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ABSTRACT

Minimal Mathematical Models of Human and Animal Dynamical Systems

Sara M. Clifton

Minimal mathematical models are used to understand complex phenomena in the

physical, biological, and social sciences. This modeling philosophy never claims, nor

even attempts, to fully capture the mechanisms underlying the phenomena, and instead

offers insights and predictions not otherwise possible. Here, we build and explore minimal

dynamical systems models to understand three complex animal and human systems. First,

we incorporate the assumptions of Zahavi’s handicap principle into a mathematical model

of ornament evolution and show that this existing hypothesis is sufficient to explain the

previously puzzling observation of bimodally distributed ornament sizes in a variety of

species. Second, we propose a ‘return-to-setpoint’ model of chronic pain dynamics in sickle

cell disease patients with the goal of offering personalized, data-driven recommendations

for treating chronic pain. Third, we present a conceptual model of restaurant competition

that predicts the existence of a critical gratuity rate threshold at which restaurant owners

will disallow tipping to maximize their profits. Because of their simplicity, these models
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of complex human and animal systems offer new connections between existing ideas, give

optimized solutions with limited data, and provide qualitative predictions of future events.
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CHAPTER 1

Introduction

The essence of mathematics is not to make simple things complicated,

but to make complicated things simple.

Stan Gudder, “A Mathematical Journey”

1.1. Investigating complex biological and social systems with simple models

Minimal mathematical models bring clarity to complex natural and social phenomena,

from disease spread [6, 7, 8] to fishery dynamics [9, 10, 11] to bird flocking [12, 13, 14].

Though these models do not capture the full complexity of the systems, their analytical

tractability and simplicity offer insights into first order principles not obvious in more

detailed models. Moreover, these minimal models provide useful predictions and guidance:

compartmental disease models inform vaccination protocols, population dynamics models

influence resource management, and flocking models inspire the field of artificial swarm

intelligence. The aforementioned models are only a small sample of existing minimal

models that give new perspectives on complex systems.

1.2. Mathematical modeling process

Mathematical modeling is the translation of a real world system into a quantitative

language. There are as many ways to build a mathematical model as there are math

modelers, but Figure 1.1 illustrates one strategy for constructing testable math models.
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Modelers typically cycle between the real world and the math world. The real world

provides an interesting phenomenon, paradox, or question that evades easy explanation.

Modelers take the often vaguely stated real world problem and propose a concrete quali-

tative hypothesis to be tested. Then the qualitative theory is translated from words into

mathematical formulas; these governing equations may be exactly solved or approximated

using numerical methods and/or asymptotic analysis. Once model behavior is well un-

derstood, the model can be validated or undermined by real world data. In either case,

the model offers insight into the forces underlying the real world phenomenon. If the

model does not satisfactorily answer the initial question, or if new questions arise after

an iteration of the modeling process, the whole cycle may begin again.

TYPICAL MATH MODELING PROCESS  

real world 
phenomenon 
(often vague) 

implications 

data 

REAL WORLD 

qualitative 
theory 

(words, laws) 

quantitative  
theory 

(governing equations) 

solution to governing 
equations 

(model behavior)   

MATH WORLD 

make assumptions, 
keep it simple 

apply or invent 
methods to solve  
(or approximate) validate 

inform 

Figure 1.1. Typical mathematical modeling process. Modified with permis-
sion from flowchart by Vicky Chuqiao Yang (http://www.vcyang.com/).

http://www.vcyang.com/
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1.2.1. Example of the math modeling process

As an illustration of the math modeling process, we will briefly walk through the cre-

ation of a mathematical model for the evolution of extravagant mating displays, such as

peacock feathers and deer antlers. The real world provides an interesting phenomenon:

species spanning the animal kingdom grow large or flashy ornamental features that not

only require extra resources to grow and maintain, but also hinder the ability to gather

resources and avoid predators.

Charles Darwin was the first to attribute this phenomenon to a balance between

natural and sexual selection [15], turning a real world observation into a qualitative theory.

Evolutionary biologist Amotz Zahavi later refined Darwin’s theory with his handicap

principle [16]. This hypothesis argues that, because costly ornaments hinder survival,

only the highest quality individuals can afford significant investment in them. Thus

the cost of an ornament truthfully advertises the quality of an individual, making mate

selection more efficient.

Zahavi’s handicap principle, a qualitative theory for the evolution of ornaments, serves

as the basis for a quantitative theory that can be tested. Because Darwin’s theory suggests

that survival potential decreases and mating potential increases as ornament size (or

flashiness) increases, we create a simple net reproductive benefit function to capture this

behavior. Zahavi adds an additional constraint to our formulation that higher quality

mates will experience relatively lower costs for a particular ornament size. For the full

model derivation, see Chapter 2.

Due to the model’s simplicity, we can find exact steady state solutions and their corre-

sponding stability. We can numerically integrate the system to see change in ornament size
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over time and investigate relationships among model parameters and final distributions

of ornament sizes. Most significantly, we can compare model behavior with real world

data. Our model predicts ornament sizes will evolve into a bimodal distribution, which is

seen in many ornamented species. Though the model is too simple to perfectly reproduce

the ornament size distributions seen in the real world, we find that model predictions are

qualitatively consistent with real world data.

This modeling process offers new implications for the evolution of ornaments: Zahavi’s

handicap principle may explain the dimorphic ornaments seen in many species. This new

connection can now be tested quantitatively in the field or in the lab.

1.3. Dissertation overview

In this dissertation, three new models offer fresh ways of approaching problems in

three different fields: evolutionary biology, medicine, and behavioral economics. Chapter

2 provides a new connection between an existing biological hypothesis, the handicap prin-

ciple, and the puzzlingly common existence of dimorphic ornaments. Chapter 3 exploits

limited mobile health data to recommend optimal clinical interventions for chronic pain

in sickle cell disease patients. Chapter 4 uses non-traditional methods to offer a new

qualitative prediction that restaurants will abandon tipping to maximize profits.
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CHAPTER 2

Handicap principle implies emergence of dimorphic ornaments

2.1. Background

Darwin was the first to suggest that both natural and sexual selection play a role in the

evolution of mating displays [15]. Natural selection is the shift in population traits based

on an individual’s ability to survive and gather resources, while sexual selection is the shift

in population traits based on an individual’s ability to mate with more or better partners.

Natural selection alone cannot explain ornaments because they hinder survival and provide

little to no benefit to the individual [17, 18, 19]. Darwin hypothesized that female

preference for exaggerated mating displays drives the evolution of male ornamentation,

but he was unable to explain why females prefer features which clearly handicap the

males.

Zahavi’s handicap principle attempts to resolve the paradox proposed by Darwin [16].

It argues that, because costly ornaments hinder survival, only the highest quality indi-

viduals can afford significant investment in them. Thus the cost (often correlated with

size) of an ornament truthfully advertises the quality of an individual, which makes mate

selection easier. There is a large body of evidence that ornaments are indeed costly to the

bearer (e.g. [20, 21, 22]), that ornaments are honest signals of quality (e.g., [23, 24]),

and that females prefer mates with larger ornaments (e.g. [25, 26, 27]).
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A variety of theoretical approaches have been used to model the handicap principle

[19, 28, 29, 30, 31]. Broad categories include game theoretical approaches (e.g., [32,

33]), quantitative genetics (e.g., [34, 35]), and phenotypic dynamics (e.g., [36, 37]).

Borrowing and expanding upon ideas from all three methods, we propose a new dynamical

systems approach to understanding the evolution of ornaments within a population. Our

model differs from some that search for a single evolutionarily stable strategy (ESS) (e.g.,

[33]) in that we do not require a unique phenotype for a particular male quality; our

method allows for the possibility that an optimal distribution of strategies may emerge

for a population—even a population of equal quality males.

Curiously, it has been observed that ornament sizes frequently have bimodal distribu-

tions, resulting in distinct small- and large- “morphs” in many ornamented species (e.g.,

[38, 39, 40]). Figure 2.1 illustrates a classic example of ornament dimorphism, the horned

dung beetle [38]. While in some cases researchers have identified genetic and environ-

mental factors associated with ornament size variation (e.g., [41, 42]), the splitting into

two distinct large- and small-ornamented subpopulations (morphs) remains a contentious

area of study.

Some evolutionary theories suggest that variety within the sexes may be due to varied

mating strategies such as mimicry, sneaking, or fighting [43, 44]. However, our model

suggests that the handicap principle alone may be sufficient to explain the origin of the

observed ornament bimodality.
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Figure 2.1. Example of a dimorphic ornament: dung beetles with differing
horn lengths (Onthophagus taurus, Coleoptera: Scarabaeidae), reprinted
from [38] with permission.

2.2. Model

With the goal of examining the quantitative implications of the handicap principle, we

construct a minimal dynamical systems model for the evolution of extravagant and costly

ornaments on animals. This proposed model incorporates two components of ornament

evolution: an intrinsic cost of ornamentation to an individual (natural selection), and a

social benefit of relatively large ornaments within a population (sexual selection). We

show that on an evolutionary time scale, identically healthy animals can be forced to split

into two morphs, one with large ornaments and one with small.

To express our model, we introduce the idea of a “reproductive potential” ϕ. This can

be thought of as similar to fitness, though our definition differs from the fitness function

commonly used in the replicator equation [36, 45]. See Section 2.4.3.3 for the precise

relationship. Over long time scales the effect of evolution is to select for individuals with

higher reproductive potential.

Consider an individual reproductive potential ϕ(ind) of a solitary male with ornament

size a (e.g., a deer with ornamental antlers). Some ornaments have practical as well
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as ornamental value (e.g., anti-predation [46, 47]), but have a deleterious effect beyond

a certain size. We therefore expect that there exists an optimal ornament size (possibly

zero), for which individual potential is maximum, and thus take this to be a singly-peaked

function of ornament size. For simplicity we assume the quadratic form1

(2.1) ϕ(ind) = a(2aopt − a).

Following the handicap principle, we expect the optimal ornament size aopt = aopt(h) to

be an increasing function of “intrinsic health” h—i.e., healthier individuals can afford

larger ornaments. See Figure 2.2 (a) for the general shape of the individual reproductive

potential function.

Next, we consider a social reproductive potential ϕ(soc) that captures the effects of

competition for partners (i.e., sexual selection). We assume social potential is an in-

creasing function of ornament size2 because sexual selection often favors larger or more

elaborate ornaments [26]. For simplicity, and motivated by the ubiquity of power laws

in nature [48, 49], we choose social potential to be a power of the difference between a

male’s ornament size and the average herd ornament size. To ensure monotonicity, we

force the social reproductive potential to be antisymmetric about the average ornament

size. The social potential is then

(2.2) ϕ(soc) = sgn (a− ā)|a− ā|γ,
1This is a generic form for an arbitrary smooth peaked function approximated close to its peak.
2This assumption applies most naturally to inter-sexual selection, ignoring alternative reproductive strate-
gies associated with intra-sexual selection (e.g., cryptic males).
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where the positive parameter γ quantifies the rate at which deviations from the mean

influence reproductive potential, sgn is the sign function, and ā represents the average

ornament size in the population. Loosely speaking, the parameter γ tunes female choice;

we take this “female choice” parameter to be effectively constant because female choice

may evolve on a slower time scale than male ornamentation [35]. Refer to Figure 2.2 (b)

for an example of the social reproductive potential function.

Because both natural and sexual selection play a role in the evolution of ornaments

[35], we take total reproductive potential to be the weighted average

(2.3) ϕ = sϕ(soc) + (1− s)ϕ(ind),

where s tunes the relative importance of competitive social effects (sexual selection) versus

individual effects (natural selection). We show in the Appendix that a weighted prod-

uct [50] produces identical qualitative results, so we focus on this case for simplicity of

calculations. See Figure 2.2 (c),(d) for examples of total potential functions.

Assuming that evolutionary forces optimize overall reproductive potential at a rate

proportional to the marginal benefit of ornamentation, ornament sizes will follow the

dynamics

(2.4)
da

dt
= c

∂ϕ

∂a

with time-scaling parameter c > 0. Note that this model does not presume that individual

ornaments explicitly change size: the “phenotype flux” da/dt is simply a way of describing

how the distribution of ornament sizes in a large animal population changes over long time

scales as a result of selection processes.
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Figure 2.2. Model derivation. (a) Example individual potential function,
singly peaked at aopt. We use a quadratic function. (b) Example social
potential function, antisymmetric about the population mean ā. We use
an anti-symmetrized power law such that the shape depends on the social
sensitivity γ (blue dashed is γ = 0.5; maroon solid is γ = 1.5). (c) Example
total reproductive potential function at equilibrium for γ < 1. There are
two local maxima corresponding to two distinct morphs, with the larger
ornament morph having the highest potential (here γ = 0.5). (d) Example
total potential function at equilibrium for 1 < γ < 2. There are two local
maxima corresponding to two distinct morphs, with the smaller ornament
morph having the highest potential (here γ = 1.5). Note that the fitness
landscape is distinct for each population representative, and representatives
are not assumed to be identical.

This produces a piecewise-smooth ordinary differential equation for ornament size flux,

(2.5)
da

dt
= c

[
sγ

(
1− 1

N

)
|a− ā|γ−1 + 2(1− s)(aopt − a)

]
,

where N is the population size. If we wish to model the evolution of all N population

representatives, then we would index a by i, producing a system of N ordinary differential
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equations. We omit the indices for notational clarity. Plugging (2.5) into the continuity

equation yields a replicator equation for the evolution of the ornament size distribution

(see Section 2.4.3.3).

2.3. Numerical exploration

For biologically relevant values of the social sensitivity parameter γ (details to follow),

our model predicts stratification into distinct phenotypes for a population of identically

healthy individuals (i.e., individuals of identical quality). See Figure 2.3 for the time

evolution of ornament size for two representative values of γ.

aopt aopt

a b

time time

o
rn

a
m

e
n
t 

s
iz

e

Figure 2.3. Evolution of ornament size. (a) Evolution of N = 100 popu-
lation representatives over time for γ = 0.5 and (b) γ = 1.5. The initial
conditions were sampled randomly from a normal distribution with mean
0.75 and standard deviation 0.25. The optimal ornament size aopt = 1.0,
maximum simulation time tmax = 50, time scaling constant c = 1.0, and
s = 0.5.

For 0 < γ < 1, the ornament sizes stratify into large-ornament and small-ornament

groups, with the majority possessing a large-ornament “morph.” For 1 < γ < 2, the

population stratifies into large- and small-ornament morphs, but the majority have small

ornaments. The case γ ≥ 2 is not a reasonable option because we have selected a qua-

dratic form for the local approximation of the individual potential function; any power γ



26

exceeding 2 implies sexual selection is the dominant evolutionary force even for extremely

large ornaments, an unreasonable assumption.

These qualitative results are consistent for all aopt and 0 ≤ s < 1. While for clarity

we have presented predictions of a specific minimal model, the qualitative results hold for

a wide range of models. See Section 2.6.2 for the generality of model predictions.

2.4. Analytical results

Because numerical integration shows that the uniform and two-morph steady states

are of interest, we concentrate our analysis on these equilibria. However, we can show

graphically that uniform and two-morph steady states are the only possible solutions for

a wide range of potential functions, including our potential function (2.3) (see Appendix).

2.4.1. Uniform steady state

To investigate the uniform equilibrium with an identically healthy population, we set

a = ā producing the single ordinary differential equation3,

(2.6)
da

dt
= 2c (1− s)(aopt − a).

The steady state (i.e., da/dt = 0) is clearly a = aopt. Linear stability analysis within

this identical ornament manifold shows the fixed point a = aopt is stable for all γ and

0 ≤ s < 1, but numerical simulation suggests that the uniform fixed point is only stable

for γ ≥ 2. To resolve this apparent discrepancy, we investigate the uniform fixed point

of (2.5) in the continuum limit, and evaluate stability without restriction to the uniform

3For γ ≤ 1, we set ϕ(soc) = 0 before setting a = ā to avoid an undefined right-hand side of (2.5).
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manifold. We are then able to find γ-dependence that agrees with simulations. See Section

2.4.3 for more details.

2.4.2. Two-morph steady state

To investigate the two-morph equilibrium, we assume all males have one of two ornament

sizes a1 and a2. Taking x to be the fraction of males with ornament size a1, and N →∞,

the dynamical system becomes

(2.7)

da1
dt

= c
[
s γ
(

(1− x)|a1 − a2|
)γ−1

+ 2 (1− s)(aopt − a1)
]

da2
dt

= c
[
s γ
(
x|a1 − a2|

)γ−1
+ 2 (1− s)(aopt − a2)

]
.

There exists one two-morph steady state (i.e., solution to da1/dt = da2/dt = 0):

(2.8)

a1 = aopt +

(
sγ

2(1− s)

) 1
2−γ
(

(1− x)
∣∣∣(1− x)γx− xγ + x1−γ

(1− x)x

∣∣∣ 1
2−γ
)γ−1

a2 = aopt +

(
sγ

2(1− s)

) 1
2−γ
(
x
∣∣∣(1− x)γx− xγ + x1−γ

(1− x)x

∣∣∣ 1
2−γ
)γ−1

.

Figure 2.4 (a),(b) shows how two-morph equilibria vary with the morph fractionation

x. Within the shaded region, the fixed point is stable. To be clear, the model predicts

that a bimodal population will emerge, with the fraction x of the individuals within the

population possessing ornaments of size a1. We are not claiming that a proportion x of

populations will evolve to ornament size a1.

The eigenvalues for the linearized system constrained to this two-morph manifold are

λ1 = −2(1−s)/s and λ2 = 2(γ−2)(1−s)/s. Clearly, the two-morph equilibrium is stable

(within the two-morph manifold) for 0 < γ < 2 and unstable for γ > 2, when λ2 > 0.
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Curiously, the stability of the two-morph equilibrium does not depend on x, the morph

fractionation. This presents an apparent problem because numerical simulation suggests

that only certain ranges of x are stable: see Figure 2.4 (c). Similarly to the uniform

fixed point analysis, we investigate the fixed points of the model in the continuum limit,

and evaluate stability without restriction to any manifold. We are then able to find x-

dependence that agrees well with simulations: see Figure 2.4 (d). Refer to Section 2.4.3

for more details.
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Figure 2.4. Stability regions for two-morph steady states (N = 100, s =
1/2). The ornament size for morph 1 is blue (dashed line), and the ornament
size for morph 2 is maroon (solid line). The shaded regions are stable. (a)
Two morph steady state for various morph fractionation x and γ = 0.5 (b)
Two morph steady state for various morph fractionation x and γ = 1.5.
(c) Analytical stability region (grey shading) for finite N model within
two-morph manifold with numerical stability region (dots) superimposed.
(d) Analytical stability region (grey shading) from continuum model with
numerical stability region (dots) superimposed.
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2.4.3. Continuum limit

Up until this point, we have modeled a system of N population representatives whose

dynamics follow equation (2.5). The fixed points of this system are a discrete set of

ornament sizes. Now we take N →∞, which turns the N ordinary differential equations

into a partial integro-differential equation for a continuous distribution of ornament sizes

p(a, t). The equation we derive is the replicator function for continuous phenotypes [45].

We use conservation of probability to find the governing equation for the probability

density function p(a, t). The probability of a male having an ornament size in (a, a+ da)

for small da is approximately p(a, t) da. Given our assumption that individuals are neither

created nor destroyed in (a, a+ da), we have

∂p

∂t
da = p

da

dt

∣∣∣∣∣
a

− p da

dt

∣∣∣∣∣
a+da

.

In other words, the change in individuals in the sliver (a, a + da) is equal to the number

that enter the sliver minus the number that leave. In the limit da → 0, we get the

continuity equation

(2.9)
∂p

∂t
= − ∂

∂a

(
p

da

dt

)
.

The dynamics of a follow (2.5) in the limit N →∞

(2.10)
da

dt
= c
[
s γ|a− ā|γ−1 + 2(1− s) (aopt − a)

]
,



30

where the mean ornament size is

ā =

∫ ∞
−∞

a(t) p(a, t) da.

We substitute (2.10) into (2.9) to get a partial integro-differential equation for the prob-

ability density function p(a, t) for ornament size

(2.11)
∂p

∂t
= −c ∂

∂a

(
p
[
s γ|a− ā|γ−1 + 2(1− s) (aopt − a)

])
.

2.4.3.1. Continuum limit uniform steady state. Now that we have established the

continuum limit of the discrete model, we wish to investigate the uniform fixed point

we found in Section 2.4.1. Within this continuum framework, the uniform fixed point

a = aopt is the delta distribution

(2.12) p(a, t) = δ(a− aopt).

Previously, we investigated the stability of the uniform steady state by perturbing every

member of the population by the same arbitrary, small amount. If we wished to repeat

this investigation for the continuum model, we would shift the peak of the delta function

by an arbitrary small amount from aopt to some a0. To make stability analysis more

general, we also consider widening the delta function into a narrow Gaussian with an

arbitrary small standard deviation σ. Figure 2.5 (a),(b) illustrates this idea.

We now wish to confirm that this continuum representation (2.10) of the model is

consistent with our discrete model (2.5), at least near the simplest fixed point (the uniform

state). Based on our previous stability analysis, we expect that a0 will shift back to aopt
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and the width of the peak will shrink to 0 for γ ≥ 2. However, we do not know how

quickly these shifts occur relative to each other.

We will first investigate the dynamics of a0 assuming that σ is effectively constant on

the time scale of interest. Then the “perturbed” distribution is the narrow Gaussian

(2.13) p(a, t) =
1

σ
√

2π
e−(a−a0(t))

2/2σ2

with constant σ � 1 and a0(t) near the fixed point aopt.

Plugging (2.13) into the continuity equation (2.9), and solving for the highest order

(fastest) dynamics of a0, we see

(2.14)
da0
dt

= sγ|a− a0|γ−1 + 2(1− s) (aopt − a).

Note that (2.14) is only true if σ → 0+ faster than a→ a0. If we instead assume σ → 0+

slower than a→ a0, the right-hand side of (2.14) is unbounded, and therefore inconsistent

with the discrete model. Taking a→ a0 in (2.14), we see as expected

da0
dt

= 2(1− s) (aopt − a0).

As we see that σ shrinks to 0 faster than a → a0, we investigate the dynamics of

σ(t)� 1 for a0 = aopt. Again, we take p(a, t) to be a narrow Gaussian distribution

(2.15) p(a, t) =
1

σ(t)
√

2π
e−(a−a0)

2/2σ(t)2 .
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Substituting (2.15) into (2.9) and Taylor expanding about σ = 0 gives

dσ

dt
=

[
γ |a− a0|γ−1

a− a0
+ 2

1− s
s

aopt − a
a− a0

]
σ +O(σ3).

We see that as a→ a0 = aopt for γ < 2, the uniform fixed point is unstable (coefficient of

σ is∞). For γ > 2, the fixed point is stable (coefficient of σ is −2
1− s
s

). The fixed point

for γ = 2 is conditionally stable (coefficient of σ is ±2−2
1− s
s

). These results agree with

the finite N model.

2.4.3.2. Continuum limit two-morph steady state. Next, we investigate the stabil-

ity of the two-morph steady state. Similar to our investigation of the uniform steady state,

we “perturb” the two-morph steady state to the weighted sum of two narrow Gaussian

distributions

(2.16) p(a, t) =
x

σ1(t)
√

2π
e−(a−a1)

2/2σ1(t)2 +
1− x

σ2(t)
√

2π
e−(a−a2)

2/2σ2(t)2 ,

where a1 and a2 are given by the two-morph fixed point (2.8). Figure 2.5 (c),(d) illustrates

this idea.

Plugging (2.16) into the continuity equation (2.9) and using ā = xa1 + (1− x)a2, we

get a system of two ordinary differential equations for the evolution of σ1 and σ2:

(2.17)

dσ1
dt

=λ1σ1 +O(σ3
1)

dσ2
dt

=λ2σ2 +O(σ3
2),

where λ1 and λ2 depend on aopt, s, x, and γ (expressions omitted due to length). Setting

aopt = 1 and s = 1/2 for instance, we plot the stability region (i.e., where λ1, λ2 < 0) for
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Figure 2.5. We consider perturbations to the uniform fixed point a = aopt
and the two-morph fixed point in equation (2.8) such that the peaks of the
distribution are centered at the fixed point solution, and the widths of the
peaks are nearly 0. (a) Shift peak of the delta uniform solution to a0. (b)
Perturb peak width of the delta uniform solution. (c) Two-morph steady
state. (d) Perturb peak widths of the delta two-morph solution.

the two-morph steady state in terms of social sensitivity γ and the proportion of males

in the large-ornamented group. See Figure 2.4 (d). This is the same stability region we

found numerically, which resolves the apparent discrepancy we saw when perturbing the

locations of the peaks (but not the widths of the peaks) of the two-morph steady state

distribution.

2.4.3.3. The connection between potential and fitness. Expressing our model in

the continuum limit also allows us to connect our phenotype flux to the more traditional

replicator equation. Many evolutionary dynamics problems begin with the replicator
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equation [36], which in the continuum limit is as follows:

(2.18)
∂p

∂t
= p(a, t)

[
f(a, p)− f̄(p)

]
,

where p is the probability distribution of a continuous phenotype a at time t, f is the

fitness of a phenotype (say, ornament size or brightness) given a population state, and

f̄ =
∫∞
−∞ f(a, p)p(a, t) da is the average population fitness [45].

Given that probability must be conserved, the distribution of phenotypes must also

follow the continuity equation

(2.19)
∂p

∂t
= − ∂

∂a

(
p

da

dt

)
.

This formulation differs from the replicator equation (2.18) in that it requires specification

of the phenotype flux da/dt rather than fitness f . Our approach treats this flux as

derivable from some potential function, which we refer to as ϕ, the net “reproductive

potential” (see equation (2.3)).

Intuitively, the relationship between our phenotype flux da/dt and the more commonly

used replicator equation approach (the upward distribution flux) can be seen in Figure 2.6.

These reflect interchangeable ways of viewing the evolutionary process of optimizing the

probability distribution p(a, t).

We can express the relationship between the two approaches mathematically simply

by equating the right-hand-sides of equations (2.18) and (2.19), yielding

(2.20) f − f̄ = −1

p

∂

∂a

(
p

da

dt

)
= −c

(
1

p

∂p

∂a

∂ϕ

∂a
+
∂2ϕ

∂a2

)
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Figure 2.6. Consider an infinitesimal sliver (dashed green) of the probabil-
ity density function at a particular time (solid black). After an infinitesimal
time increment, the probability density function changes a small amount
(dashed black). Because probability is conserved, the flux da/dt of popula-
tion ornament sizes into (or out of) the sliver increases (or decreases) the
height of the probability density function.

where the last equality makes use of equation (2.4). Integrating equation (2.20) once with

respect to a and using equation (2.4) yields an integro-differential equation for ϕ in terms

of f :

(2.21)
∂ϕ

∂a
= − 1

cp

∫ a

−∞
p
(
f − f̄

)
da,

assuming p da/dt→ 0 as a→ −∞.

2.4.4. Eigenvalues of system as N →∞

When investigating the stability of the two morph steady state, we chose to take the

continuum limit of the model and then investigate the dynamics of the standard deviation

of a Gaussian perturbation to the two morph equilibrium. Now we look at the eigenvalues
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of the finite N system in the limit N → ∞. Scaling time such that c = 1, the Jacobian

for the system (2.5) has diagonal elements

Jii = sγ(γ − 1)

(
1− 1

N

)2

sgn (ai − ā)|ai − ā|γ−2 − 2(1− s),

and off-diagonal elements

Jij = sγ(γ − 1)

(
− 1

N

)(
1− 1

N

)
sgn (ai − ā)|ai − ā|γ−2.

As N →∞,

Jii → sγ(γ − 1) sgn (ai − ā)|ai − ā|γ−2 − 2(1− s)

Jij → 0,

indicating that for large N , the Jacobian matrix is approximately diagonal. Therefore,

the diagonal elements are approximately the eigenvalues. Plugging in the two morph

fixed point (2.8), we get two eigenvalues λ1 and λ2 with multiplicity xN and (1 − x)N

respectively. If we plot the stability region (i.e. where λ1, λ2 < 0), we see that it’s the

same as that of the continuum model seen in Figure 2.4 (d).

2.4.5. Fixed point basins of attraction

Numerically integrating with initial conditions very close to the fixed points verifies the

analytical stability region. However, not all stable equilibria have equally large basins of

attraction. Numerically, we found that most initial conditions lead to steady states close

to the “frontline” of stability onset. This can be seen in a simple numerical experiment;

we tried a range of increasingly perturbed initial conditions centered at the fixed points

and looked at the eventual outcomes. See Figure 2.7.
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Figure 2.7. Numerical stability region for initial conditions near the analyt-
ical fixed points with increasing variances (N = 100, s = 1/2) A. σ = 10−3

B. σ = 10−2 C. σ = 10−1 D. σ = 100

2.5. Model validation

We now revisit our simplifying assumption that all males are equally healthy. More

realistically, we allow the intrinsic health h to be taken from some distribution (perhaps

set by genetic, developmental, or environmental factors). Suppose this distribution is

such that the individual optimal ornament size aopt(h) is normally distributed. Then the

stable two-morph steady state changes from a weighted sum of perfectly narrow Dirac

delta functions to a distribution roughly resembling the sum of two Gaussians—usually



38

a bimodal distribution. Marginal histograms in Figure 2.11 (a),(b) shows examples of

steady states with varied intrinsic health.

These examples resemble data from many species that grow ornaments. Figure 2.11

(c),(d) shows two examples of real-world ornament distributions that exhibit bimodality.

Note that we do not expect the exact shape of the real-world distributions to match

our simulations because the measured quantities will not necessarily be linear in cost.

However, bimodality will be preserved regardless of the measured quantity.

In a literature search [51, 52, 53, 54, 55, 56, 26, 57, 58, 59, 25, 60, 61, 62, 40,

63], we found a number of published data sets showing size distributions of suspected

ornaments; 23 were of sufficient quality for testing agreement with this model. In 13

of those data sets we found some evidence for rejecting the hypothesis of unimodality:

the data were more consistent with a mixture of two or more Gaussian distributions than

with a single Gaussian. In six data sets, we found stronger evidence: non-parametric tests

rejected the hypothesis of unimodality. Note that other data sets were not inconsistent

with bimodality, but small sample sizes often limited the power of statistical testing. All

histograms and statistical test results of data sets are in the Appendix.

2.5.1. Statistical analysis of ornamentation data

Our model for the evolution of costly mating displays predicts the emergence of two

distinct morphs of ornament sizes. We tested whether the two-morph state was detectable

in a variety of ornament datasets (Figures A.2, A.3). Three approaches were used: a

parametric mixture model fit; the nonparametric but highly conservative Hartigans’ Dip
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Test for bimodality [64]; and a simulation–based nonparametric test which improves upon

the Hartigan test sensitivity.

2.5.1.1. Parametric two-morph test. All count and size measurement data were log-

transformed prior to analysis (as is typical for physical measurements) to account for the

bounded support of size distributions. Here, we make the assumption that ornament sizes

within a morph will be log-normally distributed, and that a multi-morph state will exhibit

a mixture of distributions. We thus fit Gaussian mixture models with 1–5 components

of unequal variance to the log-transformed data and find the number of components that

yields the best Bayes Information Criterion (BIC) [65]. In the absence of a social fitness

pressure, we expect the best fit to be a single Gaussian (corresponding to the one morph

state), while the two morph state predicted from our model will have the best fit with

two or more components.

2.5.1.2. Hartigans’ dip test. An essential drawback of using the above mixture model

fit to assess the number of ornament–size morphs in the data is that it is extremely

sensitive to deviations from the parametric assumption that a one morph state will be

well described by a single Gaussian. False positives are likely when those assumptions are

violated; if a single morph state has a skewed (or otherwise non-normal) distribution, a

mixture of two or more Gaussians will generally give a higher BIC than a single component

distribution.

A more conservative approach is to look for evidence of strict multimodality (with

dips in the distribution), rather than a mixture which may not exhibit a “dip”. Hartigan

and Hartigan define the dip statistic D as the maximum difference between the empirical
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cumulative distribution function and the CDF of the unimodal distribution that mini-

mizes that maximum difference. The reference distribution is customarily taken to be the

uniform distribution, the least singly peaked of all unimodal distributions. The p-value

for the dip is calculated by comparing D to those obtained from repeated samples of the

same size drawn from a uniform distribution. The dip test thus measures whether the

empirical distribution of the data exhibits greater departure from unimodality than would

be expected from a sample of the same size if the underlying distribution were uniform.

2.5.1.3. Bootstrap dip test. While the mixture test may be overly sensitive in de-

tecting deviations from a single morph, Hartigans’ dip test is likely to be excessively

conservative and insensitive at small sample sizes. A finite sample drawn from a uniform

distribution will, with high probability, have a larger dip by chance than a finite sample

drawn from a two morph distribution such as those shown in Figure 2.11 (a),(b).

To address this problem, we propose a bootstrap dip test which takes as its reference

distribution the “least unimodal” unimodal density estimate of the sample. Given a finite

sample, we construct a kernel density estimate (KDE) using a Gaussian kernel at various

bandwidths. At very large bandwidths, the KDE will be unimodal; as the bandwidth

is reduced, the KDE will approach a multimodal distribution with as many modes as

there are unique values in the dataset. We define the least–unimodal unimodal (LUU)

distribution to be that obtained from the smallest bandwidth for which the KDE is still

strictly unimodal. Figure 2.8 demonstrates this step of the method visually.

From this LUU density estimate, we generate random samples of the same size as the

original data and compute their dip statistics. These bootstrapped samples serve as the

reference distribution against which the dip statistic of the data is compared. This test
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thus measures whether the empirical distribution of the data exhibits greater departure

from unimodality than would be expected from a sample of the same size if the underlying

distribution were the unimodal distribution best fit to the sample. Figure 2.9 demonstrates

this step of the method visually. Figure 2.10 illustrates that this bootstrap dip test is

more sensitive to bimodality than Hartigans’ Dip Test.
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Figure 2.8. Illustration of least-unimodal unimodal (LUU) bootstrap
method. (a) A hypothetical data set histogram with small sample size.
(b)-(c) Normal kernel density estimates (solid blue) of the hypothetical
data set with increasing standard deviations. As the width of the kernel
increases, the kernel estimate is multimodel (b), bimodal (c), and least-
unimodal unimodal (d).
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Figure 2.9. Illustration of least-unimodal unimodal (LUU) bootstrap
method. Given a real data set of size N and a large number of boot-
strapped samples of size N drawn from the LUU distribution, we plot the
dip score of our data against the distribution of dip scores from all LUU
samples. In this illustration, our real data dip score (solid red) has more
‘dip’ than the vast majority of bootstrapped data. Therefore, it is likely
that our data is multimodal.

We present test results for Hartigans’ Dip Test and the LUU (Least Unimodal Uni-

modal) test in Table A.1. Test results for the Gaussian mixture model fit are in Table

A.2.

2.6. Discussion

2.6.1. Implications for honest signaling

Assuming this model adequately represents the handicap principle, we may ask if orna-

ment size really does honestly advertise quality. In other words, if a female can choose

among all the males, is she able to detect the healthiest (or weakest) males simply by
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Figure 2.10. For small sample sizes of synthetic bimodal data, like we have
for many of our animal data sets, the p-values for bimodality using Harti-
gans’ Dip Test (blue) are larger than our bootstrap dip test (red). As the
sample size increases, we gain significance using our test first and Hartigans’
Dip Test eventually, showing our test is less conservative. The data used
here are equilibrium states of our model (2.5) for γ = 1.5, s = 0.5, and aopt
drawn from a normal distribution with mean 1 and standard deviation 0.25.
We know these samples are bimodal. Error bars are standard deviations
from 10 trials.

looking at ornament size? Again taking the optimal ornament size aopt to be normally dis-

tributed, we examine the Kendall rank correlation between intrinsic health (as indicated

by our proxy aopt) and equilibrium ornament size.

We find that the advertising is mostly honest, at least for large enough variance in

health. Both observational and experimental work supports this finding [23]. Figure 2.11

(a),(b) show examples of ornament size versus intrinsic health based on our model.
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Figure 2.11. Ornament size distributions in model and real-world data. Due
to smaller sample sizes in real-world data, we superimpose a kernel density
estimate (KDE) over the histograms as a visual aid (solid black line). (a)
Simulation of model with N = 1000 individuals, γ = 0.5, s = 1/2 (Kendall’s
rank correlation τ = 0.9149). (b) Simulation of model with N = 1000
individuals, γ = 1.5, s = 1/2 (Kendall’s rank correlation τ = 0.9998).
In both (a) and (b), black dashed line (a = ā) shows division between
morphs, solid maroon curve shows analytical solution. Marginal histograms
illustrate that normal distribution of aopt (proxy for intrinsic health) leads
to bimodal distribution of a. (c) Normalized histogram for arctic charr
brightness [63] (N=20, KDE bandwidth=0.01). (d) Normalized histogram
for dung beetle horn length [60] (N=644, KDE bandwidth=0.2).
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2.6.2. Generality

It is natural to wonder about the generality of the results we have presented here. For a

reasonable set of potential functions (described below), the only possible stable equilibria

are multimodal distributions of ornament size. Again we consider a potential function

ϕ = s ϕ(soc) + (1− s)ϕ(ind), s ∈ [0, 1]

where ϕ(soc) is a continuous and differentiable increasing function of ornament size, and

ϕ(ind) is a continuous, singly-peaked function of ornament size. Assuming that the dy-

namics are such that ornaments grow on an evolutionary time scale at a rate proportional

to marginal potential gain,

da

dt
∝ ∂

∂a
ϕ,

then we have
da

dt
= 0 only for a ≥ aopt. In other words, equilibrium ornament sizes will

not be smaller than the optimal size for survival.

We further assume that the following two criteria are satisfied:

(1) Individual effects dominate reproductive potential for large ornament sizes. Specif-

ically,

(2.22) (1− s)
∣∣∣∣ ∂∂aϕ(ind)

∣∣∣∣ > s

∣∣∣∣ ∂∂aϕ(soc)

∣∣∣∣ as a→∞.

This prevents ornament size from growing without bound, as can occur in equa-

tion (2.5) for γ ≥ 2.
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(2) Social effects dominate reproductive potential for at least some range of ornament

sizes greater than the population mean. In other words,

(2.23) (1− s)
∣∣∣∣ ∂∂aϕ(ind)

∣∣∣∣ < s

∣∣∣∣ ∂∂aϕ(soc)

∣∣∣∣
for at least some range of a > ā. Failure to meet this criterion could be considered

“false” ornamentation, as can occur in equation (2.5) for γ = 1.

Assuming that the two-sided limits exist everywhere for both potential functions (a less

strict requirement than continuity), these criteria guarantee that two or more morphs will

emerge. See Figure 2.12 for graphical proof.
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Figure 2.12. Schematic of derivatives of negated individual potential
(dashed blue) and social potential (dot dashed maroon) for a single male
in a population near equilibrium. The derivative of total potential is pro-
portional to da/dt, so intersections of individual and social potentials are
the fixed points. Stable fixed points are marked with a filled black dot, and
unstable fixed points are marked with an unfilled black dot. (a) An exam-
ple of potential functions that satisfy restriction (2.23), but not restriction
(2.22). In this case, both a stable uniform state and unbounded growth
are possible. (b) An example of potential functions that satisfy restriction
(2.22), but not restriction (2.23). In this case, the population will evolve to
a uniform state. (c) An example of potential functions satisfying both re-
strictions (2.22) and (2.23). These conditions guarantee that the population
will evolve into at least two morphs.



47

One benefit of our modeling approach is that it is agnostic to the genetic mechanism by

which the two-morph distribution is maintained. That is, we make no assumptions about

the genetics other than presuming that maintenance of such a distribution is possible

(by some mechanism). Rather, we demonstrate that the bimodal distribution—and thus

a mechanism to maintain it—is an emergent, evolutionarily favorable consequence of

Zahavi’s handicap principle.

There are several molecular mechanisms by which a population with multiple optima

can be maintained, including over-dominance, complex polygenic or epistatic relation-

ships, or epigenetic modifications. Any of these (amongst others) could be involved in the

maintenance of the predicted dimorphic trait. Because our model makes no assumptions

(or predictions) about which of these mechanisms maintain the two-morph state, it is gen-

eral to any organismal trait where Zahavi’s handicap principle applies, and is insensitive

to assumptions about the genetic architecture.

Of course, we do not wish to imply that our model is the only possible explanation (or

even necessarily the dominant effect) where polymorphism is observed. The importance

of this effect probably varies from species to species and ornament to ornament. Our

model applies most naturally to inter-sexual selection (female choice as the dominating

force), and in the interest of simplicity we ignore alternative reproductive strategies (e.g.,

female mimicry by males). We believe that it may be possible to generalize our model to

include effects like negative-frequency dependent selection (e.g., as another type of social

effect that would impact the shape of the social potential function in our model), but we

leave that for future work.
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2.6.3. Extension to speciation models

We speculate that the mechanism we describe here may also have implications for speci-

ation. Models of speciation presented in Lande [35] and Stewart [66] are similar to our

ornamentation model in both form and outcome. Stewart claims that for an all-to-all

system of behaviorally identical individuals (like ours), the population will split into two

species for most environmental conditions. Like our social sensitivity γ, Stewart’s envi-

ronmental factor λ varies on a slow time scale relative to the dynamical system. Also like

our model, Stewart’s model exhibits similar fractionation (simulating 100 individuals, the

population splits into “clumps” of 84 and 16).

Lande uses quantitative genetics techniques to show that sexual selection may lead to

speciation. Our model is quite similar to Lande’s model interpreted on a logarithmic scale.

Like our model, Lande’s sexual selection alone would lead to runaway ornament sizes, but

natural selection stabilizes growth. Unlike our model, Lande states that “natural selection

on mating preferences also creates the possibility of evolutionary oscillations.” Because

we ignore the long time scale effects of female choice, our model precludes the possibility

of oscillations.

2.7. Conclusions

The independent evolution of costly ornamentation across species has puzzled scien-

tists for over a century. Several general evolutionary principles have been proposed to

explain this phenomenon. Among the prominent hypotheses is the handicap principle,

which posits that only the healthiest individuals can afford to grow and carry large orna-

ments, thereby serving as honest advertising to potential mates. We base a minimal model
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on this idea and find that, surprisingly, it predicts two-morph stratification of ornament

size, which appears to be common in nature.

Importantly, the two morphs both have ornament sizes larger than the optimum for

lone individuals. This means that the population survival potential, as indicated by

the population average of individual potential ϕ(ind), is reduced. Due to the presence of

ornaments, we conclude that the evolutionary benefits of honest advertising must outweigh

the net costs of ornamentation when the displays exist in nature.
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CHAPTER 3

Hybrid statistical and mechanistic model guides mobile health

intervention for chronic pain

3.1. Introduction

In the fields of physics, chemistry, and engineering, models are often derived from

mechanistic fundamental laws expressed in the form of differential equations. Resulting

dynamical systems models can be used both to gain intuition into the expected behavior

of the system, and to make specific predictions about results of experiments (e.g., see

[67]). In fields such as social sciences, bioinformatics, and medicine, models are often

constructed from data via statistical inference, without direct derivation from fundamental

principles (e.g., see [68]). The mechanistic and statistical approaches to mathematical

modeling have different advantages. The former allows prior knowledge to be introduced

and validated or rejected based on the success of the model. The latter requires almost

no a-priori information about how the system is expected to behave.

Here we present a hybrid approach to mathematical modeling that incorporates both

mechanistic and statistical elements, with the goal of gaining a deeper understanding of

the human experience of subjective pain. Specifically, we hope to predict how patient-

reported pain levels vary over time based on medication dosage information and other

patient characteristics.
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3.1.1. Application to pain

Sickle cell disease (SCD) is a chronic illness associated with frequent medical complications

and hospitalizations. Approximately 90% of acute care visits are for pain events, and

30-day hospital re-utilization rates are alarmingly high [69]. While factors influencing

these high re-utilization rates are poorly understood, close follow-up and continued use of

pain medications has been shown to decrease re-hospitalization rates. Mobile technology

has become an integral part of health care management, and our recently self-developed

mobile application (Sickle cell Mobile Application to Record symptoms via Technology,

or SMART app—see Figure 3.1) for SCD assists with documentation and intervention of

pain.

Pain in particular is difficult to quantify and has never before been monitored at

the temporal scale we report here across so many patients. It is known that subjective

pain, though indeed subjective, is correlated with objective measurable stimuli qualities

in experiments (see, e.g., [70, 71, 72]). Thus there is reason to believe that subjective

pain may follow understandable dynamics in time, especially when mitigated by opioid

or non-opioid drugs. Our approach to the problem is motivated by the hope that a

reasonable model for pain dynamics will yield some level of predictive power, despite the

clear expectation that there will also be significant noise within and across patients. We

can attribute the stochastic variation to sources like patient mood, temporal changes in

patient state, weather, etc. In contrast, we hope that patient attributes like age, gender,

SCD disease type, etc. will remain roughly constant on the time scale of the experiment

and allow us to explore possible correlation of these attributes with model parameters.
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3.1.2. Data source: mobile health application

We seek to understand the temporal dynamics of chronic pain as experienced by SCD

patients. To that end, we have developed a mobile phone application that allows patients

to record medication usage and subjective pain levels (measured on a 0-10 scale) in real

time [73, 74].

Figure 3.1 shows several images of the application interface, while Figure 3.2 shows a

typical data set resulting from a single patient’s use of the app over the course of several

weeks.

Figure 3.1. Smartphone app. Sample images of SMART application for
iPhone/Android smartphone devices.

3.2. Materials and methods

3.2.1. Data

As of October 2016, data were available from 47 patients using the SMART app. Data

sets from 8 of those patients were excluded because of excessive sparsity based on the
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Figure 3.2. Sample pain and medication data from a single patient.
Upper panel: patient reported pain (black circles) and model fit (red solid
line); red shading indicates model fit plus/minus one standard deviation.
Lower panel: long-acting methadone (red solid line) and short-acting oxy-
codone (blue dashed line) medication concentrations in patient bloodstream
as inferred from medication usage reported via the SMART application.

following criteria: (1) total number of reports ≤ 5; or (2) pain reports never exceeded

zero during the period under consideration. See Table 3.1 for demographic details of

included patients. We denote the sample size n = 39.
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Demographic characteristics

N (%)
Institution

A 14 (35.9)
B 17 (43.6)
C 8 (20.5)

Gender
Male 16 (41.0)
Female 23 (59.0)

Age at baseline (years)
18-34 24 (61.5)
> 34 15 (38.5)

SCD disease type
Hemoglobin SC 8 (20.5)
Hemoglobin SS 22 (56.4)
Hemoglobin SB+ (Beta) Thalassemia 5 (12.8)
Beta-Zero Thalassemia 3 (7.7)
SO−Ara 1 (2.6)

Hydroxyurea user 27 (69.2)
Folic acid vitamin user 26 (66.7)
Long-acting opioid user 29 (74.4)
Short-acting opioid user 35 (89.7)
Non-opioid user 29 (74.4)

Mean SD (Min, Max)
Number of pain reports 67.2 60.4 ( 9.0, 257.0 )
Days of pain reports 164.6 109.6 ( 10.3, 435.1 )
Within-patient average VAS score 4.7 2.1 ( 0.3, 9.4 )

Mean SD (Min, Max)
Number of pain reports (first 2 weeks) 13.2 9.6 ( 2.0, 45.0 )
Number of long-acting opioid doses (first 2 weeks) 6.0 8.4 ( 0.0, 35.0 )
Number of short-acting opioid doses (first 2 weeks) 7.2 7.5 ( 0.0, 35.0 )
Number of non-opioid doses (first 2 weeks) 2.1 3.1 ( 0.0, 12.0 )

Table 3.1. Patient demographic information and the number of pain reports
supplied by patients across entire study.

3.2.2. Predictive model

In order to develop a hybrid model that incorporates both a mechanistic a-priori knowledge-

driven component and a statistical data-driven component, we divide tasks into two dis-

joint sets that fit these two categories; see Section 3.5.1 for more context.
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We begin with a dynamical systems model for subjective pain motivated by the hy-

pothesis that human sensory systems function on a roughly “return to setpoint” basis

[75, 76, 77, 78]. Any model of human pain response, however, will inevitably require

specification of a variety of parameters determining the time scale(s) and degree of severity

of the response. The statistical modeling tasks employ patient data to infer parameters

(1) from patient characteristics and population distributions and (2) from patient-specific

pain and medication response history.

To make this more concrete, in Figure 3.3 we present a flow chart summarizing our

approach to the hybrid modeling problem. Steps I2 and A comprise the statistical model-

ing component; steps B and C comprise the mechanistic modeling component. A further

optimization step D builds on the predictions of the hybrid model to allow for a balance

between competing demands of pain reduction and medication usage minimization. This

work details steps I1, I2, and A – E. We leave the remaining steps for future work.

3.2.2.1. Mechanistic component. We propose and evaluate two related mechanistic

models based on a set of coupled ordinary differential equations (ODEs), either (a) deter-

ministic or (b) stochastic. The stochastic differential equation (SDE) model comprises a

Langevin equation, which can be converted into a Fokker-Planck partial differential equa-

tion (PDE) for the evolution of the probability distribution for pain ρ(P, t) [79]. This

allows for prediction of both the expected pain level for a patient at any point in the future

and an assessment of the confidence in (and a confidence interval for) that prediction.
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Figure 3.3. Schematic flowchart showing model framework.
Rounded rectangles represent modeling or computation steps, rhombuses
represent data inputs or outputs, and diamond represents decision step.
Items I1 and I2 are only necessary for initialization of the model. Items A
through E are the focus of this work.

Mathematically, the deterministic mechanistic model we propose is the following, for

a single patient:

(3.1)

dP

dt
= −(k0 + k1D1 + k2D2 + k3D3)P + k0u

dD1

dt
= −kD1D1 +

N1∑
j=1

δ(t− τ1,j)

dD2

dt
= −kD2D2 +

N2∑
j=1

δ(t− τ2,j)

dD3

dt
= −kD3D3 +

N3∑
j=1

δ(t− τ3,j) ,



57

where P is the patient pain level (on a scale of 1–10), k0 is the pain relaxation rate without

drugs, ki is the marginal effect on the pain relaxation rate due to drug i (i = 1, 2, 3), u is

the unmitigated pain level (i.e. without drug intervention), Di is the amount of standard

drug i doses within the patient, kDi is the elimination rate of drug i within the patient,

{τi,j}Nij=1 are the drug i dosage times, and Ni is the number of doses of drug i taken.

δ represents the Dirac delta function. Note that the parameters and variables will in

general need to be indexed with distinct values for each patient in a population, though

we omit those indices here for clarity. Tables 3.2 and 3.3 summarize the meanings of

model variables and parameters, respectively.

Variable Meaning Units
P (t) Instantaneous pain level on 0–10 scale [pain]
D1(t) Concentration of drug 1 (long-acting opioid) in the body [standard doses]
D2(t) Concentration of drug 2 (short-acting opioid) in the body [standard doses]
D3(t) Concentration of drug 3 (non-opioid) in the body [standard doses]
ρ(P, t) Instantaneous probability distribution of pain level P [probability]

Table 3.2. Variables in mechanistic models.

Parameter Meaning Units
u unmitigated pain level [pain]
k0 rate of decrease of pain in the absence of drugs or acute sources of pain [T−1]
k1 effect of drug 1 (long-acting opioid) on pain relaxation rate [T−1]
k2 effect of drug 2 (short-acting opiod) on pain relaxation rate [T−1]
k3 effect of drug 3 (non-opioid) on pain relaxation rate [T−1]
kD1 rate of decay of drug 1 (long-acting opioid) in body due to metabolism [T−1]
kD2 rate of decay of drug 2 (short-acting opioid) in body due to metabolism [T−1]
kD3 rate of decay of drug 3 (non-opioid) in body due to metabolism [T−1]

ε amplitude of intrinsic variability in human subjective pain reports [T 1/2]
Ni number of standard drug i doses taken [count]
{τi,j} drug i dose times (indexed by j) [T ]

Table 3.3. Parameters in mechanistic models.
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In this simple model for pain dynamics (3.1), pain is expected to relax at rate k0 to

unmitigated level u set by aggravating factors (like sickle cell disease) in the absence of

intervention through opioids (drugs 1 and 2) or non-opioids (drug 3). When drugs are

present in the patient’s body, pain drops at a faster rate and the short-term equilibrium

pain level (not the unmitigated pain level u) is reduced. Note that we treat all parameters

as constant over the time period of interest, which we take to be two weeks (based on

clinical heuristic experience).

In the model for drug concentrations, medication in the body is assumed to be metabo-

lized at a constant rate. Rates can be determined from existing substantiated pharmacoki-

netic models (e.g., [80, 81]); Dirac delta function onset of medication serum concentration

is a good approximation to the fast rise typical of the medications under consideration.

See Figure 3.2 for a sample deterministic model output.

Note that we deliberately chose to employ an extremely simple conceptual model for

pain dynamics. More sophisticated versions might be developed to incorporate higher

order dynamics for P , or to include nonlinear or nonautonomous effects (e.g., allowing for

explicit parameter variation with time of day or year), but currently available data are

insufficient to constrain a model of greater complexity.
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The stochastic differential (Langevin) equation version of our mechanistic model is as

follows:

(3.2)

dP = −(k0 + k1D1 + k2D1)Pdt+ k0u(dt+ εdW )

dD1 =

(
−kD1D1 +

N1∑
j=1

δ(t− τ1,j)

)
dt,

dD2 =

(
−kD2D2 +

N2∑
j=1

δ(t− τ2,j)

)
dt

dD3 =

(
−kD3D3 +

N3∑
j=1

δ(t− τ3,j)

)
dt ,

where a hypothesis of uncorrelated additive white noise has been made. From this we

derive the Fokker-Planck equation for the probability distribution of pain over time ρ(P, t):

(3.3)
∂ρ

∂t
= − ∂

∂P

[(
−(k0+k1D1+k2D2+k3D3)P+k0u

)
ρ(P, t)

]
+

∂2

∂P 2

[
1

2
(εk0u)2ρ(P, t)

]
.

Absent any pain medication, this Fokker-Planck equation implies the steady-state pain

distribution

(3.4) ρ∗(P ) =

√
1

πk0u2ε2
exp

[
−(P − u)2

k0u2ε2

]
,

a Gaussian distribution with mean u and standard deviation uε
√
k0/2. See Figure 3.4

for a sample stochastic model output.

3.2.2.2. Statistical component. In order to account for the variation among patients

and improve prediction of the fitting parameters, we associate patient characteristics

and history with each fitting parameter. The total number of fitting parameters varies
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Figure 3.4. Sample output from stochastic differential equation
model (3.2). Red thick line: theoretical mean pain; red thin lines: ± one
theoretical standard deviation; black thick line: mean of pain distribution
in ensemble of 100 stochastic simulations; blue thin lines: ± one standard
deviation in ensemble of 100 stochastic simulations; blue dashed line: drug
1 dose in bloodstream. Spikes occur when patient takes recommended
dosage.

among patients: those who have taken no drugs will only have one fitting parameter, the

unmitigated pain level u, and those who have taken more classes of drugs will have more

drug fitting parameters.

To illustrate the statistical component, we focus on the unmitigated pain level u

because, unlike drug parameters, all patients will have an estimate for u. In this case, we

associate patient characteristics with u, an n-dimensional vector with uj corresponding

to the jth patient’s unmitigated pain level, using a linear model.

Let X be an n×p design matrix containing the covariates of patients (i.e., patient char-

acteristics). We write X = (X1, . . . , Xn)T , with Xj corresponding to the p-dimensional

covariates of patient j. Then we formulate the relationship between between u and the p
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predictors as:

u = Xβ + ε,(3.5)

where β is a p-dimensional coefficient vector, and ε is an n-dimensional vector of zero-

mean random errors. When p is small, the estimate for β is obtained using the ordinary

least squares procedure: β̂ = arg min
β∈Rp

‖u−Xβ‖22, where ‖ · ‖q denotes the `q norm. Then

the unmitigated pain level uj is updated by unewj = XT
j β̂, j = 1, . . . , n.

Because the unmitigated pain levels are not observable from patient pain reports, the

initial uj’s are independently sampled from a uniform distribution between 0 and 10,

i.e. u0j ∼ U(0, 10). After using {u0j} as initial values to fit the mechanistic model, the

resulting estimated {uj} will be updated by the linear model (3.5) as {unewj }, which will

then be used as initial values in the next round of fitting of the mechanistic model. See

Section 3.2.3 for more detail on the hybridization of the statistical component with the

mechanistic component.

Given a high-dimensional set of patient characteristics, we need to select a subset of

patient characteristics that are significantly associated with u by minimizing the penalized

loss function. In this study, we select patient characteristics using the LASSO (Least Ab-

solute Shrinkage and Selection Operator) [82], by minimizing the penalized loss function

Γ(β) = ‖u − Xβ‖22 + λ‖β‖1 with respect to β. The penalty parameter λ is determined

using 5-fold cross-validation. The selected p features are then used to fit the linear model

(3.5) by ordinary least squares.

If time-varying unmitigated pain levels and time-varying covariates are present, the

regression model (3.5) can be extended to the linear mixed model [83, 84]: u = Xβ +
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Zδ + ε, where Z = (Z1, . . . , Zn)T is an n × r design matrix for r random effect factors

and δ = (δ1, . . . , δr)
T is a vector of random effects. Patient characteristics can be selected

by maximizing the penalized log-likelihood: `pen(β, δ) = `(β, δ) − λ‖β‖1 [85]. Such an

extension of the proposed hybrid model to allow for time-varying unmitigated pain levels

and covariates will be considered in a future study with more data available.

3.2.3. Model fitting

We fit our model to real patient data by minimizing the residual sum of squares between

model predictions and patient reports provided within the first two weeks of reporting.

We expect that the assumption of constant model parameters breaks down after approxi-

mately two weeks (clinical heuristics). Minimization over parameters u, k1, k2, and k3 was

done via the Nelder-Mead simplex algorithm [86]. Parameter k0 was fixed at 2 ln(2) ≈ 1.4

corresponding to a pain equilibration half-life time scale of 30 minutes in the absence of

medication. If a patient did not take all three classes of drugs, the model and fitting only

included the consumed drugs.

We initialize the parameter optimization in n mechanistic models (one per patient)

with random values during a first iteration, then we feed the optimization output into

the statistical model (for all patients). Once the statistical model is run, it results in a

new set of parameter estimates that can then be employed as initial parameter seeds for

a second round of optimization in n mechanistic models (to minimize the residual sum of

squares). Proceeding iteratively in this fashion (see Figure 3.3), we find convergence to a

consistent set of parameters for each patient (details below).
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3.2.4. Method verification

Before applying our hybrid model to real-world patient data, we verify the soundness of the

approach with synthetic data constructed to resemble real-world data, but generated by

the model itself with high sampling frequency. The synthetic data used for verification of

the method are generated directly from the mechanistic model with an assumed parameter

set generated in the following way: unmitigated pain u = (patient age)/10, initial pain

level P (t = 0) = u − 2, and drug parameters k1, k2, k3 ∼ N(0.75, 0.25). Each patient

reports pain every 1/2 hour for 336 hours (two weeks). At each report time, the probability

of the patient taking a particular drug (among three drug classes) is 1/16; in other words,

the patients take each drug on average every 8 hours. White noise of magnitude 1 is

added to each pain report.

As an illustration using real patient drug times (specifically those of Patient A3), we

create synthetic data generated using u = 5, k1 = 3, and k2 = 2: see Figure 3.5. When the

initial parameter search is seeded with random parameter values, the mechanistic model

fit can lead to convergence to either the true optimum (5, 3, 2) or to other spurious optima

with incorrect values of u, k1, and k2.

In this illustrative example, the method converges to u = 5.01, k1 = 3.19, and k2 =

1.84. The relevant root-mean-square (RMS) error is 1.01; this is close to the lowest

possible expected error given the unit magnitude noise added to the synthetic data. This

numerical experiment shows that the mechanistic model fitting method can converge even

in the presence of significant amounts of noise. However, with only the mechanistic model
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it can be quite difficult to find a good set of initial parameter seeds1: that is one motivation

for introducing the statistical model.
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Figure 3.5. Model fitting demonstration for densely reported noisy
synthetic data. Upper panel: hypothetical densely-reported patient pain
(black circles) and model fit (red solid line); red shading indicates model fit
plus/minus one standard deviation. Lower panel: long-acting opioid (red
solid line) and short-acting opioid (blue dashed line) medication concentra-
tion in patient bloodstream.

To test our hybrid method using both the mechanistic model for fitting and the statis-

tical model for parameter estimation, we create a synthetic patient database of 39 patients

as described above. We then iterate rounds of fitting between mechanistic and statistical

models, starting with uniform random guesses for all patient parameters (u, k1, k2, k3).

Figure 3.6 demonstrates how the parameter u converges to a value with small error after

1The seeding problem becomes exponentially harder as the dimension of the parameter space increases.
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just a few iterations steps, even in the presence of significant noise. In order to evalu-

ate the performance of the model on new data, we use the hold-out validation method by

splitting the dataset into a training set (first week) and a test set (second week). Model fit

error and hold-out validation error, as well as other parameters values, converge similarly:

see Figure 3.7.
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Figure 3.6. Hybrid model fitting demonstration for ensemble of
densely reported noisy synthetic data. For an ensemble of 39 syn-
thetic patient data sets, the average absolute error in u gradually decreases.
Iteration 0 indicates one fit to the mechanistic model alone. Subsequent it-
erations indicate the number of hybrid model (statistical + mechanistic)
fits.

3.3. Results

3.3.1. General results

One key result is that our model for chronic pain does indeed have some predictive value

(see Figure 3.8). This is an improvement over the current state of the art, since no other

predictive model exists of which we are aware. Furthermore, fitted parameter values
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Figure 3.7. Hybrid model fitting demonstration for ensemble of
densely reported noisy synthetic data. For an ensemble of 39 syn-
thetic patient data sets, the average root-mean-squared (RMS) error in
patient pain levels gradually decreases. Iteration 0 indicates one fit to the
mechanistic model alone. Subsequent iterations indicate the number of hy-
brid model (statistical+mechanistic) fits. Training error (or fit error) is on
the left; test error (or validation error) is on the right. Due to the additive
white noise of magnitude 1, the smallest testing or training error we could
expect is 1.

correlate significantly with patient characteristics, suggesting that meaningful information

is captured by this minimal plausible model. It may be possible to motivate new clinical

insight on the basis of the observed correlations, perhaps leading to differential treatment

of SCD sufferers with differing characteristics.

3.3.2. Statistical results

We use the following baseline patient characteristics to predict the unmitigated pain levels

in the statistical modeling step: age, gender, SCD disease type, hydroxyurea use, folic

acid vitamin use, long-acting opioid use, short-acting opioid use, and non-opioid use. We
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Figure 3.8. Hybrid model fitting on real patient data. For an ensem-
ble of 39 real patient data sets, the average root-mean-squared (RMS) error
in patient pain levels gradually decreases. Iteration 0 indicates one fit to
the mechanistic model alone. Subsequent iterations indicate the number of
hybrid model (statistical+mechanistic) fits. Training error (or fit error) is
on the left; test error (or validation error) is on the right.

explore the marginal effects of these characteristics and their possible pairwise two-way

interactions using the LASSO. The model (3.5) can be extended to include time-varying

covariates such as temperature, weather, patient’s walking/social activities, and patient’s

mood at time t, once these data become available in a future study.
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The statistical model that resulted from the LASSO variable selection is given by

u = β0 + β11{SCD disease type = HgbSC}

+ β21{SCD disease type = SB+Thal or SO-Ara}

+ β3(age− 18) + β41{Hydroxyurea user}

+ β51{Non-opioid user }

+ β61{SCD disease type = SB+Thal or So-Ara} × (age− 18) + ε,

(3.6)

where εj ∼ N(0, σ2), j = 1, . . . , n, and 1{·} is the indicator function.

Table 3.4 summarizes the results from one round of fitting of the regression model

(3.6). Adjusting for the effect of other terms in the regression model, SCD disease type

of SB+Thal or So-Ara (with coefficient β2), non-opioid use (with coefficient β5), and

the interaction term between SCD disease type of SB+Thal or So-Ara and age (with

coefficient β6) are important predictors of the unmitigated pain levels at the significant

level of 0.05. Using non-opioid medication is associated with decreased unmitigated pain

levels. Unmitigated pain levels increase with patients’ age for SB+Thal or So-Ara patients.

Variable Estimate Std Err T-value P-value
Intercept 7.646 1.228 6.228 0.000 ***
HgbSC -1.566 0.890 -1.761 0.088
SB+Thal or So-Ara -5.479 2.332 -2.349 0.025 *
Age at baseline −18 0.001 0.034 0.290 0.773
Hydroxyurea user -1.205 0.839 -1.437 0.160
Non-opioid user -2.523 0.842 -2.995 0.005 **
(SB+Thal or So-Ara) × (Age at baseline -18) 0.241 0.010 2.419 0.021 *

Table 3.4. Result of the prediction model of the unmitigated pain us-
ing the linear regression model. Significance levels: ∗(p < 0.05),∗∗ (p <
0.01),∗∗∗ (p < 0.001)
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3.3.3. Mechanistic model validation

With such sparse data and up to four fitting parameters, one may worry that the model

(3.1) is being overfitted. To test this concern, we propose 6 related alternative models with

fewer fitting parameters, and we compare cross-validation error and Akaike information

criterion (AIC) among the models. See Table 3.5 for model descriptions. Neither measure

selected a best-fit model across all patients, but none of these simple models is overfitting

the data. See Figure 3.9 for AIC results and Figure 3.10 for cross validation results.

Model name Description Fitting parameters
Full model Include all drugs taken (model (3.1)) up to 4
No drugs Include no drug dosing information 1

Merge drugs Combine all drugs into one drug class with same response up to 2
LA only Include only long-acting opioid doses up to 2
SA only Include only short-acting opioid doses up to 2
NO only Include only non-opioid doses up to 2

Threshold Include drug class only if drug is taken at least n times* up to 4
Table 3.5. Mechanistic model variations. Fitting parameters include unmit-
igated pain level u and drug response parameters ki for all drugs consumed.
Therefore some patients have fewer fitting parameters than listed if they
consumed fewer than three types of drugs. *In our tests, n = 5 was the
drug dose threshold.

3.3.4. Biased pain reporting

Perhaps the most significant limitation of our model lies in a potential bias in our data set.

Patients typically report pain levels when taking medication, but many of them only take

medication when pain levels rise. Thus we suspect a selection bias of unknown significance,
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Figure 3.9. Akaike information criterion (AIC) for alternative models listed
in Table 3.5. Most models perform equally well; among patients with dif-
fering model performance, there exists no clear ‘best’ model for all patients.

causing higher pain levels to be reported at a disproportionately high rate. To test this

concern, we compare the unbiased model (3.1) with a similar model incorporating biased

pain reporting.

Suppose the probability density function of pain at a particular time is a normal

distribution with mean µ and variance σ2:

(3.7) ρ(x |µ, σ) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
.

Integrating model (3.1) gives the expected pain value µ at any point in time.

If higher pain is disproportionately reported through the mobile health application,

then we will be much more likely to see higher pain levels from this normal distribution.
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Figure 3.10. Two-fold cross validation testing error for alternative models
listed in Table 3.5. For every patient, each model was independently fitted
to the first and second half of the time series pain report data (training).
Then the fitted models were used to test the other half of the data. This
figure shows the average root-mean-square testing error for the two tests.
Most models perform equally well; among patients with differing model
performance, there exists no clear ‘best’ model for all patients. Note that
patient #36 did not have enough data to fit any models, so zero error is
misleading.

As a first approximation, we assume the reporting bias is linear:

(3.8) ρr(x |µ, σ) = α(ax+ b) exp

[
−(x− µ)2

2σ2

]
H(x),

where α normalizes the distribution, a, b tune the probabilities of reporting a pain value

x, and the Heaviside function H(x) prevents negative pain values. Figure 3.11 shows both

real and reported pain distributions at a particular time.
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Figure 3.11. Probability density distributions for unbiased (solid) and bi-
ased (dashed) pain reporting at a particular time ti. The standard deviation
(here, σ = 3) has been exaggerated for illustrative purposes. In real data,
the typical standard deviation is around σ = 1.8.

We need a way to connect these distributions because we want to control real pain

described by (3.7), but the patient only provides data from the reported distribution (3.8).

In other words, real pain is important but invisible, and reported pain is unimportant but

visible. One way to connect the distributions is through their means and variances2:

µr(µ, σ) =

∫ ∞
−∞

x ρr(x |µ, σ) dx(3.9)

σ2
r(µ, σ) =

∫ ∞
−∞

x2 ρr(x |µ, σ) dx.(3.10)

2Note that the means and variances also change in time. We omit time dependence for notational clarity.



73

Assuming σr is approximately constant in time3, we can also estimate σ2
r using the

definition of variance:

(3.11) σ2
r =

1

M

M∑
i=1

(
Pi − µr(ti)

)2
,

where M is the number of pain reports, Pi is the ith reported pain value, and µr(ti) is

the expected reported pain given distribution (3.8) at time ti.

Given a proposed model for real pain, we can solve this system of three equations for

the three unknowns: µr(ti), σ(ti), and σr. We can then compute the likelihood of the

reported pain using

(3.12) L =
M∏
i=1

ρr(Pi |µ(ti), σ(ti)).

Because we can compute the likelihood of the supplied data given any proposed model

for real pain, we can tune the model parameters to maximize likelihood (technically, we

minimize the negative logarithm of likelihood). This results in a best-fit model under the

assumption of biased pain reporting. We compare the best-fits of the model under both

biased and unbiased reporting assumptions, and find that neither model is a better fit for

most patients. See Figure 3.12.

3.4. Pain and medication optimization

A key goal of the modeling of human pain dynamics is to develop predictions that

allow optimized treatment: both pain and medication use should be minimized. Excess

3It is not possible to verify this with data because patients only report one pain value at a particular
time. However, a Kolmogorov-Smirnov normality test on residuals over the first two weeks of data rejects
normality (p < 0.05) for only 2 of the 39 patients.
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Figure 3.12. Akaike information criterion for unbiased and biased pain re-
porting. Because both models have an equal number of fitting parameters,
AIC is a proxy for model likelihood (lower AIC implies higher likelihood).
Again, it is not clear that one model performs universally better than the
other. Note that missing biased reporting model fits indicate that the fitting
algorithm did not converge (a = 0.08, b = 0.1).

medication carries particular long-term risks for chronic pain sufferers [87, 88, 89, 90],

but pain mitigation is also a primary goal of SCD treatment. How can these contradictory

objectives be balanced?

Our model allows us to forecast the probability distribution of pain for a patient

at a point in the near future, given past data and future drug dosage protocol. This

information may be useful to a physician, allowing him or her to make an optimized,

data-driven decision balancing medication and pain for the patient in real time.

We propose several tools that may be useful to a physician. First, we find the optimal

drug timing given that a certain amount of each drug will be taken over a certain time
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period (say, within 24 hours). For instance, if the patient will take two short-acting

opioids and one long-acting opioid within 24 hours, then the algorithm will offer the best

times to take those three drug doses in order to minimize the expected average pain. We

provide the physician with the expected optimal average pain for all drug combinations

up to a certain maximum number of safe drug doses. See Figure 3.13.
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Figure 3.13. Example expected pain given optimal drug dosage protocol
(in this case, for Patient A3). For each set of drug dosage protocols, from
no drugs to 4 doses of each drug, a physician can see the expected aver-
age pain over a certain time period. Given a patient’s maximum acceptable
pain level, the physician can select the best compromise between drug doses
and expected pain. In this case, the physician may tell the patient to take
no long-acting (LA) drugs but take 3-4 short-acting (SA) drugs. Alterna-
tively, the physician might tell the patient to take one LA and 1-2 doses
of SA medication. The timing of the LA and SA drugs is provided by the
optimization algorithm.

Second, we select the best drug dosing protocol (both number of drugs and dose tim-

ings) given an objective function balancing pain and medication. There are an unlimited
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number of possible objective functions that balance pain and medication, but we propose

the following:

m(P̄ , d1, d2, d3) = wP

(
(Pmax − P̄ )−α − P−αmax

)
+ wd1

(
(d1max − d1)−β − d1−βmax

)
+ wd2

(
(d2max − d2)−γ − d2−γmax

)
+ wd3

(
(d3max − d3)−η − d3−ηmax

)
,

(3.13)

where P̄ is the average expected pain; {d1, d2, d3} are the number of drug doses of each

type; {wP , wd1, wd2, wd3} are the weights of pain and drugs; {Pmax, d1max, d2max, d3max}

are the maximum safe levels of pain and drugs; and {α, β, γ, η} tune the steepness of the

objective function near those dangerous levels.

Figure 3.14 shows the contributions of the pain and one drug component to the objec-

tive function m. The contribution to the objective function is zero if no pain exists or if

no drugs are taken. As pain or drug doses approach dangerous levels, the contribution to

the objective function blows up. After a physician has made sufficient recommendations

to a patient, a machine learning algorithm could select the weight parameters for each

physician/patient pair. At that point, the algorithm could propose the optimal dosing

protocol without much effort on the physician’s part. See Figure 3.15.

3.5. Discussion

3.5.1. Reflection on hybrid modeling

Statistical models and mechanistic models have both been successfully applied to various

aspects of human behavior. The inference of “black box” statistical models from empir-

ical data has the advantage that it obviates the need for a-priori knowledge of system
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Figure 3.14. Contribution of the pain and one drug component to the ob-
jective function (3.13). The contribution to the objective function is 0 if
no pain exists or if no drugs are taken. As pain or drug doses approach
dangerous levels, the contribution to the objective function blows up.
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Figure 3.15. Example patient intervention recommendation (in this case,
for Patient A3). For a set of personalized optimization parameters (selected
by a physician or machine learning algorithm), the optimal drug timing
minimizes the objective function (3.13) for each number of drug doses per
24-hour period. In this case, the patient is advised to take two standard
doses of the long-acting (LA) opioid and two standard doses of the short-
acting (SA) opioid, indicated by the red box.
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dynamics. However, mechanistic models (sometimes referred to as “white box” or “clear

box”) can easily incorporate such knowledge when available.

Perhaps because of the often distinct educational backgrounds of practitioners or dis-

tinct typical applications, statistical and mechanistic approaches are not frequently com-

bined in addressing a single problem. Compared with our work, the most similar hybrid

modeling idea was developed by Sheiner and colleagues in the field of pharmacokinetics,

where they proposed models to estimate population characteristics of pharmacokinetic

parameters [91, 92, 93]. In their work, the pharmacokinetic models (i.e., mechanistic

models) are well established, and the novelty and focus was the introduction of statistical

models for pharmacokinetic parameter estimation. On the contrary, in our study the

mechanistic model is not known before but developed by us based on clinical knowledge

and reasonable assumptions, and our focus is the prediction of pain levels rather than

parameter estimation.

Other attempts based on the hybrid modeling idea in the scientific literature have

appeared in the context of neural networks (e.g., [94, 95, 96]) and chemical engineering

(e.g., [95, 97, 98]), where they largely played a computational rather than analytical role.

Some attempts have also been made with medical applications: Rosenberg et al. ([99])

and Adams et al. ([100]) developed a model by combining a dynamical systems approach

with a statistical model to predict a patient’s CD4 cell counts and HIV viral load over

time in an HIV study. Timms et al. ([101]) proposed a dynamical systems approach using

ODEs to improve self-regulation in a smoking cessation study. Reinforcement learning

techniques such as Q-learning (e.g., [102]) also share some commonalities with the hybrid

approach.
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In this work we make our own attempt at a novel incorporation of statistical inference

together with mechanistic dynamical systems modeling to produce a hybrid mathemat-

ical model for predicting and explaining human behavior. We apply the new approach

specifically to the problem of predicting the dynamics of subjective pain in a population

of individuals suffering from sickle cell disease. The rationale behind our method devel-

opment is that we have prior knowledge of pain trajectories with medication, making the

problem suitable for mechanistic modeling; meanwhile, we do not know the relationship

between patient health characteristics and pain levels, so we would like to investigate this

using a statistical model.

3.5.2. Limitations and future work

This hybrid dynamical systems/statistical approach appears to have great potential for

improving patient care. The utility of this approach is currently limited by the low

frequency of pain reporting, but additional high-frequency pain correlates like blood pres-

sures, heart rate, activity level, etc., via wearable medical devices (e.g. the “Fitbit”) may

alleviate this limitation. Furthermore, application of similar methods to more data-rich

forecasting problems (e.g. insulin levels) may also expand the utility of our work.

Another important limitation to our current model lies in the mechanistic component.

Here we presented what we considered to be the simplest plausible model: pain fluctuates

about an “unmitigated” equilibrium u, and medication reduces pain below this equilib-

rium; pain returns as medication is metabolized and removed from the bloodstream. This

simple model does not capture long-term changes in the unmitigated pain level, and hence

its forecast validity is likely limited to short time scales (days to weeks).
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In the future, clinicians will collect an overwhelming amount of medical patient data.

It is imperative that we learn to take advantage of this information to improve patient

treatments beyond the traditional standard of care. The approach we report here not

only addresses the specific challenge of chronic pain mitigation in SCD patients, but also

provides a testbed for new ways of dealing with big, ever-growing data sets in real time.

With denser temporal data, the mechanistic model of pain dynamics within a single

patient could be expanded to include diurnal rhythms (such as sleep, work, meals, etc ),

nonlinear drug interactions, fluctuating mood, weather, and more. With more long term

data, the mechanistic model could incorporate gradual resistance to pain management

medications or slowly varying demographic data (such as age, weight, blood pressure,

or chronic medication). With data from larger populations, the statistical model could

incorporate more demographic data to predict parameters in the mechanistic model.

A feedback loop between physicians and modelers through the mobile health applica-

tion would allow for future machine learning algorithms to automatically optimize and

recommend treatment to patients (see Figure 3.3). With enough data, each patient could

receive a personalized “pain forecast” for the next few days, including recommendations

for drug protocols and quantified risks for pain crisis and hospitalization.

3.6. Conclusions

We have successfully demonstrated the hybrid application of statistical and mechanis-

tic mathematical modeling with application to understanding the dynamics of subjective

human pain. Our model explains real-world data on human pain and can generate pre-

dictions of future pain dynamics.
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We expect that similar methods could be used to incorporate disease-specific knowl-

edge and modeling with statistical inference in a variety of medical applications. Given

the coming deluge of data from wearables (including clinical trial NCT02895841 already

underway) and mobile health applications, there is a clear need for new mathematical

methods to take advantage of the opportunity for personalizable, data-driven medical

treatments.

https://clinicaltrials.gov/ct2/show/NCT02895841
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CHAPTER 4

The tipping point: a mathematical model for the profit-driven

abandonment of restaurant tipping

Background

Tipping for restaurant service has gone in and out of fashion in America since its intro-

duction from Europe in the 19th century [103]. Tipping has always been a controversial

social convention, for both scholars and the public. The practice has been consistently

tied to the worst of human nature: racism, sexism, and classism [104, 105, 106, 107].

At many points in time, tipping has been considered downright anti-democratic [108].

Yet the practice persists because the vast majority of Americans prefer to choose how

much gratuity they leave after a meal [109, 110].

Economists have traditionally struggled to explain the practice of tipping in terms of

rational costs and benefits because a rational economic agent would not incur a monetary

cost that provides no present or future benefit [111]. Sociologists and psychologists have

appealed to negative feelings of guilt, embarrassment, or anxiety to explain why people

conform to the social convention of tipping [112, 113, 114], while others have appealed

to altruistic feelings of generosity and empathy [115, 116, 117].

While much scholarly attention has been paid to the consumers who tip and employees

who receive tips (e.g. [118, 119, 120, 121]), relatively little has been paid to restaurant

owners who employ tipped staff. Theoretical models of tipping often see restaurant owners
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as inefficient judges of service quality [122]. The natural conclusion to this rationale is

that restaurant owners should allow tips in their restaurants in order to efficiently evaluate

the quality of their wait staff [123]. This conclusion breaks down when we consider the

real-world factors that influence restaurant owners’ decisions, such as remaining profitable

while also adhering to minimum wage restrictions, retaining talented staff, and meeting

customer expectations for food and service quality [124]. By accounting for these factors

and appealing only to rational profit-maximization motivations, we show that restaurants

owners should play a more active role in determining tip rates in their restaurants.

As the conventional tip rate gradually increases in the US (see Figure 4.1), waiters’

take home pay steadily increases, while back-of-house employees’ pay remains stagnant

[125]. Despite the low federal minimum wage for tipped workers ($2.13 as of 2017 [126]),

waiters consistently earn more than cooks [127]. As the wage disparity increases, talented

cooks may defect to restaurants where profits are shared more equitably among staff, and

talented waiters may defect to restaurants with higher tips. A rational restaurant owner

interested only in maximizing profit might take control of the tip rate in his/her restaurant

in order to retain the most talented front-of-house (tipped) and back-of-house (untipped)

staff. We show in a conceptual model of two competing restaurants that a critical tipping

rate exists at which a rational restaurant owner will abandon tipping to maximize profit.

Methods

4.2.1. Model derivation

As a simple conceptual model, consider two restaurants competing for diners, waiters, and

cooks. For notational ease, we will focus on one restaurant (our restaurant, Restaurant
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Figure 4.1. Average reported tip rate in American restaurants over time, ac-
cording to NPD Group (1982-84) and Zagat annual surveys (1989-present)
[128]. Note that both surveys are aimed at diners who patronize full-service
midscale and upscale restaurants. Full source list in Supplemental Materi-
als.

1). We assume all diners, waiters, and cooks intend to eat or work, respectively, at either

our restaurant or the competing restaurant. Following a dynamical systems approach by

Abrams et. al for modeling generic social group competition [129], people will transition

between restaurants at a rate proportional to the relative utility of being at each restaurant

(either as a customer or an employee). This general model assumes that the popularity of

a social group also influences the transition rates, but for our purpose of modeling purely

rational behavior, we focus only on utility as a driving force. Our simplification reduces

the model by Abrams et. al to

dx

dt
= y Pyx(ux)− xPxy(ux),(4.1)
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where x is the fraction of people in group X, Pyx is the probability of transitioning from

group Y to group X, ux is the utility of group X, and transition rates are symmetric

under exchange of x and y. In our case, X is our restaurant and Y is the competing

restaurant. Alternatively, the “competing restaurant” could be viewed as a reservoir of

all other dining options (including home), but that extension is left for future work.

4.2.1.1. Dynamics of cooks. Suppose our system has a number NC of cooks who

must choose between our restaurant and the competing restaurant. Because cooks do

not receive tips, cooks choose where to work based only on the relative wage at the two

restaurants. Assuming for simplicity that the transition probabilities are linear in relative

base cook pay, the change in the number of cooks C̃ at our restaurant is

dC̃

dt
= (NC − C̃)

bC1

bC1 + bC2︸ ︷︷ ︸
switch from

competitor to us

− C̃ bC2

bC1 + bC2︸ ︷︷ ︸
switch from

us to competitor

,(4.2)

where bC1 and bC2 are the hourly base cook pay at our restaurant and the other restaurant,

respectively, and time has arbitrary units. For example, if both restaurants offer the same

base pay (bC1 = bC2), then eventually half the cooks will be at our restaurant, and the

other half will go to the competitor. Tilde notation will be removed later when the model

is normalized.

4.2.1.2. Dynamics of waiters. Because waiters receive both hourly wages and gratuity,

the transition rate between restaurants depends on the relative hourly take home (total)

pay at the two restaurants. The hourly gratuity at our restaurant is

g1 =
m1D̃T1

W̃
,(4.3)
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where m1 is the hourly menu price, D̃ is the number of diners, T1 is the tip rate, and W̃

is the number of waiters that must split the total tips. The gratuity g2 at the competing

restaurant is similarly defined.

The hourly take home pay at our restaurant is then bW1 + g1, where bW1 is the hourly

base waiter pay at our restaurant. The change in the number of waiters W̃ at our restau-

rant is then

dW̃

dt
= (NW − W̃ )

bW1 + g1
bW1 + g1 + bW2 + g2︸ ︷︷ ︸
switch from

competitor to us

− W̃ bW2 + g2
bW1 + g1 + bW2 + g2︸ ︷︷ ︸

switch from
us to competitor

,(4.4)

where NW is the number of waiters in the system, and time has arbitrary units.

4.2.1.3. Dynamics of diners. Assuming all diners intend to eat at a restaurant, they

must chose between our restaurant and our competitor. Many factors influence a person’s

decision to eat at a particular restaurant, but we will focus on food and service quality

versus menu cost. There are also many ways to measure food and service quality [130,

131, 132], but we will use the number of cooks and waiters who choose to work at our

restaurant as a basic proxy. For instance, if our restaurant attracts more waiters, then

diners will receive more personal attention and perceived service quality will increase.

Suppose for simplicity that the quality q1 of the meal and service at our restaurant is a

linear combination of the number of cooks C̃ and waiters W̃ working at our restaurant:

q1 = αW W̃ + αCC̃,(4.5)

where αW and αC are the weights placed on service and food, respectively, when evaluating

our restaurant. The quality q2 of the competing restaurant is defined similarly.
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We define the value v1 of our restaurant as the quality q1 over the menu cost (including

tips):

v1 =
αW W̃ + αCC̃

m1(1 + T1)
,(4.6)

where m1 is the hourly menu cost and T1 is the tip rate at our restaurant. The value v2

of the other restaurant is defined similarly.

A rational diner chooses a restaurant based on the perceived relative value of each

restaurant. The change in the number of diners D̃ at our restaurant is then

dD̃

dt
= (ND − D̃)

v1
v1 + v2︸ ︷︷ ︸

switch from
competitor to us

− D̃
v2

v1 + v2︸ ︷︷ ︸
switch from

us to competitor

,(4.7)

where ND is the number of diners in the system, and time has arbitrary units. Naturally,

the overall transition rates may vary for diners, waiters, and cooks; customers may switch

dining locations more rapidly than employees switch jobs. However, we are only interested

in equilibrium states, so we ignore this detail.

4.2.1.4. Profitability. Given the flow of employees and customers to and from our

restaurant, a rational restaurant owner will maximize hourly profit

P̃ = m1 D̃︸ ︷︷ ︸
revenue

− bW1 W̃︸ ︷︷ ︸
waiter pay

− bC1 C̃︸ ︷︷ ︸
cook pay

.(4.8)

We ignore fixed costs because we are only concerned with maximizing profitability, not

absolute profits.
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4.2.2. Normalized model

We now normalize and nondimensionalize the system (4.2)-(4.7) to reduce the number of

parameters. We make the following substitutions

D =
D̃

ND

, W =
W̃

NW

, C =
C̃

NC

(4.9)

r =
αC
αW

, rDW =
ND

NW

, rCW =
NC

NW

,(4.10)

so that D, W , and C are the fraction diners, waiters and cooks at our restaurant, r is

the ratio of food to service importance for customers, and rDW and rCW are the ratios of

diners and cooks to waiters, respectively. Then the fraction of diners at our restaurant

follows the dynamics

dD

dt
= (1−D)

v1
v1 + v2

−D v2
v1 + v2

(4.11)

v1 =
W + r rCW C

m1(1 + T1)
, v2 =

(1−W ) + r rCW (1− C)

m2(1 + T2)
.(4.12)

The fraction of waiters at our restaurant follows the dynamics

dW

dt
= (1−W )

bW1 + g1
bW1 + g1 + bW2 + g2

−W bW2 + g2
bW1 + g1 + bW2 + g2

(4.13)

g1 =
m1rDWDT1

W
, g2 =

m2rDW (1−D)T2
W

.(4.14)

Finally, the fraction of cooks at our restaurant follows the dynamics

dC

dt
= (1− C)

bC1

bC1 + bC2

− C bC2

bC1 + bC2

.(4.15)

All variables and parameters are described in Table 4.1.
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Variable Meaning Units Range Baseline
D fraction of diners at our restaurant – [0, 1] –
W fraction of waiters at our restaurant – [0, 1] –
C fraction of cooks at our restaurant – [0, 1] –
r relative importance of food quality versus ser-

vice quality, typically a value exceeding one
– [1,20] 12�

rCW ratio of total cooks to waiters in the system – [0.25, 4] 1
rDW ratio of total diners to waiters in the system – [8, 32] 12
m1 average menu cost per hour at our restaurant $/hr [5, 20] 10
bW1 waiters’ base pay per hour at our restaurant $/hr [2.13*, 25] 5.00†
bC1 cooks’ base pay per hour at our restaurant $/hr [7.25*, 1] 10.40†
T1 average tip rate at our restaurant, determined

by either social convention or mandated by
restaurant owner

– [0.1, 0.25] 0.19‡

v1 meal value perceived by customers at our
restaurant

1/$ – –

g1 gratuity per hour at our restaurant $/hr – –
Table 4.1. Description of model variables and parameters for our restau-
rant, Restaurant 1. The competing restaurant (Restaurant 2) has similarly
defined parameter values subscripted with 2. We present a range of plausi-
ble values for each parameter and a baseline value for midscale and upscale
restaurants like those reviewed by Zagat. (� crude estimate based on cus-
tomer surveys [130]; *federal minimum wage as of 2017 [126]; †average
waiter and cook pay as of 2015 [133]; ‡average self-reported tip rate as of
2016 [128]; other baseline values are guesses based on author experience).

With this change of variables, hourly profit P̃ becomes the hourly profit per waiter in

the system

P = m1 rDW D − bW1W − bC1 rCW C.(4.16)
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Results

4.3.3. Numerical exploration

Numerical integration suggests that one stable steady state solution exists for each set of

parameters regardless of the initial condition, so long as the initial condition is physically

meaningful. Because cooks only switch restaurants in response to base pay (constant

parameter), the distribution of cooks equilibrates first. Diners and waiters respond to

everyone else in the system, so the distribution of diners and waiters equilibrates later.

See Figure 4.2 for several examples of model behavior.

4.3.4. Equilibrium stability analysis

Fixed point analysis shows that four steady states exist. Only one fixed point is meaningful

(i.e. D∗,W ∗, C∗ ∈ [0, 1]). The steady state for cooks is C∗ = bC1/(bC1 + bC2). The

steady states for waiters and diners have closed forms but are too long to include. For

all reasonable parameter values (listed in Table 4.1), the eigenvalues of the Jacobian

evaluated at the fixed point are real and negative. This implies that the equilibrium is a

stable sink. See Figure 4.3.

4.3.5. Equilibrium sensitivity analysis

Global sensitivity and uncertainty analysis using Latin Hypercube Sampling (LHS) of

parameter space and Partial Rank Correlation Coefficients (PRCC) [134] reveal that

equilibrium distributions of diners and waiters depend significantly (p < 0.001) on tip

rates and cook pay. Equilibrium distributions of waiters also depend significantly on waiter

pay. Note that the parameters that significantly influence these distributions describe the
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Figure 4.2. Numerical simulation of system (4.11)-(4.15). (a) For otherwise
identical restaurants, if the tip rate at our restaurant is lower than the
competitor, then waiters will leave our restaurant because they get paid less,
but diners will prefer our restaurant because they pay less (T2 = 0.25). (b)
If the menu price at our restaurant is lower than the competitor, then diners
will flock to our restaurant (they paid less), and waiters will temporarily
leave our restaurant because lower menu prices lead to lower tips. However,
after our restaurant has a large share of diners, waiters return because the
density of diners balances the lower menu prices (m2 = 15). (c) If we pay
our cooks less than our competitor, then cooks will leave our restaurant
because they get paid less; as food quality decreases, diners will leave our
restaurant, and then waiters will leave our restaurant as their hourly tips
decrease (bc2 = 12). (d) If we pay our cooks more but pay our waiters less to
compensate, cooks will flock to our restaurant followed by diners; waiters
will temporarily leave because they are paid lower wages, but eventually
they will come back as diners flood our restaurant (bw2 = 10, bc1 = 15).
Unless otherwise noted, m1 = m2 = 10, T1 = T2 = 0.2, bw1 = bw2 = 5, bc1 =
bc2 = 10, r = 12.



92

1

10

0

fraction diners

fr
a

c
ti

o
n

 w
a

it
e

rs

Figure 4.3. Phase portrait of two identical restaurants with differing tip
rates. Our restaurant (shown) enforces an automatic gratuity of T1 = 0.15,
and the competing restaurant allows the conventional tip rate of T2 = 0.2.
The steady state is (D∗,W ∗, C∗) = (0.51, 0.49, 0.50). Nullclines dD/dt = 0
(blue) and dW/dt = 0 (red) are superimposed. For this example, m1 =
m2 = 10, r = 12, bW1 = bW2 = 5, bC1 = bC2 = 10, rDW = 1, rCW = 1.

differences between restaurants and do not describe the system as a whole. See Figure

4.3.5.

Discussion

4.4.6. Tip abandonment threshold

Suppose our restaurant is attempting to maximize hourly profit (4.16) at equilibrium.

We assume our restaurant is competing with a typical American restaurant that is not

making dynamic changes to staff pay, menu prices, or tipping policies. Given the choices

the other restaurant has made, our restaurant can choose base pay for cooks and waiters

(within legal limits) and a gratuity policy. Both restaurants maintain identical menu
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Figure 4.4. Global sensitivity and uncertainty analysis for equilibrium state.
(a) Partial Rank Correlation Coefficient (PRCC) between model parame-
ters and diner equilibrium. (b) PRCC between model parameters and
waiter equilibrium. Asterisks indicate that the correlation is significant
(***p < 0.001, N = 100 samples). Note that we use PRCC because numer-
ical tests suggest that the relationships between parameters and equilibria
are monotonic.

prices to ensure the restaurants are true competitors; fine dining establishments do not

typically compete with casual restaurants.

If the competing restaurant allows the conventional tipping rate, then there exists a

critical tip rate threshold Tc at which a rational restaurant owner would forbid tipping

to maximize profit. Figure 4.5 shows the conventional tip rate at which a hypothetical

restaurant should switch from allowing the conventional tip to abandoning tipping in their

establishment. Assuming the typical tip rate continues to increase in the US, we predict

that restaurants will eventually forbid tipping when it become more profitable to do so.

Global sensitivity and uncertainty analysis shows that this critical tipping threshold

depends significantly on the menu price shared by both restaurants, the ratio of customers
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Figure 4.5. Example of critical tip rate threshold. For conventional tip rates
below some critical threshold Tc, a rational restaurant owner would allow
diners to leave gratuity to maximize profitability (black curve). Beyond
that critical threshold, a rational restaurant owner would disallow tipping
in their restaurant (red curve). Both curves assume that the restaurant
owner selects staff pay (within legal limits) to maximize profit. For this
example, m1 = m2 = 10, r = 12, bW2 = 5, bC2 = 10, rDW = 12, rCW = 0.5,
the minimum wage for tipped workers is 2.13, and the minimum wage for
untipped workers is 7.25.

to waiters and cooks to waiters, and the ratio of food quality to service quality in the eyes

of the customer. See Figure 4.6. Note that the parameters that significantly influence the

critical tip rate Tc describe the type or “class” of restaurant system we are considering.

For instance, fine dining restaurants maintain a low diner to waiter ratio rDW and high

menu prices m. It is also likely that diners at fine dining establishments place more value

on service than at casual restaurant, decreasing r.

Local sensitivity analysis about ‘typical’ American restaurant parameters suggests

that increased menu price, increased service importance, increased diner-to-waiter ratio,
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the correlation is significant (***p < 0.001, N = 100 samples). Note that
we use PRCC because numerical tests suggest that the relationship between
parameters and Tc is monotonic.

and increased waiter-to-cook ratio all increase the critical tipping rate. See Figure 4.7.

Because no type or class of restaurant increases all these parameters, we cannot say

with certainty that a certain type of restaurant should abandon tipping before another.

However, the three strongest correlated parameters (r, rCW ,m) support the prediction

that fine dining establishments should be the last restaurants to abandon tipping.

This prediction is surprising because the most vocal advocates for eliminating tipping

in America have been owners of upscale restaurants. However, fine dining restaurant

owners cite social justice as the primary motive for eliminating tipping in their establish-

ments [135]. This claim is consistent with our prediction because many restauranteurs
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have been forced to reinstate tipping in their restaurants in order to remain profitable

[136].
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Figure 4.7. Local sensitivity analysis for tipping threshold Tc. (a) Holding
all else constant, higher menu price implies a larger tip threshold. This
indicates that fine dining restaurants should be the last the abandon tipping
if all other parameters are the same. (b) As diners place more relative
importance on food than service, the critical tip rate decreases.Because
customers at fine dining establishments likely place more value on service,
we again expect that fine dining restaurants will be the last to abandon
tipping. (c) In contrast, as the ratio of diners to waiters increases, the
critical tipping rate increases. All else held constant, this would imply that
casual dining establishments would drop tipping last. (d) As the ratio
of cooks to waiters increases, the critical tip rate decreases. Though it is
difficult to know this ratio for full service restaurants, it makes sense that the
large cook-to-waiter ratio seen at counter service restaurants implies little
to no tipping. For this example, m1 = m2 = 10, r = 12, bW2 = 5, bC2 =
10, rDW = 12, rCW = 0.5, unless otherwise noted on the independent axis.
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4.4.7. Limitations

As a conceptual model, system (4.11)-(4.15) cannot offer quantitative predictions with

confidence. One limitation of this model is the lack of competition among many restau-

rants or eating at home, though this could be addressed by considering the “competing

restaurant” as a pool of competition. In contrast to the real world, this model also does

not allow waiters and cooks to change roles. In fact, many restaurants struggle to retain

talented cooks because they often become waiters to make more money [137]. Addition-

ally, the model assumes that the benefit of more employees does not have diminishing

returns. More realistically, restaurant food or service will only benefit from more employ-

ees up to a certain point; after the restaurant is fully staffed, more employees will be a

waste of money and may even impede service.

Our model also ignores both the federal law that requires restaurant owners to sup-

plement tipped worker wages if their hourly tips do not exceed the federal minimum

wage [138] and many state laws that impose larger minimum wages for tipped employees

[126]. We also do not provide a mechanism by which the conventional tip rate increases

and merely assume that the increasing trend will continue; however, the increasing trend

is supported by theoretical economic models [111]. Finally and most importantly, this

model assumes that humans behave rationally when spending or earning money, a false

assumption common among economic models [139]. Restaurant owners may choose to

abandon or maintain tipping regardless of profit, citing economically irrational reasons or

responding to irrational customer feelings.

In spite of these limitations, the qualitative prediction that a critical tipping threshold

exists at which restaurant owners may abandon tipping is supported by previous trends
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both in America and internationally. Tipping has gone in and out of fashion around the

world, and though customers normally drive the introduction (or reintroduction) of the

trend, restaurant owners or governments typically end the practice [140].

Conclusion

The conceptual model presented here takes a new direction towards understanding

the complex service industry. The oscillating popularity of tipping has previously been

attributed to social contagion and irrational responses to classism. Using a new approach

to modeling the social convention of tipping, we show that rational decisions to maximize

profit may drive the cycle of the tipping trend. We predict that there exists a critical

tip rate threshold at which restaurant owners would be wise to eliminate tipping in their

establishments. Furthermore, we expect that casual restaurants should be the first to

abandon tipping, and fine dining restaurants should be the last.

The simplicity of the model does not allow for quantitative predictions, such as when

tipping will go out of fashion in the US or what the threshold tip rate will be. However,

the model serves as a base for more sophisticated models and could direct economic data

collection to better answer quantitative questions. This effort would be important not

only to restaurant owners, but also to economists, sociologists, policy makers, and all

people who play a role in or interact with the service industry.
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APPENDIX A

Appendix

A.1. General class of reproductive potential functions with no more than

two stable states

Consider a general total potential function

(A.1) ϕ = s ϕ(soc) + (1− s)ϕ(ind), s ∈ [0, 1]

where ϕ(soc) is a continuous and differentiable increasing function of ornament size, and

ϕ(ind) is a continuous, singly-peaked function of ornament size. Similar to our previous

general class of potential functions,

da

dt
∝ ∂

∂a
ϕ,

we conclude that
da

dt
= 0 only for a ≥ aopt. This implies that equilibrium ornament sizes

(if an equilibrium exists) will all be at least as large as the optimal. Because this is a first

order ordinary differential equation model, we also know that oscillations are not possible.

We further assume that

(A.2)

∂3

∂a3
ϕ(ind) ≡ 0

∂3

∂a3
ϕ(soc) > 0 or

∂3

∂a3
ϕ(soc) < 0, a 6= ā.
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In other words, individual potential is quadratic, and the derivative of social potential is

either concave up or concave down, except possibly at the mean. With these additional

restrictions on the potential function, only uniform and two-morph stable fixed points are

possible. See Figure A.1 for graphical proof. Our model (2.5) satisfies all restrictions, so

we conclude that our exploration of the one- and two-morph steady states is a thorough

investigation of all possible fixed points.

0

d

d t

a

aopt a

0

aopt a

0

aopt a

0

aopt a aopt a

ornament size a

0
0

aopt a

a b c

d e f

d

d t

a

Figure A.1. Examples of derivatives of negated individual potential (dashed
blue) and social potential (dot dashed maroon) for a single male in a pop-
ulation near equilibrium. The derivative of total potential (solid black) is
proportional to da/dt, so intersections of individual and social potentials
are the fixed points. Stable fixed points are marked with a filled black dot,
and unstable fixed points are marked with an unfilled black dot. The total
potential is inset. With restrictions (A.2), the only possible stable steady
states (filled black dots) are one- or two-morphs. Note that the system may
or may not have an unstable node (unfilled black dots), or it may have no
fixed points.



121

A.2. Alternative multiplicative form for reproductive potential

Rather than using a weighted sum to construct a total potential as in equation (2.3)

of the main text, we could have considered a weighted product as advocated in [50] and

[35], where the authors argue that viability and mating success contribute multiplicatively.

We chose to present the mathematical analysis in the context of an additive reproductive

potential because of the greater simplicity, but a multiplicative potential produces the

same qualitative results and can even be considered in the same way by reinterpreting

quantities in question on a logarithmic scale (in which case multiplicative terms become

additive).

Still, it may be of interest to see how an explicitly multiplicative model plays out. To

create such a model, we first need to scale the reproductive potential functions such that

ϕ(soc), ϕ(ind) ∈ [0, 1] and a ∈ [0, 1].

To retain a quadratic individual potential function with maximum ϕ(ind) = 1 and roots

at a = {0, 1}, we can choose

(A.3) ϕ(ind) = 4a(1− a), a ∈ [0, 1].

Note that this choice implies1 aopt = 1/2. Next, to retain the monotonically increasing

social potential function tuned with the social sensitivity γ, we set

(A.4) ϕ(soc) =
sgn (a− ā)|a− ā|γ + āγ

(1− ā)γ + āγ
, a ∈ [0, 1].

1A more general form allowing for arbitrary aopt would map a→ aα, where α = − ln(2)/ ln(aopt).
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Assuming a weighted product of the individual and social potential terms, the total

reproductive potential becomes

(A.5) ϕ =
(
ϕ(soc)

)s (
ϕ(ind)

)1−s
,

where ϕ(soc) and ϕ(ind) are (A.4) and (A.3), respectively, and s tunes the relative impor-

tance of each term. Plugging this into equation (2.4) of the main text, we get

(A.6)
da

dt
= c

[
s

(
ϕ(ind)

ϕ(soc)

)1−s
∂

∂a
ϕ(soc) + (1− s)

(
ϕ(ind)

ϕ(soc)

)−s
∂

∂a
ϕ(ind)

]

or

(A.7)
da

dt
= c

(
ϕ(ind)

ϕ(soc)

)−s [
s

(
ϕ(ind)

ϕ(soc)

)
∂

∂a
ϕ(soc) + (1− s) ∂

∂a
ϕ(ind)

]
.

We observe that (A.7) retains the form of a weighted sum of two terms, though the split

of natural and sexually selective forces is now more complicated. The weights are different

from (2.5), but remain positive, and the general arguments for existence of multimodal

equilibrium distributions may be extended to this system in a straightforward way.

A.3. Additional data and analysis for ornamentation model

We have additional data sets of ornament distribution from various species in Figures

A.2 and A.3. The kernel density curves are superimposed for reference. If body size is a

form of advertising, then we may also use data of salmon [141], trout [41], wolf spiders

[39], and other bimodally distributed species. See Figure A.4.

While the work presented in Chapter 2 is based on mating displays in the animal

kingdom, we hypothesize that similar forces operate on plants that compete within their
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Data set N
p-value (Dip
test)

p-value
(LUU test)

p-value (Dip
test - log
data)

p-value
(LUU test -
log data)

Tests reject
unimodal-
ity?

Dung beetle horn length (Emlen [144]) 223 0.0011** 0.0001*** 0.0035** 0.0000*** yes

Yellow-breasted chat plumage coloration (Mays [58]) 62 0.1932 0.0530 0.5479 0.2652 no
Peacock eye spots (Loyau [57]) 24 0.6390 0.3793 0.5965 0.3187 no
Peacock eye spots (Petrie [26]) 24 0.9183 0.7682 0.8809 0.6963 no

Peacock eye spots (Loyau/Petrie merged) 48 0.9016 0.6699 0.9006 0.6587 no
Arctic charr skin brightness (Skarstein [63]) 20 0.2633 0.1558 0.2802 0.1658 no
Salmon body size (Glover [42]) 72 0.6206 0.1467 0.7432 0.2497 no

Widowbird tail length (Anderson [56]) 107 0.9992 0.9700 0.9972 0.9594 no
Widowbird red collar patch size (Anderson [56]) 107 0.0046** 0.0002*** 0.0317* 0.0030** yes
Barn owl spottiness (Nieche [55]) 20 0.6476 0.3858 0.7196 0.5157 no

Finch carotenoid coloration (Badyaev [54]) 68 0.5295 0.1927 NA NA no
Stickleback nest compactness (Barber [61]) 38 0.6085 0.2221 NA NA no
Partridge black ventral area (Bortolotti [53]) 29 0.9032 0.6652 0.8704 0.5812 no

Roe deer antler length (Pelabon [59]) 242 0.0341* 0.0012** 0.0232* 0.0001*** yes
Lion >2.2 yrs mane length (West [25]) 441 0.8687 0.4134 0.9873 0.9521 no
Lion >2.2 yrs mane darkness (West [25]) 442 0.9078 0.6698 0.9602 0.9033 no

Lion >5 yrs mane length (West [25]) 257 0.8085 0.4779 0.8557 0.5356 no
Lion >5 yrs mane darkness (West [25]) 257 0.8285 0.4129 0.8567 0.5173 no
Dung beetle horn length - WA (Moczek [60]) 644 0.0000*** 0.0000*** 0.0000*** 0.0000*** yes

Dung beetle horn length - NC (Moczek [60]) 1016 0.0000*** 0.0000*** 0.0000*** 0.0000*** yes
Earwig forceps length (Tomkins [40]) 134 0.0000*** 0.0000*** 0.0000*** 0.0000*** yes
Great tit stripe length (Norris [52]) 63 0.2034 0.0781 NA NA no

Fiddler crab fight duration (Hyatt [62]) 80 0.7059 0.2601 0.6362 0.3312 no
Fiddler crab fight acts (Hyatt [62]) 80 0.8966 0.5273 0.9006 0.5714 no

Table A.1. Unimodality test results for animal ornamentation data sets.
Hartigans’ Dip Test (Dip test) is more conservative than our bootstrap dip
test (LUU test); therefore our LUU test is more likely to reject unimodality.
We performed both tests on log-transformed data because tissue measure-
ments are often log-normally distributed [145]. We note in the rightmost
column if the unimodality tests reject the null hypothesis that the distri-
butions of ornament size are unimodal. Note that we exclude p-values for
log-transformed data (NA) if the original data is not a straight-forward
measurement of tissue investment.

own species for resources. For instance, a tree’s height could be analogous to ornament

size in our model, in that growing taller incurs costs to the individual, but being relatively

taller in a forest has competitive benefits. In fact, certain tree species exhibit bimodal

height distributions [142, 143]. See Figure A.5.
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Data set N fractionation
morph
means

morph
variances

fractionation
(log data)

morph
means
(log data)

morph
variances
(log data)

Dung beetle horn length (Emlen [144]) 223 0.2372 0.2631 0.0055 0.0448 -2.8934 0.0005
0.2677 1.0576 0.0112 0.2103 -1.3094 0.0509
0.2414 0.7280 0.0142 0.3299 -0.3286 0.0553
0.2156 0.1204 0.0018 0.1950 -2.0101 0.0412
0.0380 0.5126 0.0000 0.2200 0.0629 0.0082

Yellow-breasted chat plumage coloration (Mays [58]) 62 0.7247 40.2987 58.3743 0.2924 3.1794 0.0084
0.2753 23.7743 4.9154 0.7076 3.6963 0.0302

Peacock eye spots (Loyau [57]) 24 1.0000 152.0645 46.7236 1.0000 5.0233 0.0021
Peacock eye spots (Petrie [26]) 24 1.0000 145.9515 95.9004 1.0000 4.981 0.0046

Peacock eye spots (Loyau/Petrie merged) 48 1.0000 149.0080 80.6543 1.0000 5.0021 0.0038
Arctic charr skin brightness (Skarstein [63]) 20 0.4505 2.3538 0.0015 0.4507 0.8559 0.0003

0.5495 2.5160 0.0004 0.5493 0.9226 0.0001
Salmon body size (Glover [42]) 72 0.1383 9.3169 0.5107 0.1388 2.2296 0.0056

0.8617 14.6375 1.0055 0.8612 2.6814 0.0046
Widowbird tail length (Anderson [56]) 107 1.0000 221.5356 796.5005 1.0000 5.3920 0.0179
Widowbird red collar patch size (Anderson [56]) 107 1.0000 222.1704 2419.6 1.0000 5.3779 0.0526

Barn owl spottiness (Nieche [55]) 20 1.0000 1.2436 0.4555 1.0000 0.0695 0.3068
Finch carotenoid coloration (Badyaev [54]) 68 1.0000 1.7732 3.1678 NA NA NA
Stickleback nest compactness (Barber [61]) 38 0.8947 37.7314 99.9319 NA NA NA

0.1053 90.2335 0.0131

Partridge black ventral area (Bortolotti [53]) 29 1.0000 21.1812 56.7020 1.0000 2.9779 0.1728
Roe deer antler length (Pelabon [59]) 242 0.0903 12.1801 7.7178 0.1235 2.5521 0.0693

0.9097 18.1135 5.1123 0.8765 2.8933 0.0144
Lion > 2.2 yrs mane length (West [25]) 442 0.1936 0.6800 0.0192 0.7171 0.2489 0.0166

0.8064 1.2663 0.0338 0.2829 -0.2681 0.0827
Lion > 2.2 yrs mane darkness (West [25]) 442 1.0000 1.1008 0.0562 0.6464 0.1695 0.0217

0.3536 -0.1118 0.0673
Lion> 5 yrs mane length (West [25]) 257 1.0000 1.2977 0.0319 0.0383 -0.1331 0.0814

0.9617 0.2652 0.0145

Lion > 5 yrs mane darkness (West [25]) 257 1.0000 1.2021 0.0363 0.3205 0.0484 0.0351
0.6795 0.2283 0.0142

Dung beetle horn length - WA (Moczek [60]) 644 0.3546 0.5105 0.0033 0.4784 -0.6237 0.0224
0.0837 2.0758 0.4042 0.2111 1.3512 0.0152
0.1616 1.1310 0.0782 0.3105 0.1371 0.2152
0.1910 0.6517 0.0110
0.2091 3.9032 0.2139

Dung beetle horn length - NC (Moczek [60]) 1016 0.2301 2.6811 0.6706 0.2423 0.1279 0.2082
0.1633 0.9594 0.0686 0.1907 1.1523 0.0295
0.2268 0.5430 0.0097 0.2292 -0.6075 0.0418
0.3799 4.0161 0.1330 0.3378 1.4015 0.0064

Earwig forceps length (Tomkins [40]) 134 0.3165 5.9727 0.7099 0.2964 1.8033 0.0144
0.2501 7.3120 0.1154 0.2460 1.9901 0.0020
0.4333 3.5705 0.0982 0.4576 1.2796 0.0098

Great tit stripe length (Norris [52]) 63 0.5789 -14.1532 77.5214 NA NA NA
0.4211 17.1432 60.9468

Fiddler crab fight duration (Hyatt [62]) 80 0.0500 482.1489
5555.8303

1.0000 3.8413 1.1077

0.4433 19.5720 65.1629
0.1848 51.5698 33.6134

0.3219 125.9917
2189.0050

Fiddler crab fight acts (Hyatt [62]) 80 0.1103 53.5474 555.7647 1.0000 2.7213 0.5112
0.2370 26.7320 14.2841
0.6526 11.3968 22.7231

Table A.2. We fit Gaussian mixture models with 1–5 components of un-
equal variance to the animal ornamentation data sets and find the number
of components that yields the best BIC [65]. We performed this fit on
log-transformed data because tissue measurements are often log-normally
distributed [145]. Note that we exclude Gaussian mixture models for log-
transformed data (NA) if the original data is not a straight-forward mea-
surement of tissue investment.
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A.4. Data sources for tipping model

The tip rate data presented in Figure 4.1 of Chapter 4 is compiled from Zagat and

NPD Research Group surveys. Primary sources proved difficult to obtain, so the majority

of data points are reported in secondary sources. Table A.3 shows all sources.
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Year Average tip Source
2016 18.9 Zagat State of American Dining report

https://goo.gl/sGBQQy

2015 19.3 Zagat State of American Dining report
https://goo.gl/YhbDRW

2014 19.0 Zagat Dining Trends survey
https://goo.gl/xEXE7R

2013 19.4 Zagat State of American Dining report
https://goo.gl/iHilWI

2012 19.2 Zagat State of American Dining report
https://goo.gl/tzvv0j

2011 19.2 Zagat State of American Dining report
https://goo.gl/cmrHC5

2010 19.1 Zagat State of American Dining report
https://goo.gl/vxxb19

2009 19.0 Zagat State of American Dining report
http://a-r-n.net/Jin_e/ContentDetail.aspx?id=307754295

2008 19.0 Zagat State of American Dining report
https://goo.gl/NIWO8R

2007 18.9 Zagat State of American Dining report
https://goo.gl/qQIs8d

2006 18.7 Zagat State of American Dining report
https://goo.gl/xC2u1P

2005 18.4 Zagat State of American Dining report
http://www.hotel-online.com/News/PR2004_4th/Nov04_Zagat.html

2004 18.3 Zagat State of American Dining report
https://goo.gl/lB4UiD

2000 18 Zagat State of American Dining report
https://goo.gl/e4j57k

1999 17 Zagat State of American Dining report
http://a-r-n.net/Jin_e/ContentDetail.aspx?id=307754295

1996 16.4 Zagat State of American Dining report
https://goo.gl/pcFH8m

1995 15∗ Zagat State of American Dining report
https://goo.gl/yrok0h

1989 15.4 Zagat State of American Dining report
https://goo.gl/38tLlc

1984 14.7 NPD research
https://goo.gl/yrok0h

1983 14.5 NPD research
https://goo.gl/yrok0h

1982 14.4 NPD research
https://goo.gl/yrok0h

Table A.3. Average tip rate sources, including original source and website
(typically secondary source). ∗Rounding error suspected.

https://goo.gl/sGBQQy
https://goo.gl/YhbDRW
https://goo.gl/xEXE7R
https://goo.gl/iHilWI
https://goo.gl/tzvv0j
https://goo.gl/cmrHC5
https://goo.gl/vxxb19
http://a-r-n.net/Jin_e/ContentDetail.aspx?id=307754295
https://goo.gl/NIWO8R
https://goo.gl/qQIs8d
https://goo.gl/xC2u1P
http://www.hotel-online.com/News/PR2004_4th/Nov04_Zagat.html
https://goo.gl/lB4UiD
https://goo.gl/e4j57k
http://a-r-n.net/Jin_e/ContentDetail.aspx?id=307754295
https://goo.gl/pcFH8m
https://goo.gl/yrok0h
https://goo.gl/38tLlc
https://goo.gl/yrok0h
https://goo.gl/yrok0h
https://goo.gl/yrok0h
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Figure A.2. Additional ornament data sets (birds) A. Blackbird song pulse
repetition rate [51] (data extracted from histogram, so sample size un-
certain) B. Great tit stripe size [52] (N=63) C. Partridge black ventral
area [53] (N=29) D. Finch carotenoid coloration [54] (N=68) E. Barn owl
spottiness [55] (N=20) F. Widowbird collar patch size [56] (N=107) G.
Widowbird tail length [56] (N=107) H. Peacock eye spots [26] (N=24) I.
Peacock eye spots [57] (N=24) J. Yellow-breasted chat plumage color [58]
(N=62)
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Figure A.3. Additional ornament data sets A. Roe deer antler length [59]
(N=242) B. Mature (> 2.2 yr) lion mane darkness [25] (N=442) C. Mature
(> 2.2 yr) lion mane length [25] (N=442) D. Older (> 5 yr) lion mane
darkness [25] (N=257) E. Older (> 5 yr) lion mane length [25] (N=257) F.
Dung beetle horn length (North Carolina) [60] (N=1016) G. Stickleback
nest compactness [61] (N=38) H. Fiddler crab fight acts [62] I. Fiddler
crab fight duration [62] J. Earwig forceps length [40] (N=134)
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Figure A.4. Bimodal body size data sets A. Salmon body size [42] (N=72)
B. Trout body size (early season) [41] (data extracted from histogram, so
sample size uncertain) C. Trout body size (late season) [41] (data extracted
from histogram, so sample size uncertain)
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Figure A.5. Bimodal forest data sets A. Diameter at breast height for B.
platyphylla trees [142] (N=217) B. Diameter at breast height for B. er-
manii (11-16 yrs old) [143] (data extracted from histogram, so sample size
uncertain) C. Height of B. ermanii (11-16 yrs old) [143] (data extracted
from histogram, so sample size uncertain)
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