compared to this analytic one, which because of its use of

the effective index method will always only be an approximation. For this reason,

we continue with the FEM model.
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6 Microresonators

Coupling

The heart of the experiments described here and in the next two chapters are a

collection of photonic chips fabricated at Sandia National Laboratory. These fall

into two categories; rings fully encased in silicon oxide, and disks mounted on a

pedestal surrounded by an air gap as seen in Section 2.3. Both are Si3N4 devices

on silicon wafers with 2 bus waveguides (4-port devices). Both have etched edge

couplers with inverse waveguide tapers to reduce coupling loses. However the rings

and disks have dramatically different Q-factor and dispersion profiles which naturally

tailors them to different applications.

In the following experiments, we will mainly focus on the rings. Because of

their single mode (per polarization) nature and designed dispersion, they prove

useful from a physics point of view. From a practical point of view, they are fully

clad which makes them much easier to handle and couple.

In this Chapter, we will discuss the apparatus used for coupling into the chips

and notes on the quality of the coupling itself. This equipment is used for all data

acquisition in this and the next two chapters unchanged.
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6.1 Sandia Experience

As part of our collaboration with Sandia, the author spent two months working

along side Dr. Camacho’s post-doc, Dr. Ian Frank at the Center for Integrated

Nanotechnologies in New Mexico. This was valuable for the insight gained into

device fabrication in general and details of our chips specifically. The coupling

setup presented below is heavily influenced by that at Sandia.

Also, initial measurements in New Mexico showed expected Q-factor for the

discs and lower than expected Q-factor for the rings. Initial pump-probe FWM

experiments carried out at Sandia showed promise however, and the author returned

from New Mexico with tens of chips of various geometries and bus WG to resonator

gaps (to tune the coupling Q-factor).

6.2 Experimental Setup

The central apparatus of the resonator experimental setup is the alignment setup

and enclosure. It consists of holders for the chip and the v-groove array, vacuum for

chip capture, resistive heaters for temperature control, and motion control stages for

alignment. A 12x zoom lens and digital camera provide guidance for alignment. The

setup sits in an enclosure to protect the sensitive chip from dust and environmental

factors. This is especially important in a lab which is quite dusty.

The chips have 4 edge couplers, with a standardized pitch, and a matched v-

groove array holding fibers to interface with the ports. We needed mounts which

could secure these devices and themselves be secured to standard third-party motion

stages. Because 4 fibers had to be aligned simultaneously, we needed motion control

in 6-degrees of freedom (full 3-D translation and rotation).
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Figure 6.2.1 shows the finalized mount used in the experiment. We designed

these mounts to interface between standard Thorlabs stages and the chips and v-

grooves using the freeware computer-aided design program OpenSCAD. The mounts

include provisions for standardized mounting hardware. The design allows for a

thermistor and resistive heater within the mount on the chip side. Internal passages

were also needed so that the chuck could secure the chip with vacuum. We prefer

this approach to using tape or a clamp because it is clean, low-stress, and repeatable.

The vacuum for the chuck is provided by a re-purposed pump from a basic set of

vacuum tweezers that has been running non-stop for 3 years as of this writing. The

building supplied vacuum proved contaminated.

After finalizing the design virtually, we 3-D printed mounts using Northwest-

ern’s 3D Printing & Rapid Prototyping Lab located in the Ford Motor Company

Engineering Design Center. The first round of mounts were printed from RGD525

because of its suitability for temperatures near 60 degrees Celsius. After a small

revision to better accommodate the vacuum port, the mounts were instead printed

from RGD450 which is cheaper and gives a better finish. The high-temperature

requirement was dropped because we showed that with the poor thermal conductiv-

ity of the plastic mounts, even our high-end temperature controller (SRS PTC10)

could not maintain sufficient stability above 30 to 40 degrees Celsius. Experimen-

tally, this meant we could not tune the resonances thermally, but the need for this

never manifest itself.
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Figure 6.2.1: A CAD image of the vacuum chuck and v-groove holder. Thorlabs
makes 3-D model files of their components available via their website which allows
us to integrate them into the design process.

The vacuum chuck supporting the chip is mounted on a Thorlabs TTR001 stage

that provides rotational degrees of freedom. This is mounted on a Thorlabs PT1

linear translation stage which allows us to easily look at all resonators along one edge

of a chip. The v-groove array is mounted on a piezo- and differential drive-controlled

Thorlabs NanoMax flexure stage which can translate in 3 directions. Because this

stage is responsible for the critical alignment degrees of freedom, it is under computer

control via a Thorlabs MDT693B piezo controller. With feedback from an optical

powermeter, we can perform automatic periodic re-alignment to ensure consistent

fiber-to-chip coupling over long measurements. Figure 6.2.2 shows a photo of the

enclosure with the cover removed. The camera and lens system is mounted above

the chip/v-groove interface.
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Figure 6.2.2: Photo of the coupling enclosure with the door removed. The v-groove
is not mounted in this shot. The clear tube running below the table is for the
vacuum. The 4 input/output fibers and cables for motion and temperature control
enter the enclosure from the left.

Figure 6.2.3: A closeup of the alignment setup.
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6.3 Coupling

We use a simple hand-held red laser, used for optical fiber routing, to align the chip.

Unlike the infrared light of our experiments, the red light is easily visible in the

camera. Figure 6.3.1 shows this light coupling into a bus waveguide. The bright

red spots are due to scattering at the facets. Once the chip is well aligned, the view

from the camera resembles the photo in Figure 6.3.2. The diagonal line across the

bottom of the screen is the line between the chip above and v-groove below.

Figure 6.3.1: Red laser light used for alignment. In a dark room, the scattering
within the waveguide and in the coupling region is clearly visible.

Transmission losses in this setup are measured to be as low as 3.0 dB per facet.

This estimate is based on optimum alignment with clean fibers and facet. It also

assumes all loss due to the chip is during WG-fiber coupling. The fiber in the v-

groove array is highly-nonlinear fiber, cleaved flat. Because of smaller core diameter

compared to regular single-mode fiber, the mode of this fiber better matches that
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of the chip. Generally extremely small separations or contact between chip and

v-groove lead to lowest losses. We use index matching fluid applied in the gap

between the fibers and the chip to provide the final 3-dB improvement in coupling

loss reduction.

Figure 6.3.2: Coupled and aligned chip, before the index matching fluid is added.
The bus WG reflect in the v-groove array in the bottom of the imagine. The optical
fibers themselves are not visible while aligning the setup.

The coupling setup provides low loss and good long-term stability. However,

fibers and chips can be damaged. Overzealous alignment can damage and chip

waveguides, as seen in Figure 6.3.3. As expected, the coupling loss increased from a

typical value of 6-7 dB (round trip, from fiber across bus WG to fiber) to more than

40 dB. Another source of damage is to the facet of the chip or fiber, as seen in Figure

6.3.4. High input power combined with bad alignment can burn the interfaces.
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Figure 6.3.3: Broken waveguide shown in the center of the image (to the left of the
chip inscription).

Figure 6.3.4: A damaged fiber in the second position from the left can be seen in the
v-groove array. This kind of damage eventually hampered the experiment because
of compatibility issues between the remaining chips and arrays.
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7 Microresonators

All-Optical Switching

Motivated by work such as Pelc. et al. [35] and others [92, 93, 94], we investigated

the possibility to use our Si3N4 ring resonators as all-optical switches targeted to-

wards quantum applications. Our group has demonstrated this ability using cross-

phase modulation in a fiber loop [95]. We demonstrated high fidelity of 96% between

the input and output state at 6 GHz switching speed. However, the size and power

requirement of the switch could be improved. We investigate the suitability of our

ring resonator system to accomplish the same goal.

7.1 Introduction

Our resonator-based switch relies on the Kerr-effect driven by a strong pump pulse

to drive the switching function. Figure 7.1.1 shows two possible modes of operation.

In the first case, when the pump is not present, the signal light couples into the

resonator and is passed through the cavity to the output port of the device. When

the pump is turned on, the pump shifts the cavity resonances to such an extent that

the signal is no longer resonant. Our discussion will focus on this mode. However, an

alternate exists in which the signal light only couples into the cavity in the presence

of the pump.
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Figure 7.1.1: Two modes of operation for our switch are demonstrated here. Two
bus waveguides couple into a resonator and function as the inputs and outputs of
the system.

Because we are interested in all-optical switching of quantum signals, the first

switching mode is advantageous. The strong pump, when enhanced by the cavity,

does not come into direct contact with the signal. Any light that it generates in the

cavity, whether through FWM or Raman scattering would be filtered by the cavity

resonances, so would not present as in-band noise to the quantum signal.

The intrinsic performance of our resonator as an add-drop filter is the basis for

its switching contrast [96]. The filter transmission is directly related to the interplay

between the loss-rates to the two bus waveguides, and the intrinsic loss rate of the

cavity. Two different conditions are presented in Figure 7.1.2,

1

τt
=

1

τd
+

1

τi
, (7.1.1)

1

τt
=

1

τd
. (7.1.2)
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τd is the loss rate into the drop waveguide, while τt is the loss rate into the through

waveguide, or input. The intrinsic loss rate of the cavity is represented by τi. Our

devices have equal coupling rates to the bus waveguides as described by Equation

7.1.2, but at the expense of allowing some light to be transmitted in the through

port, as seen in Figure 7.1.2. Ideally, we would want devices which match the

condition described in Equation 7.1.1.
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Figure 7.1.2: The energy transmitted through the drop port, transmitted through
the bus waveguide without coupling into the resonator, and the total of these two
energies. The missing energy is dissipated in the resonator. The red curve represents
equal bus waveguide loss rates.
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7.2 Experimental Setup
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Power Meter Pol. Cont.Pol. Cont. Polarization Analyzer & Con-
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FPFP Scanning Fabry-Perot Cavity PC Lab Computer

TSL 2TSL 2 Santec Tunable Laser EOMEOM Electro-Optic Modulator

NuPhoton EDFA 10 dB10 dB 10 dB Optical Attenuator

TBFTBF Optical Tunable Bandpass Fil-
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Var. dBVar. dB Variable Optical Attenuator

SWSW MEMS Optical Switch (USB) Single-Mode Fiber
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Figure 7.2.1: Experimental setup for switching

In order to experimentally test the switching behavior, we use two tunable lasers.

One represents the pump which drives the all-optical switching operation, and the

other is the signal. Figure 7.2.1 shows experimental setup. We note the two tunable
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lasers. TSL 1 is the pump laser, with a LN modulator to create the switching

window. The EDFA and the variable attenuator are used to set the switching pump

maximum power. On the other hand, the signal is continuous wave (CW) and

relatively low powered. In effect, it probes the shift in the resonance of the cavity.

Laser frequency measurement is identical to that described in Section 8.1 with the

addition of an optical microelectromechanical system (MEMS) switch which selects

the laser of interest, pump or probe.

Because this is a resonant χ(3) system, performance is an interplay between

bulk material properties, pump power and resonator loss and size. These physical

parameters are responsible for the Q-factor of the resonator and the FSR. Because

we use the shift in resonances to accomplish our switching behavior, signal (or probe)

and pump lasers need to be on the grid of supported resonances. A smaller radius

produces a compact device with correspondingly smaller mode size, but may make

the FSR impractical. Also, a small Q-factor may lower the pump power required to

shift the cavity, but the spectral bandwidth of the resonance needs to support the

entire signal spectrum. Directly related to this, the temporal lifetime of the cavity

sets a bound on the ultimate supported switching speed and switching window for

the device.

Finally, thermal considerations play a large part of the device performance. A

compact resonator with a large finesse produces a large cavity enhancement which

drives the thermal nonlinearity in the system. This effect is the dominate term

responsible for the switching rate of the cavity.

For a quantum system, we must also talk about generation of inner-band spon-

taneous noise from the pump into the signal band. For quantum signals, these noise

photons can easily become equal in number to the signal itself. To avoid this pitfall,
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we propose to operate the switch in such a way that the passive state (pump off),

the signal light couples through the resonator and exists the opposite port. When

the pump is turned on, the resonance shifts, and the signal now continues down

the bus waveguide, unperturbed by the cavity. Any spontaneous noise generated by

the pump will only populate the spectrum where resonances support it, leaving the

band occupied by the signal unperturbed.

7.3 Switching Results

Preliminary switching performance is shown in Figures 7.3.1 and 7.3.2. With 800

mW of peak pump power and a 2 ns. switching window, the pump shifts the cavity

enough to change the signal contrast by roughly 15%. The first figure shows the

cavity shifting the cavity away from the signal, causing more of it to go through the

through-port. This is the mode of operation we propose for quantum signals. The

second figure shows the same experiment but with the signal wavelength shifted

such that the signal is shifted into cavity by the pump. Performance is roughly

symmetric, as expected. Figure 7.3.3 shows the measured contrast as a function of

the pump power as compared to a simulation of the operation.
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Figure 7.3.1: Experimental switching data. The signal power is plotted here. The
top left is the power of the drop port of the resonator. The top right data is the from
the through-port. The bottom left plot is the ratio of the two ports. The bottom
right is the total power measured, this can be used to see if the coupling changes
dramatically. The avg pump power here is 800 mW peak. The pump switches light
out of the cavity in this case.
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Figure 7.3.2: This is the experimental data. The top left is the power of the drop
port (Port 4). The top right data is the from the port 2. The bottom left plot is the
ratio of the top left to the top right. The bottom right is the total power measured,
this can be used to see if the coupling changes dramatically. The avg pump power
here is 5.71 mW (or 1.3 W peak), but this is before the 50/50 and the chip. Here
the pump switches light into the cavity.
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Figure 7.3.3: A comparison of the contrast measured (the ratio of the through to
drop power) as a function of the average pump power. The blue line presents a
simulation of the experiment.
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8 Microresonators

Four-Wave Mixing

This Chapter covers a set of ring resonator nonlinear optics experiments and the

device characterization to support them.

8.1 Dispersion

Dispersion is one of the most important differentiators between the ring and disk

resonator devices. If we are interested in phase-matching between four independent

waves, as opposed to simple cross-phase or self-phase modulation, we need a device

that has a small anomalous dispersion. Only the ring devices have this because of

the cross-section of the resonator. Simply put, the disk resonator is too thin, so its

dispersion is decidedly normal in the C-band. While our simulations show a small

anomalous dispersion in the C-band, perfect for FWM or comb-generation, we need

to measure to verify this fact.

To facilitate this, our ring resonators come in a range of widths, between 1.6

µm and 2.1 µm. Simulations show that GVD is larger (more anomalous) as the

width of the resonator cross-section decreases.
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Figure 8.1.1: The optical setup used to measure the Q-factor and dispersion of the
ring resonators. Measuring both the thru- and drop-port optical power during the
laser sweeps allows us to calibrate out any coupling degradations.

Figure 8.1.1 shows the optical setup of the dispersion measurement. A tunable

laser (usually a SANTEC TLS-210, sometimes a Pure Photonics PPCL200) is cou-

pled into the resonator. The drop and through port is monitored by power meters

to register the shape of the resonance that the laser scans across. To increase the

accuracy of the measurement of the frequency of the laser, we rely on a scanning

Fourier-transform OSA (a Thorlabs OSA203C) and a scanning Fabry-Pérot inter-

ferometer. The whole sweep is computer controlled as shown in Figure 8.1.2, where

the control signals are mapped out. In this instance, the experiment is managed

by a Linux computer which controls the laser and a power meter via a USB-GPIB

controller. Another power meter is controlled directly via USB. A 300 MHz oscil-
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loscope (Rigol DS1302CA) is used as a data acquisition system to interface with

the scanning interferometer. A specialized function generator outputs a saw tooth

pulse to drive a piezo to scan the interferometer and amplify the photo current. The

oscilloscope triggers from the sawtooth and the computer saves the trace.
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Comp. Data Collecting Computer
(mechanix)

TSL Temperature Controller

Pol. PC Windows PC with Polarization
Software

Pol.Pol. Polarization Controller & An-
alyzer

Figure 8.1.2: The electrical compliment to the optical setup shown in Figure 8.1.1.
Most instruments directly interfaced with the measurement computer. Later ver-
sions of the data acquisition software we wrote would eliminate some of the extra
computers.
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Finally a completely independent system is used to control the polarization

controller. Despite using a manual fiber polarization controller to set the chip input

polarization, the effective waveplates respesented by each paddle depends on wave-

length because the retardance of the fiber is wavelength dependent. Because the

resonator supports two distinct polarization modes, the gradual change in polariza-

tion over the 100 nm laser sweep can change the results of the scan. For this we

use an active polarization controller (Thorlabs DPC) which locks the polarization

as the laser sweeps.
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Figure 8.1.3: This plot shows the difference in frequency measure with our waveme-
ter as a function of time for the SANTEC TLS-210 after the initial warm up and
stabilization period.

To reconstruct the dispersion, we first find the peak of the power meter traces.

We then reconstruct the relative frequency of the trace from the interferometer data.

Because this device (Thorlabs SA200-12B) has an FSR of 1.5 GHz (and a Finesse

of over 200), as the laser scans in steps of 200 to 500 MHz, we can reconstruct the
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relative frequency of the measurement. To compare the individual resonance traces

to each other, we calibrate the initial and final points of these relative traces with

the scanning OSAs wavemeter function. One key to good performance is good laser

frequency stability, as shown in Figure 8.1.3.

The central frequency of a resonant mode depends on the geometry of the

resonator and its effective index. This effective index depends on both the bulk

material properties and a contribution from the confinement of the light and its in-

teraction with the material boundary between the guiding feature and the cladding.

We tune the dispersion of the device by adjusting the geometry as described earlier.

If we were to expand out the resonance locations, where νm is the frequency of the

m-th resonator mode, around a central mode ν0, the mode of the resonator can be

expressed as:

νl ≈ ν0 +D1l +
D2

2
l2 + ..., (8.1.1)

where l = m − m0, the difference in mode number from the central point of the

expansion. The first term approximates the cavity FSR as:

D1 = ∆νFSR =
c

Rng
, (8.1.2)

where R is the ring radius. D2 is the group velocity dispersion term. If it is positive,

we have anomalous GVD around the central wavelength. Figure 8.1.4 is a plot of

this dispersion for a chip with a cross-section of 2.1 µm width and 1.6 µm with a

height of 750 nm. The D2 of the thinner (thicker) device is 1.8 MHz (606 kHz)

which agrees well with the simulated values of 2.04 MHz (1.04 MHz). Comparing

the dispersion parameter,

β2 = − D2

vg∆ω2
FSR

, (8.1.3)
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of the rings to that of fiber yields similar values. The rings range from -13.2 ps2/km

to -39.2 ps2/km while standard SMF is -23 ps2/km in the C-band.
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Figure 8.1.4: Experimental measurements of the dispersion for two different cross-
sectional widths of ring resonator.

8.2 Phase-Sensitive Amplification

By carefully tailoring the dispersion of χ(3) on-chip resonators, compact, scalable

systems for a whole host of nonlinear parametric processes have been demonstrated.

From photon-pair generation to octave spanning frequency combs, these systems

harness chaotic phase-sensitive FWM processes.

In this section, we attempt to experimentally probe some of these features. We

propose a system which uses a RF electro-optic modulator (EOM)-based frequency

comb to probe and pump 3 resonator comb lines directly. As these 3 lines are gen-

erated from a single laser and co-propagate in the fiber, they maintain a consistent

phase relationship between themselves. By adjusting the phase of the central line

relative to the others, the phase-sensitive properties of the system can be probed.

[97].
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Figure 8.2.1: The experimental setup used to probe the phase-sensitivity of the ring
resonator.

The final, most mature experimental setup is shown in Figure 8.2.1. This setup

can be divided into two parts. The first step is to generate the frequency comb via

sideband generation. This is followed by the shaping and tuning of the lines.

In order to seed 3 adjacent resonances of the ring resonator, we need a RF

generated frequency comb that has significant power across at least 2 FSRs (2 ×

218 GHz) of the ring resonator cavity. Our LN modulations and the associated

RF amplifiers that drive them set the maximum spacing of the comb generated via

sideband generation to 20 GHz. This means we need to generate a comb of sufficient

width and intensity such that there is sufficient optical power in the resulting 3

modes to seed the EDFAs that set the final input laser powers. To do this a series of

specialized phase and amplitude modulators designed to handle 33 to 35 dBm (27

dBm is typical) of RF power are driven by a signal synthesized by a 20-GHz sweep

signal generator.
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A commercial OAWG device (Finisar WaveShaper) is used to manipulate the

spectral components of the resulting light. We filter out all generated sidebands

except the 3 we are interested in for driving the resonator. We can also set their

intensity and phase at this point to ensure the proper setup in the resonator.

8.2.1 RF Comb

The RF generated comb proved key to the overall performance of the system. Po-

larization instability plagued the system. Figure 8.2.2 shows the final comb used in

this experiment.
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Figure 8.2.2: (a, b) Low Vπ model with 30 dBm of RF power and computed spectrum
based (shown in (a)). (b) shows the multiple stages of modulation needed to generate
this comb.
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Figure 8.2.3: The extra modulators with associated RF electronics used to expand
the comb.
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8.2.2 Four Wave Mixing
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Figure 8.2.4: Input into the WGM. Each of the three lines is at a cavity resonance.
We can vary the phase of the center wave (pump) independently. We can also vary
the power of each line individually, but operate in the regime where the pump is
roughly 10 or 20 dB greater than the two driven side-lobes which are equal in power.

Preliminary results searching for FWM in the silicon nitride ring resonator have

shown some promise. Due to system stability issues, only a transient look into this

was seen. We look at the 5th resonator cavity line detunned to the blue of the

central pump (near 1550 nm) on a detector. As we sweep the phase of middle of

the 3 phase-locked lines at a rate of 5 Hz, we see modulation of the fifth resonator

cavity line at that rate. We present this as preliminary evidence of phase-sensitive

FWM in the resonator system.
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Figure 8.2.5: (a) Spectrogram and (b) time trace of preliminary phase-sensitivity
due to FWM.

Further study of this signal was compromised. With improved stability of the

input laser lines, we hoped to directly measure and better characterize this effect.

However, probing the chip at higher powers resulted in a burned v-groove array

fiber. Due to previous damage of the chip, it was impossible to continue using this

combination of fiber array and resonator.

After an exhaustive search of our stock of Sandia supplied chips and fiber arrays,

suitable candidates were found. However, further study of these chips showed lower
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Q-factors. With the increased pump power this required, phase-sensitive FWM

effects are observed in the fiber leading into the chip. These mask any effect from

the chip itself.
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9 Conclusions & Future Directions

The future of quantum optics and integrated photonics is a bright one. It is hard

to anticipate how this technology will be leveraged in the future but if we had

to predict, we are still in the infancy of the exponential growth that the field is

undergoing.

9.1 Lithium Niobate on Silicon

LN is an excellent χ(2) optical material. Prof. Fathpour’s group from CREOL

have demonstrated a LN on silicon chip which is strip loaded with Si3N4 for both

nonlinear optics [22, 72] and EOM at high speeds [98]. It should be noted that this

design allows for cascaded second and third-order effects [99]. Our collaboration with

this group to precisely measure the optical nonlinear coefficient and QPM grating

quality is ongoing. Others have shown LN WGs directly on insulator [23].

One possible application for these waveguides is for our mode-selective receiver

design as discussed in Chapter 3. It may be possible to integrate the waveguide

with filtering elements directly. simplifying the experiment. If a resonator-based

frequency comb is combined with a OAWG, it may be possible to implement the

whole receiver in a robust few-chip design.
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9.2 Phase Sensitive Resonator Experiment

The experiments in Chapter 8 are limited by the Q-factor of the resonator. Rings

with cross-sections very similar to ours (1.5 µm wide, 730 nm tall) have been demon-

strated with loaded Q-factors over 600,000 [100]. This would lower our required

pump power by roughly 2 orders of magnitude, eliminating the FWM from the

SMF which dominated any effects from the resonator itself.

9.3 Photon Pair Sources

Chapter 4 makes the case for the use of a:Si-H for photon-pair generation. While

the experiment discussed was done in a WG, we also tested resonator devices. These

rudimentary rings suffered from high scattering loss and were not phase-matched

for FWM in any band we tested. However, in principle, these limitations can be

overcome.

In our quest for novel devices, we propose to combine the generation of pairs in

a ring with filters to act as both pump suppression and signal/idler demultiplexing.

Figure 9.3.1 shows a schematic for a proposed design. While all the technical details

are outside the scope of this work, we believe it is possible to engineer the required

100 dB of pump suppression by utilizing edge coupling to reduce inter-chip pump

scattering and utilizing 7 or more stages of coupled ring resonator filters [101]. The

filter FSR has to be roughly 3/2 that of the generation ring. Silicon nitride or silicon

are also viable materials for this design.

With this first-step of integration, this chip can be used as just one element of

a larger scheme, or copied for a multiplexed source setup.
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Figure 9.3.1: A conceptual diagram of the proposed chip which will generate, filter
and demultiplex photon pairs. On-chip heaters are needed to match the resonator
spectra across the individual elements.
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A Mode Sorting Simulation Code

Chapter 3 discusses simulations for a temporal-mode sorting all-optical receiver

that relies on tailored temporal pump shapes in order to select by upconversion a

signal mode. The sections below are examples of the MATLAB functions that solve

for the waveguide interaction direction (Sec. A.1) and the optimized pump shape

(Sec. A.2). Finally we discuss quickly some notes on the computation time of these

simulations in section A.3.

It should be noted that these are not the only functions that were used for the

results in chapter 3, but only a subset. Specifically, these functions (along with a

master script, which is not shown) specifically solve the multi-pump problem. This is

the case where a single WG with a multi-peaked QPM grating is used with multiple

pumps which selectively upconvert individual signal modes to dedicated frequen-

cies. Also, supporting functions for generating signal modes, initial conditions for

optimization, and processing of the data are not included.

A.1 Nonlinear Waveguide Interaction Solver Code

Listing A.1.1: Split-step fourier transform function.

function [Ar,As] = QFC_QPM_Solver_pNsM_v1beta(chi ,t,...

Ap ,As ,beta ,z_QPM ,c_QPM ,dk_QPM ,a)

% Vesselin Velev - Only for Multi -Pump , Multi -Signal
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% Interactions distances are in cm, times are in ps!,

% QPM vector has to be equally spaced

% The 1D solver allows width variation via a dk vector

% here a dk vector is the target phase -mismatch for

% each pump/sig pair.

% Ar = [length(t),#p,#s]

% chi - Chi

% t - T-vector , check shape , if error ,

% may need to transpose

% Ap - Pump mode vectors , Ap(n,m), where

% n is the size of t, and m is the

% # of signals

% As - Signal mode vectors , As(n,m), where

% n is the size of t, and m is the

% # of signals

% beta - Beta , ps/cm

% z_QPM - Z-grid for propogation down waveguide

% c_QPM - Quasi -phase match grating , set to 1

% for uniform , same size as z_QPM

% dk_QPM - Phase -mismatch , 1 value per pump , Not

% a vector for width variation

% a - Loss , in dB/cm , for the sum -frequency ,

% a(1) and the input frequency , a(2)

% This order of variables is historical , somewhat

% <<----------------------------------------->>

nu=0;

mu=beta;

eta=chi;

a = log (10.^(a./20)); % input of a is in db/cm,

% converts to units for solverS

Trange = max(t)-min(t);

Nms = length(t);

for j=1:Nms

zx(j,1)= Trange *(j-1)/ Nms;

kx(j ,1)=2* pi*(j-1 -0.5* Nms)/ Trange;

hjx(j ,1)=( -1)^(j-1);

end
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sAp = size(Ap);

sAs = size(As);

az = zeros(sAp(1),sAp(2),sAs (2));

bz = reshape(As ,[sAs(1),1,sAs (2)]);

Nz = length(z_QPM );

dz = z_QPM (2) - z_QPM (1);

evolA = exp(1i*mu*repmat(kx ,1,sAp (2))* dz...

+1i*repmat(dk_QPM ,sAp (1) ,1)*dz+a(1)*dz);

evolB = exp(1i*nu*kx*dz+a(2)*dz);

for ii = 1:Nz

c = c_QPM(ii);

[az ,bz] = solvL(az ,bz ,hjx ,evolA ,evolB );

[az ,bz] = solvNL(az ,bz ,Ap,eta ,dz,c);

end

Ar = az;

As = reshape(bz,sAs);

end

function [az1 , bz1] = solvL(Az,Bz,hjx ,evolaz ,evolbz)

az1 = bsxfun(@times ,fft(bsxfun(@times ,...

ifft(bsxfun(@times ,Az ,hjx)),evolaz)),hjx);

bz1 = bsxfun(@times ,fft(bsxfun(@times ,,...

ifft(bsxfun(@times ,Bz ,hjx)),evolbz)),hjx);

end

function [az1 , bz1] = solvNL(Az,Bz,Ap,eta ,dz,c)

bzReS = repmat(Bz ,1,size(Ap ,2) ,1);

az1 = bsxfun(@times ,1i*eta*Ap ,bzReS*dz*c)+Az;

bz1 = Bz+sum(1i*eta*dz*conj(c)*

bsxfun(@times ,conj(Ap),Az),2);

end

A.2 Random Walk Pump Optimization Code
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Listing A.2.1: Random walk function.

function [ApN_outF ,Zdist ,solT ,P_out ,Sel_out] =

opt_pNsM_v6_beta(chi ,t,A,V,Ap ,beta ,z_QPM ,c_QPM ,...

dk ,number_com ,TargetN ,steps ,randStep ,combSpace ,sType ,a)

% Vesselin Velev - last update 21.01.2017 - Only for

% Multi -Pump , Multi -Signal Interactions

% This does the walking!

% chi - Chi

% t - T-vector , check shape , if error ,

% may need to transpose

% A - Signal mode vectors , A(n,m), where

% n is the size of t, and m is the

% # of signals

% V - Used to calculate probabilities

% Ap - Initial guess for the pump , usually

% a multiple of the target modes

% beta - Beta , ps/cm

% z_QPM - Z-grid for propogation down waveguide

% c_QPM - Quasi -phase match grating , set to 1

% for uniform , same size as z_QPM

% dk - Phase -mismatch , 1 value per pump , Not

% a vector for width variation

% number_com - Number of comb lines

% pN - For which signal do you want a pump

% optimized?

% TargetN - Stop when conversion hits how much?

% steps - Or if that doesn ’t work , go how many

% (accepted) steps?

% randStep - How far can I go each iteration?

% combSpace - Spacing of comb lines in THz

% sType - What kind of save do you want? every

% 20 steps a seperate file (1) or

% overwritten (anything else)?

% a - Loss , in dB/cm , for the sum -frequency ,

% a(1) and the input frequency , a(2)

% This order of variables is historical , somewhat

% This version , A is normalized sum(abs(A).^2* dt), before

% it was sum(abs(A.^2))

% <<----------------------------------------->>
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dt = t(2)-t(1);

sA = size(A);

prob = transpose(V(1:sA (2)).^2/( sum(V.^2)));

for k=1:sA(2)

As(:,k) = sqrt(prob(k))*A(:,k);

end

dw = combSpace *2*pi; % Comb line spacing , angular THz

w = linspace(-(number_com -1)/2 ,( number_com -1)/2 ,

number_com )*dw;

Zdist = [];

Zsel = [];

numPump = size(Ap ,2);

numSig = size(A,2);

c = zeros(number_com ,numPump );

for ii=1: number_com

for jj=1: numPump

c(ii ,jj) = 1/(max(t)-min(t))*dt*sum(Ap(:,jj)

.*exp(1i*w(ii)*t));

end

end

Ap_recon = zeros(length(t),numPump );

for ii=1: number_com

for jj=1: numPump

Ap_recon(:,jj) = Ap_recon(:,jj)+c(ii,jj)

.*exp(-1i*w(ii)*t);

end

end

Z = [];

fprintf(1,’<<--+--+--+--+--+--+   Target Prob For

Pumps = %1.4f +--+--+--+--+--+-->>\n’,TargetN (1));

for ii=1: numPump
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fprintf(1,’|   P%2.0d  -  S%2.0d   ’,ii ,ii);

end

fprintf(1,’|  Dist  | Popt# | AccR |  G#  |  S#  |\n’);

accStep = 0;

totalStep = 0;

c_opt = c;

directions = 12;

sqrtC = 10;

sqrtCtest = 10;

l = 0;

c2_tp = zeros(number_com ,numPump ,directions );

ApN_opt = Ap;

TargM = [diag(prob (1: numPump ))* TargetN ,zeros(numPump ,

numSig -numPump )];

while sqrtC > 0.001 && accStep < steps

tic;

totalStep = totalStep +1;

accept = 0;

pNum = randperm(numPump );

pNum = pNum (1: randi(numPump ,1));

Ap_tp = zeros(length(t),numPump ,directions );

for jj=1: directions

c2_tp(:,:,jj) = c_opt;

Ap_tp(:,:,jj) = ApN_opt;

for kk=1: length(pNum)

rk = randi(number_com );

c2_tp(:,pNum(kk),jj) = c_opt(:,pNum(kk));

c2_tp(rk,pNum(kk),jj) = c2_tp(rk,pNum(kk),jj)

*(1+ randStep (1)*(rand -0.5)* exp(1i*2*pi

*randStep (2)*( rand -0.5)));
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Ap_tp(:,pNum(kk),jj) = t*0;

for ii=1: number_com

Ap_tp(:,pNum(kk),jj) =

Ap_tp(:,pNum(kk),jj)

+c2_tp(ii,pNum(kk),jj)

.*exp(-1i*w(ii)*t);

end

end

end

parfor jj=1: directions

[Amp ,~] = QFC_QPM_Solver_pNsM_v1beta(chi ,t,

Ap_tp(:,:,jj),As,beta ,z_QPM ,c_QPM ,dk,a);

Ploop = reshape(sum(abs(Amp ).^2* dt),

[numPump ,numSig ]);

P(:,:,jj) = Ploop;

for ii=1: numPump

if Ploop(ii ,ii) > TargM(ii ,ii)

Ploop(ii,ii) = TargM(ii,ii);

end

end

dP = (Ploop -TargM ).^2;

sqrtC_tp(jj) = sqrt(sum(sum(dP)));

end

[~,i] = min(sqrtC_tp );

Zdist = [Zdist , sqrtC_tp(i)];

Sel = diag(P(:,:,i))./ sum(P(:,:,i),2);

if sqrtC_tp(i) < sqrtC

accept = 1;

accR(totalStep) = 1;

end

if sqrtC_tp(i) > sqrtC
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randNum = rand;

ratio = sqrtC/sqrtC_tp(i);

accR(totalStep) = 2;

if randNum > ratio

accept = 1;

accR(totalStep) = 3;

end

end

if accept == 1

accStep = accStep +1;

ApN_opt = Ap_tp(:,:,i);

c_opt = c2_tp(:,:,i);

sqrtC = sqrtC_tp(i);

if sqrtCtest > sqrtC_tp(i)

l = l+1;

P_out(:,:,l) = P(:,:,i);

Sel_out(:,l) = Sel;

ApN_out (:,:,l) = ApN_opt;

ApN_outF = ApN_opt;

sqrtCtest = sqrtC_tp(i);

end

if mod(accStep ,10) == 0

t1 = num2str(TargetN );

if sType == 1

save([’opt_pNsM_v5_beta.’,t1(3: end),’.’,

num2str(number_com),’_’ ,...

datestr(clock ,’HH.MM.SS_dd -mmm -yyyy’)

,’.mat’]);

else

save([’opt_pNsM_.’,t1(3: end),’.’ ,...

num2str(number_com),’_’ ,....

datestr(clock ,’dd -mmm -yyyy’),’.mat’]);

end

end

end
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for n = 1: numPump

fprintf(1,’| %1.4f - %1.4f ’,P_out(n,n,l),Sel(n));

end

fprintf(1,’| %1.4f | ’,sqrtC_tp(i));

for n = 1: numPump

if n <= length(pNum)

fprintf(1,’%1.0d%’,pNum(n));

else

fprintf(1,’ ’);

end

end

fprintf(1,’   | %4.0d | %4.0d | %4.0d |\n’ ,...

accR(totalStep),accStep ,totalStep );

solT(totalStep) = toc;

end

A.3 Simulation Computation Performance

Efficient code is important to any simulation project. Long computation times

restrict the detail in which the parameter space of the simulation can be sampled.

In this section, we discuss some straightforward code optimizations used in the the

code above to reduce the execution time of a simulation.

While Matlab itself is extremely versatile and easy to use, there are fewer

options for execution or algorithm optimizations compared to a more general pro-

gramming language. However, some basic changes can yield a dramatic increase in

performance. Above all, writing code that avoids loops to index over matrix ele-

ments is extremely important. Utilizing logical indexing or streamlining operations

with functions such as bsxfun proved to be very effective. For large blocks of code

that exist in loops, the built-in tools from the parrallel toolbox can be used. In

the subsections below we outline other attempts at boosting performance and their
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success.

A.3.1 Fast-Fourier Transform Speed Tests

Matlab uses the FFTW library internally to perform the FFT transform. Like most

other libaries, the computation speed is significantly faster for vectors of length

2n.

Figure A.3.1 shows the performance for the nonlinear WG solver for different
time scales. Listed below are the 3 different time vector size types used in the
test:

t1 = [512,1024,2048,4096,8192];

t2 = [501,1001,2001,4001,8001];

t3 = [500,1000,2000,4000,8000];

Clearly, the power-of-two length is somewhat faster than the powers of ten case.

Both are significantly faster than t2, despite the fact that the values in t2 are not

primes. It should be noted that the improvement in performance comes only from

the calls to the functions fft and ifft inside the main function.
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Figure A.3.1: Matlab uses the FFTW library, and it is optimized for power of
2 computations. The propogation code executes fastest with a time (and optical
signals) with a length that is a power of 2.

A.3.2 Graphics Processing Unit Computation Testing

As graphics processing units (GPUs) have become more powerful, interest in using

these highly specialized processors for more general computational tasks has in-

creased. A standard GPU die may have between 200 to 3000 individual processors,

which makes them ideal for massively parallel tasks. An overview of this subject

is beyond the scope of this work, but simulations like ours which utilize FFT are

prime candidates for a performance boost using these specialized processors.

MATLAB, as part of its ‘parallel computing toolbox’, supports CUDA-enabled

NVIDIA GPUs in a native way. Many basic MATLAB functions are capable of

taking advantage of this capability, allowing a user to write code which with few

modifications runs on both architectures. We took advantage of this ability to test

what performance advantage it would give our nonlinear WG solver.
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Type Spec.

Processors 2 x Xeon E5-2680v2 10 Cores, 2.8 GHz Each
System Memory 128 GHB DDR3

GPUs 2 x NVIDIA Tesla K40 2880 Cores, 12 GB Memory
Software Scientific Linux 6.5

MATLAB

Table A.3.1: This is the specifications of the computer provided by Microway for
NVIDIA’s Tesla program.

The computer hardware for this test was provided by Microway through

NVIDIA’s Tesla test drive program. The hardware specifications of the computer

are listed in Table A.3.1. The latest generation cards at the time of publication

promise roughly twice the performance per card described here

Looking at the results, shown in Fig. A.3.2, leaves us with some key points.

The most important to stress is that for this task, the MATLAB CUDA solution is

very quick for large problems. For imput vectors of lenght 217, the speed increases

by a factor of ≈ 12. Second, an improvement of over 2 can be had by optimizing

the code using built-in matlab functions only. In this case, an older version of the

code did not use the function bsxfun, but instead a for-loop.

However, the GPU solution has a fixed overhead of roughly 44 seconds. This

may be due to transferring the matrices to the cards and setting up computation

threads. Also, because the cards have a limited amount of memory (12 GB) com-

pared to the system memory (128 GB in this case, but over 1 TB is possible), there

are problems which would benefit from the large number of cores but cannot be used

on this hardware because of memory constraints. We see the large increase because

the speed of our simulation is limited by processor speed.
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Figure A.3.2: The left plot (a) shows that the GPU solution is very quick, but only
at large sizes can the speed compensate for the fixed overhead of setting up the
computation. A straight comparison of the GPU to the CPU is shown in (b). This
plot clearly shows the potential speedup for this computation.

A.3.3 GNU Octave Performance Comparison

GNU Octave is a freeware high-level programming language that is mostly compati-

ble with MATLAB [102]. The software project provides a command-line utility and

graphical interace. Because the project is open-source, operating systems and hard-

ware that is not supported by MATLAB can execute standard MATLAB scripts

and functions. We used this ability to test our split-step Fourier method solver on

advanced RISC machine (ARM)-based devices.

Because this architecture is becomming more common and accessible, certain

laboratory uses such as device control or simple calculation are possible at an ex-

tremely low price-point. In this quick comparsion, we use two devices to represent

the high-performance and low-performance spectrum of these devices. The high-end
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device is a Sony Z3 smartphone that has a 2.5 GHz, 4-core processor with 3 GB of

random access memory (RAM) which runs Android. The low-end is represented by

a first-generation Raspberry Pi B. This is a single-board computer sold for $35 and

has a single-core 700 MHz processor with 256 MB of memory. Newer versions of

this computer maintain the low pricepoint but are significantly faster.

In this test, it is clear that the ARM devices are significantly slower than an

admittedly high-end x86-64 workstation by roughly an order of magnitude. How-

ever, as seen in Fig. A.3.3, it is clear that for smaller projects, these devices have

acceptable performance. This is despite the very real possiblity that GNU Octave

has not been well optimized for this alternative architecture. There are many factors

at work to describe the performance difference beside the raw computational power

of the processors, but it is beyond the scope of this discussion.
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Figure A.3.3: (a) On the desktop, performance suffers when identical code is ex-
ecuted on GNU Octave compared to MATLAB. It’s good to see the money goes
somewhere! (b) The cross-platform nature of GNU Octave allows it to run on a va-
riety of platforms unsupported by MATLAB. This plot compares the solution time
for two ARM-based devices, a Sony Z3 smartphone and a first-generation Raspberry
Pi B and our lab’s 12-core workstation.

While it is unlikely that someone will use this method to run simulations on their

smartphone, such a low-cost device could be used for data gathering and onboard

analysis in a lab setting. Unlike a microcontroller (such a traditional Arduino),

a Raspberry Pi runs a Linux distribution and has full networking and input/out-

put (I/O) capability. However, it is cheaper and more compact than a traditional

personal computer (PC).

A.3.4 MEX Implementation of Solver

MATLAB’s MEX function generator allows a user to autogenerate C code from a

MATLAB function. Certain problems that do not rely heavily on optimized build-in
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functions or are hard to vectorize cane see a dramatic performance increase when

implemented in this way. In this subsection, we tested this method on our nonlinear

WG solver.

It should be noted that we made no optimizations to the MEX code generator

or to the generated code itself. Figure A.3.4 shows the results of this trial. The

autogenerated C code is actually significantly slower than the native MATLAB

code. This is likely due to the fact that our code is easy to vectorize and relies

heavily on functions that are already optimized.
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Figure A.3.4: The setting here is 214 = 16384. It is important to note that this trend
will likely vary with the size of the array. The standard code is the heavily optimzied
code shown in section A.1. The center bar represents a minimal modification of this
native MATLAB code in order to support the MEX code generation. Finally, on
the right is the execution time of the MEX code itself.
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B Waveguide Complex Transfer

Function Simulation

Typically, WGs require some form of quasi-phase matching. Periodic poling, as

desribed in Subsection 2.2.2, flips the orientation of the crystal domains so that

the phase relationship between the signal and pump never become greater than 180

degrees. However, variations or errors in fabrication can reduce the effective non-

linearity of the device through poorly defined or unflipped domains and variations

in waveguide width, among others.

In this Appendix, we will focus on simulating the effects of WG width variations

and their distortions have on the CTF of the device. Figure B.1.1 shows experimen-

tal results for SHG which is a direct measurement of the square of the magnitude of

CTF. Understanding this effect helps us improve the simulations shown in Chapter

3, as discussed in Section 3.4.
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B.1 Phase-Mismatch Error
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Figure B.1.1: Statistically simulated CTFs.

In order to simulate phase-mismatch, we assume that the poling of the waveguide

is ideal, but the width of the WG varies. In the solver, we implement this change

by replacing the pump/signal to upconverted phase-mismatch from a constant, ∆k,

to a function of the position, ∆k(z). We take

∆k(z) = ∆k + N(µ = 0, σ), (B.1.1)

where N is a set of random numbers from a Gaussian distribution with a mean of

zero and a variable standard deviation, σ. The number of elements of the vector

∆k(z) is set by the length of the waveguide divided by the estimated correleation

length of the waveguide width errors. Typically we estimate the width correlation

length to be 1 or 2 mm. Figure B.1.2 shows an example of 100 runs with various

correlation lengths and standard deviations.
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For each randomly generated wavenumber-mismatch vector, we run the split-

step Fourier solver in the low-conversion limit for CW SFG. If we consider B̂i(z,Ω)

to be spectrum of the signal light, the output spectrum of the upconverted light can

be calculated by

B̂i(L,Ω) = d̂(Ω)B̂∗s (−Ω)Ep exp{−i[k(ωi + Ω)− k(ωi)]L}, (B.1.2)

where Ep is the pump amplitude. Because we only consider GVD between the

C-band and the SFG frequency, the CTF is

d̂(Ω) =
B̂i(L,Ω)

B̂∗s (−Ω)Ep
, (B.1.3)

where Ω = ω − ω0 is the detunning. With the result from the solver, we calculate

d̂(Ω).
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Figure B.1.2: A map of the CTF intensity for 100 random sampled ∆k(z) distribu-
tions. (a) has 23 samples with σ = 1 cm−1. (b) has 23 samples with σ = 2 cm−1.
(c) has 46 samples with σ = 1 cm−1. (b) has 46 samples with σ = 2 cm−1.

To calculate the difference between simulated CTFs and the experimental data,

we calculate the sum of squares of the difference,

S =
n∑

i=1

(yiCal − yiExp)2, (B.1.4)

for the sum over the data points in the experimental data. Figure B.1.3 shows the

best results from the samples in Figure B.1.2 compared to the SHG data.
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Figure B.1.3: 4 plots with the 2 smallest sum of squares. (a) has 23 samples with
σ = 1 cm−1. (b) has 23 samples with σ = 2 cm−1. (c) has 46 samples with σ =
1 cm−1. (d) has 46 samples with σ = 2 cm−1.
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C Data Acquisition Code

Whenever possible and practical, we developed software to interface with test equip-

ment to streamline data aquisition and processing. Initially based on Matlab code

used to control an OSA with a broken front panel, the final version of the codebase

is python-based, cross-platform (when possible) and supports 24 instruments.

Each instrument is represented by a python class which interfaces with it

via General Purpose Interface Bus (GPIB), USB Test & Measurement Class (US-

BTMC), or specific drivers directly. While not all instrument functions are exposed

to the user through these classes, the current capabilities are such that almost all

data respented in this dissertation used this python codebase for data acquisition.

Data taking is usually done via python scripting and saved into Matlab data files

for analysis.

C.1 Supported Instruments

Table C.1.1 is a list of the supported instruments and the names of classes that

expose their functionality to python. These files combined with the execution scripts

are the two parts of the data acquisition codebase.
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Instrument Type File Name

ANDO AQ6317B OSA pyANDO.py

Agilent 34401A 6.5 Digit Multimeter pyAgilPM.py

Agilent 81531A Optical Powermeter pyAgilPM.py

Agiltron Switch Optical Switch pyAgiltron4.py

AxiDraw v3 Motion Controller pyAxiDraw.py

BNC Model 645 50 MHz Func. Generator pyBNC.py

Finisar WaveShaper 1000A OAWG pyWaveShaper.py

Finisar WaveShaper 4000A OAWG pyWaveShaper4.py

HP 8168F Laser pyHP1998.py

HP 8564EC 40 GHz ESA pyHPESA.py

HP 83650B 50 GHz Signal Generator pyHPsweepSigGen.py

HP 83731B 20 GHz Signal Generator pyHPsigGen.py

JDSU TB9 Optical Filter pyJDSUfilter.py

MCC USB-1208FS Analog/Digital I/O pyMccDAQ.py

NuPhotonics 2000 EDFA pyNuEDFA.py

Pure Photonics PPCL200 Laser pyPPCL200.py

Rigoll DS1302CA Oscilloscope pyRigolWin.py

Santec TLS-210 Laser pySANTEC.py

SRS PTC10 PID Temp. Controller pySRStemp.py

SRS SIM928 Voltage Source pySRSivs.py

SRS SIM970 Digital Voltage Meter pySRSdvm.py

Thorlabs PM100D Optical Powermeter pyThorPM.py

Thorlabs MDT693B Piezo Motion Controller pyThorMove.py

Thorlabs OSA203C OSA pyOSA.py

Table C.1.1: The listed instruments are supported by the python data acquisition
codebase.
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C.2 Python Instrument Class Examples

Listing C.2.1: Class to control the ANDO AQ6317B OSA.

# This is the rPi version , but should also work with Linux

# This should considered a fork and improvement from the

# Windows Version

import sys

import serial

import time

import numpy as np

import matplotlib.pyplot as plt

class pyANDO(object ):

comport = None

def __init__(self,comport ):

self.comport = comport

def close(self,s):

s.close()

def initANDO(self):

addr = 03

ser = serial.Serial(self.comport ,9600 , timeout =10)

ser.write("++mode 1\n")

ser.write("++addr " + str(addr) + "\n")

ser.write("++auto 0\n")

ser.write("++eoi 1\n")

ser.write("++eos 3\n")

return ser

def ID(self):

ser = self.initANDO ()

ser.write("++auto 0\n")

ser.write("*IDN?\n")

ser.write("++auto 1\n")
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# Tell the OSA to send data of Trace A

idn = ser.readline ()

ser.close()

return idn

def max(self,l):

ser = self.initANDO ()

if l == 0:

ser.write("WRTA\n")

if l == 1:

ser.write("MAXA\n")

ser.close()

def setup(self,l,s,r,ref ,scale):

ser = self.initANDO ()

ser.write("CTRWL"+str(l)+"\n")

ser.write("SPAN"+str(s)+"\n")

ser.write("RESLN"+str(r)+"\n")

ser.write("SMPL0\n")

ser.write("REFL"+str(ref)+"\n")

ser.write("LSCL"+str(scale)+"\n")

ser.write("SMID\n")

ser.write("RPT\n")

ser.close()

def lchange(self,l):

ser = self.initANDO ()

ser.write("CTRWL"+str(l)+"\n")

ser.close()

def saveTrace(self,name):

ser = self.initANDO ()

#ser.write("SGL\n")

c = 1

while (c == 1):

time.sleep (0.5)
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ser.write("++auto 0\n")

ser.write("SWEEP?\n")

ser.write("++auto 1\n")

c = ser.readline ()

ser.write("++auto 0\n")

if c == 0:

ser.write("STP\n")

ser.write("++auto 0\n")

ser.write("LDATA\n")

ser.write("++auto 1\n")

# Tell the OSA to send data of Trace A

Ldat = ser.readline ()

ser.write("++auto 0\n")

ser.write("WDATA\n")

ser.write("++auto 1\n")

# Tell the OSA to send Wavelength of Trace A

Wdat = ser.readline ()

ser.write("++auto 0\n")

time.sleep (5)

ser.write("RPT\n")

time.sleep (5)

ser.write("RESLN?\n")

ser.write("++auto 1\n")

# Resolution of the measurement

res = ser.readline ()

ser.write("++auto 0\n")

ser.write("SMPL?\n")

ser.write("++auto 1\n")

# Samples of measurement , 0 is AUTO

smpl = ser.readline ()

ser.write("++auto 0\n")

ser.write("SENS?\n")

ser.write("++auto 1\n")

# Sensitivity

sens = ser.readline ()

ser.write("++auto 0\n")

ser.write("AVG?\n")
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ser.write("++auto 1\n")

# Averaging

avg = ser.readline ()

ser.write("++auto 0\n")

ser.close()

Ldat = Ldat.translate(None ,’\r’)

Wdat = Wdat.translate(None ,’\r’)

res = res.translate(None , ’\r\n’)

smpl = smpl.translate(None , ’\r\n’)

if smpl == ’    0’:

smpl = ’AUTO - See Sample Points ’

sens = sens.translate(None , ’\r\n’)

sensDict = {’1’: ’HIGH 1\n’,

’2’: ’HIGH 2\n’,

’3’: ’HIGH 3\n’,

’4’: ’NORM RANG HOLD\n’,

’5’: ’NORM RANG AUTO\n’,

’6’: ’MID\n’}

avg = avg.translate(None , ’\r\n’)

resS = ’RES: ’+res+’ nm\n’

smplS = ’SAMPLES: ’+smpl+’\n’

sensS = ’SENSITIVITY: ’+sensDict[sens [0]]

avgS = ’AVERAGING: ’+avg+’ SAMPLES\n’

f = open(name+’.csv’, ’w’)

f.write(resS)

f.write(smplS)

f.write(sensS)

f.write(avgS)

f.write(Wdat)

f.write(Ldat)

f.close()

def showTrace(self):

ser = self.initANDO ()
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#ser.write("SGL\n")

c = 1

while (c == 1):

time.sleep (0.5)

ser.write("++auto 0\n")

ser.write("SWEEP?\n")

ser.write("++auto 1\n")

c = ser.readline ()

ser.write("++auto 0\n")

if c == 0:

ser.write("STP\n")

ser.write("++auto 0\n")

ser.write("LDATA\n")

ser.write("++auto 1\n")

Ldat = ser.readline ()

ser.write("++auto 0\n")

ser.write("WDATA\n")

ser.write("++auto 1\n")

Wdat = ser.readline ()

ser.write("++auto 0\n")

time.sleep (5)

ser.write("RPT\n")

time.sleep (5)

ser.write("RESLN?\n")

ser.write("++auto 1\n")

res = ser.readline ()

ser.write("++auto 0\n")

ser.write("SMPL?\n")

ser.write("++auto 1\n")

smpl = ser.readline ()

ser.write("++auto 0\n")

ser.write("SENS?\n")

ser.write("++auto 1\n")

sens = ser.readline ()
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ser.write("++auto 0\n")

ser.write("AVG?\n")

ser.write("++auto 1\n")

avg = ser.readline ()

ser.write("++auto 0\n")

ser.close()

Ldat = Ldat.translate(None ,’\r’)

Wdat = Wdat.translate(None ,’\r’)

res = res.translate(None , ’\r\n’)

smpl = smpl.translate(None , ’\r\n’)

if smpl == ’    0’:

smpl = ’AUTO - See Sample Points ’

sens = sens.translate(None , ’\r\n’)

sensDict = {’1’: ’HIGH 1\n’,

’2’: ’HIGH 2\n’,

’3’: ’HIGH 3\n’,

’4’: ’NORM RANG HOLD\n’,

’5’: ’NORM RANG AUTO\n’,

’6’: ’MID\n’}

avg = avg.translate(None , ’\r\n’)

resS = ’RESOLUTION :\t’+res+’ nm’

smplS = ’SAMPLES :\t’+smpl

sensS = ’SENSITIVITY :\t’+sensDict[sens [0]]

avgS = ’AVERAGING :\t’+avg.strip ()+’ SAMPLES ’

x = np.array(map(float ,Wdat.split(’,’)[1:]))

y = np.array(map(float ,Ldat.split(’,’)[1:]))

plt.plot(x,y)

if np.min(y) < -110:

maxY = np.max(y)

plt.ylim((-85,maxY +5))

plt.xlabel(’Wavelength (nm)’)
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plt.ylabel(’Power (dBm)’)

plt.title(’ANDO AQ6317B Trace A’)

plt.grid(True)

print(resS)

print(smplS)

print(sensS)

print(avgS)

print(’SAMPLES :\t’+Wdat.split(’,’)[0]. strip ())

plt.show()

def send(self,comm):

ser = self.initANDO ()

ser.write(comm+"\n")

ser.write("++auto 1\n")

out = ser.readline ()

ser.write("++auto 0\n")

ser.close()

return out

def returnTrace(self):

ser = self.initANDO ()

#ser.write("SGL\n")

c = 1

while (c == 1):

time.sleep (0.5)

ser.write("++auto 0\n")

ser.write("SWEEP?\n")

ser.write("++auto 1\n")

c = ser.readline ()

ser.write("++auto 0\n")

if c == 0:

ser.write("STP\n")

ser.write("++auto 0\n")

ser.write("LDATA\n")

ser.write("++auto 1\n")

Ldat = ser.readline ()

ser.write("++auto 0\n")
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ser.write("WDATA\n")

ser.write("++auto 1\n")

Wdat = ser.readline ()

ser.write("++auto 0\n")

time.sleep (5)

ser.write("RPT\n")

npW = np.fromstring(Wdat , sep=’,’)[1:]

npL = np.fromstring(Ldat , sep=’,’)[1:]

return (npW ,npL)

Listing C.2.2: Class to control the Santec TLS-210 Tunable Laser.

# This is the updated version , for Windows and Linux

import sys

import serial

import time

import numpy as np

import readchar

import matplotlib.pyplot as plt

class pySANTEC(object ):

comport = None

def __init__(self,comport ):

self.comport = comport

def close(self,s):

s.close()

def initSANTEC(self,timeOut ,mode):

addr = 01

ser = serial.Serial(self.comport ,19200 ,

timeout=timeOut)

ser.write("++mode 1\n")

ser.write("++addr " + str(addr) + "\n")

ser.write("++auto " + str(mode) + "\n")

ser.write("++eoi 1\n")
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ser.write("++eos 3\n")

return ser

def on(self,co):

ser = self.initSANTEC (1,0)

ser.write("LO\n")

# coherence mode? Off for narrow line width

if co == True:

ser.write("CO\n")

time.sleep (5)

ser.close()

def off(self):

ser = self.initSANTEC (1,0)

ser.write("CF\n")

ser.write("LF\n")

time.sleep (3)

ser.close()

def lamChange(self, l):

ser = self.initSANTEC (0.5 ,1)

ser.write("WA {:.3f}".format(l)+"\n")

tune = ’1’

ser.write("SU\n")

ser.readline ()[-1]

while tune != ’0’:

ser.write("SU\n")

tune = ser.readline ()[ -1]

ser.close()

def mwChange(self,mW):

ser = self.initSANTEC (0.5 ,0)
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ser.write("LP "+str(mW)+"\n")

time.sleep (1)

ser.close()

def fine(self, l):

ser = self.initSANTEC (0.5 ,0)

ser.write("FT "+str(l)+"\n")

time.sleep (1)

ser.close()

def wrt(self, l):

ser = self.initSANTEC (0.5 ,1)

ser.write(str(l)+"\n")

out = ser.readline ()

time.sleep (1)

ser.close()

return out

def chk(self):

ser = self.initSANTEC (0.5 ,1)

ser.write("SU\n")

status = ser.readline ()

ser.close()

return status

def sweepLam(self,lamVec ,delay ,out):

ser = self.initSANTEC (0.05 ,1)

for ii in range(lamVec.size):

ser.write("WA {:.3f}".format(lamVec[ii])+"\n")

tune = ’1’

ser.write("SU\n")

ser.readline ()[-1]

while tune != ’0’:

ser.write("SU\n")
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tune = ser.readline ()[ -1]

if delay != 0:

time.sleep(delay)

if out == True:

print(format(ii)+’: Lambda = {:.3f}’.

format(lamVec[ii])+’ nm’)

ser.close()

def moveLam(self):

ser = self.initSANTEC (0.05 ,1)

stepV = np.array ([0.001 ,0.002 ,0.005 ,0.01 ,0.02 ,

0.05 ,0.1 ,0.2 ,0.5 ,1 ,2 ,5 ,10 ,20])

inChar = ’a’

stepInd = 2

step = stepV[stepInd]

print(’<--- Change Wavelength - Step Size: ’

+str(step)+’ nm --->’)

while inChar != ’q’:

inChar = readchar.readkey ()

if inChar == ’8’:

ser.write(’WA\n’)

lam = ser.readline ()[ -8:]

ser.write("WA {:.3f}".

format(float(lam)+step)+"\n")

tune = ’1’

ser.write("SU\n")

ser.readline ()[ -1]

while tune != ’0’:

ser.write("SU\n")

tune = ser.readline ()[ -1]



189

ser.write(’WA\n’)

print(’Lambda: ’+ser.readline ()+’ nm’)

if inChar == ’2’:

ser.write(’WA\n’)

lam = ser.readline ()[ -8:]

ser.write("WA {:.3f}".

format(float(lam)-step)+"\n")

tune = ’1’

ser.write("SU\n")

ser.readline ()[ -1]

while tune != ’0’:

ser.write("SU\n")

tune = ser.readline ()[ -1]

ser.write(’WA\n’)

print(’Lambda: ’+ser.readline ()+’ nm’)

if inChar == ’+’:

if stepInd < stepV.size -1:

stepInd += 1

step = stepV[stepInd]

print(’Step Size: ’+str(step)+’ nm’)

if inChar == ’-’:

if stepInd > 0:

stepInd -= 1

step = stepV[stepInd]

print(’Step Size: ’+str(step)+’ nm’)

print(’<---+---+---+- Done -+---+---+--->’)

ser.close()

def status(self):
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ser = self.initSANTEC (0.5 ,1)

ser.write("WA\n")

ser.readline ()

print(" <<---+--- TSL -210 Laser Status ---+--->>")

ser.write("WA\n")

print(’Wavelength :\t\t ’+ser.readline ()+’ nm’)

ser.write("FT\n")

print(’Fine Tunning :\t\t ’+ser.readline ())

ser.write("OP\n")

print(’Power :\t\t\t ’+ser.readline ()+’ dBm’)

ser.write("LP\n")

print(’Power :\t\t\t ’+ser.readline ()+ ’ mW’)

ser.write("CV\n")

print(’Coherence Level :\t ’+ser.readline ())

print(" <<---+---+---+---+----+---+---+---+--->>")

ser.close()

Listing C.2.3: Class to control the Thorlabs Powermeter.

from ThorlabsPM100 import ThorlabsPM100

import numpy as np

import visa

class pyThorPM(object ):

comport = None

def __init__(self,comport ):

self.comport = comport

def initThorlabsPM(self):

rm = visa.ResourceManager ()

inst = rm.open_resource(self.comport)

pm = ThorlabsPM100(inst=inst)
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return pm

def ID(self):

rm = visa.ResourceManager ()

port = rm.open_resource(self.comport );

idn = port.query(’*IDN?’)

return idn

def sensorID(self):

pm = self.initThorlabsPM ()

idn = "Thorlabs PM100D Sensor: "

+pm.system.sensor.idn

return idn

def power(self,out):

pm = self.initThorlabsPM ()

mW = pm.read*1e3

dBm = 10*np.log10(mW)

if out == True:

print("{:1.3e}".format(mW) + " mW ({:6.4f}".

format(dBm) + ’ dBm)’)

return mW

Listing C.2.4: Class to control the Finisar WaveShaper 1000A OAWG.

from wsapi import *

import time

import numpy as np

class pyWaveShaper(object ):

wsConfig = None

def __init__(self,wsConfig ):

self.wsConfig = wsConfig
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def ID(self):

ws_create_waveshaper(’ws1’,self.wsConfig)

sno = ws_get_sno(’ws1’)

con = ws_get_configversion(’ws1’)

ws_delete_waveshaper(’ws1’)

idn = "Serial Number : "+sno+

", Config Version : "+con

return idn

def allBlock(self):

ws_create_waveshaper(’ws1’,self.wsConfig)

wsFreq = np.arange (191.25 ,196.275 ,0.001)

wsAtten = 60*np.ones(wsFreq.size)

wsPhase = np.zeros(wsFreq.size)

wsPort = np.zeros(wsFreq.size)

profileWS = ’’

for ii in range(wsFreq.size):

profileWS = profileWS+

’{:0.3f}’.format(wsFreq[ii])+

’\t{:0.3f}’.format(wsAtten[ii])+

’\t{:0.3f}’.format(wsPhase[ii])+

’\t{:0.3f}’.format(wsPort[ii])+’\n’

ws_load_profile(’ws1’,profileWS)

ws_delete_waveshaper(’ws1’)

def allTransmit(self):

ws_create_waveshaper(’ws1’,self.wsConfig)

wsFreq = np.arange (191.25 ,196.275 ,0.001)

wsAtten = 0*np.ones(wsFreq.size)

wsPhase = np.zeros(wsFreq.size)

wsPort = np.ones(wsFreq.size)

profileWS = ’’

for ii in range(wsFreq.size):

profileWS = profileWS+

’{:0.3f}’.format(wsFreq[ii])+
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’\t{:0.3f}’.format(wsAtten[ii])+

’\t{:0.3f}’.format(wsPhase[ii])+

’\t{:0.3f}’.format(wsPort[ii])+’\n’

ws_load_profile(’ws1’,profileWS)

ws_delete_waveshaper(’ws1’)

def loadProfile(self,wsFreq ,wsAtten ,wsPhase ,wsPort ):

ws_create_waveshaper(’ws1’,self.wsConfig)

# Error checking goes here

profileWS = ’’

for ii in range(wsFreq.size):

profileWS = profileWS+

’{:0.3f}’.format(wsFreq[ii])+

’\t{:0.3f}’.format(wsAtten[ii])+

’\t{:0.3f}’.format(wsPhase[ii])+

’\t{:0.3f}’.format(wsPort[ii])+’\n’

ws_load_profile(’ws1’,profileWS)

ws_delete_waveshaper(’ws1’)

def loadProfileWindow(self,centerFreq ,widthFreq ,

attenWindow ,phaseWindow ):

wsFreq = np.arange (191.25 ,196.275 ,0.001)

wsAtten = 60*np.ones(wsFreq.size)

wsPhase = np.zeros(wsFreq.size)

wsPort = 0*np.ones(wsFreq.size)

for ii in range(centerFreq.size):

indexInit = np.where(

np.abs(wsFreq -centerFreq[ii])

<1e -5)[0][0]

indexDiff = widthFreq[ii ]/0.001/2

index0 = int(indexInit -indexDiff)

index1 = int(indexInit+indexDiff)

wsAtten[index0:index1] = attenWindow[ii]

wsPhase[index0:index1] = phaseWindow[ii]

wsPort[index0:index1] = 1
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self.loadProfile(wsFreq ,wsAtten ,wsPhase ,wsPort)

return [wsFreq ,wsAtten ,wsPhase ,wsPort]
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D Lithium Niobate Simulation

In collaboration with Prof. Fathpour’s group, we are interested in testing their

unique WG for nonlinear optics [22]. The device consists of a patterned Si3N4 ridge

which defines the guiding region on a LN wafer bonded to a silicon-on-insulator

wafer.

In this Appendix, we show some preliminary simulations of these devices. The

first section contains an overview of the geometry of the waveguide and plots of the

mode shapes. The second section takes the dispersion calculated from the simulation

to estimate the QPM grating for SHG and SFG between the telecom C-band and

roughly 750 nm.

D.1 Geometry

The cross-section of the waveguide is formed by bonding a 400-nm-thick film of

Y-cut LN with a 400-nm by 2 µm Si3N4 ridge. Figure D.1.1 shows this geometry

and Figure D.1.2 shows the indices of refraction for the materials involved in the

simulation. Figure D.1.3 shows the guided modes.
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Figure D.1.1: The simulated cross-section. The orange section is the silicon nitride
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Figure D.1.2: The refractive index, (a), group index, (b), and the group-velocity
dispersion, (c) of the materials in the simulations, plus the effective index of the
waveguide.
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Figure D.1.3: Electric field magnitude for the first two guiding modes of the WG.
(a,c) is fundamental mode, while (b, d) is the secondary mode. (a, b) are at 1560
nm, while (c, d) are at the SH of 780 nm.

D.2 Poling Period

The WG needs a QPM grating to facilitate phase-matching between the a pump in

the 1500-1650 nm spectrum window and the band which roughly corresponds to it’s

SHG.
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mismatch is 0 near 1610 nm for a grating period of 4.676 µm.
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signal wavelength.
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