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ABSTRACT

The Internet of Things: Fundamental Limits and Practical Algorithms

Xu Chen

By 2020, there will be more than 200 billion sensor enabled objects world-wide in

the Internet of Things (IoT). The biggest challenge of future IoT is to provide ultra-

scalable wireless access for a massive number of devices. The goal of this thesis is to build

up a model for systems with massive access, study the fundamental limits, and design

practical signaling schemes and signal processing algorithms. The thesis mainly consists

of two parts, which are presented in Chapter 2 and Chapter 3, respectively. Chapter 2

is devoted to the modeling of the IoT and the study of the fundamental limits from the

perspective of information theory. Chapter 3 is devoted to the design of low-complexity

practical signal processing algorithms for neighbor discovery.

Classical multiuser information theory studies the fundamental limits of models with a

fixed (often small) number of users as the coding blocklength goes to infinity. In Chapter 2,

we introduce a new many-user paradigm, where the number of users and the blocklength

simultaneously tend to infinity. This paradigm is motivated by emerging systems whose
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massive number of users is comparable or far exceeds the blocklength, such as in machine-

to-machine communication systems and the IoT. The focus of the thesis is the Gaussian

many-access channel, which is used to model the uplink transmission of the IoT. The

many-access channel consists of a single receiver and many transmitters with fixed power,

where all or a subset of users may transmit in a given block and need to be identified. The

conventional notion of capacity in bits per channel use is ill-suited for the task, as Cover

and Thomas recognized that the rate per sender vanishes. A new notion of capacity is

introduced and characterized for the Gaussian many-access channel. The capacity can be

achieved by first detecting the set of active users and then decoding their messages.

To achieve the capacity of the many-access channels, an essential step is device identi-

fication, also known as neighbor discovery. In wireless neighbor discovery, an access point

needs to identify all the active devices in its surrounding areas. In Chapter 3, a novel low-

complexity wireless neighbor discovery scheme, referred to as sparse orthogonal frequency

division multiplexing (sparse-OFDM) is proposed. In the IoT, the number of devices is

very large while every device accesses the network with a small probability, so the number

of active devices in a frame is much smaller than the total local device population. Sparse

OFDM is a one-shot transmission scheme with low complexity, which exploits both the

parallel channel access offered by OFDM and the bursty nature of transmissions. The

scheme is inspired by the sublinear algorithms for computing sparse Fourier transform and

compressive sensing. When the transmission delay of each device is an integer number

of symbol intervals, analysis and simulation show that sparse OFDM enables success-

ful asynchronous neighbor discovery using a much smaller transmission length than the

random access schemes.
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CHAPTER 1

Introduction

1.1. Background

The Internet of Things (IoT) is becoming a major growth area that touches all con-

sumers and all sectors of the economy. It is believed that over 200 billion devices will be

connected by year 2020 and the number will continue to increase in the foreseeable future.

The IoT communication will be a key enabler of a wide range of new applications in

healthcare, transportation systems, smart grid, smart home, smart city, and public safety,

to name a few. In recent years, the wireless industry have become increasingly interested

in the IoT services as the next major source of revenue as the technology and market for

smart phones mature.

The IoT has unique features that is very different from that of cellular network [1].

First, there are a massive number of devices in the system. A majority of the IoT devices

are expected to be wireless and their density will be a few orders of magnitude higher

than smart phones. Second, each device has a random on-off activity and the transmitted

message length is usually short. Third, there is usually much more uplink traffic than

downlink. These unique features pose new challenges of modeling the system and provid-

ing ultra-scalable wireless access for the IoT. This motivates the study of this thesis on

two important questions:
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(1) How should we model the IoT to incorporate its unique features and what is the

fundamental limit of the system?

(2) How do we design practical signal processing algorithms to approach the funda-

mental limit? In particular, the algorithms should be of low-complexity and is

scalable for the massive number of devices.

1.2. Modeling of the IoT

Classical information theory characterizes the fundamental limits of communication

systems by studying the asymptotic regime of infinite coding blocklength. The prevail-

ing models in multiuser information theory assume a fixed (usually small) number of

users, where fundamental limits as the coding blocklength goes to infinity are studied.

Even in the large-system analysis of multiuser systems [2–4], the blocklength is sent to

infinity before the number of users is sent to infinity. In some sensor networks and emerg-

ing machine-to-machine communication systems, a massive and ever-increasing number

of wireless devices may need to share the spectrum in a given area. This motivates us

to rethink the assumption of fixed user population. Here we propose a new many-user

paradigm, where the number of users is allowed to increase without bound with the block-

length.

In general, the theory that assumes a fixed number of users does not apply to systems

where the number of users is comparable or even larger than the blocklength. For example,

dense sensor networks, the IoT or machine-to-machine communication systems with many

thousands of devices in a given cell. A key reason is that for many functions f(k, n), letting

k →∞ after n→∞ may yield a different result than letting n and k = kn (as a function
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of n) simultaneously tend to infinity,1 i.e.,

lim
k→∞

lim
n→∞

f(k, n) 6= lim
n→∞

f(kn, n) .(1.1)

This new paradigm in multiuser information theory models where kn can grow arbitrarily

large with n is referred to as the many-user regime.

One motivating example is the design of ultra-scalable IoT communication systems

where the number of users k is comparable or even larger than the blocklength n, and the

message transmitted to each user could be very short. The many-user regime therefore

becomes a better performance indicator in the context of IoT where kn = O(n) and the

number of bits to be transmitted for each user may be sublinear in n. We are interested

in the fundamental limits in this regime.

In this thesis, we propose a Gaussian many-access channel to model the uplink trans-

mission in the IoT [5]. The many-access channel consists of a single receiver and many

transmitters with per user power constraint, where all or a subset of users may transmit

in a given block and need to be identified. The rate for each user measured in bit per

channel use vanishes as kn grows, indicating that the traditional notion of capacity be-

comes ill-suited for the task. A new notion of capacity is introduced and characterized

for the Gaussian many-access channel. The capacity can be achieved by first detecting

the set of active users and then decoding their messages.

A many-broadcast channel has also been proposed to model the downlink transmission

in the IoT. The many-broadcast channel consists of a single transmitter with fixed power,

1Take the function f(n, k) = log(1+k/n) as an example. Taking the limits separately gives 0 or∞ while
taking the limit simultaneously with kn = n yields lim

n→∞
f(n, n) = log 2.
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and the number of receivers grows as the blocklength [6]. It has been shown that typicality

set decoding can only achieve the reliable communication if the number of receivers grows

sublinearly with the blocklength. The maximum-likelihood decoding is critical in the

many-user regime to achieve reliable communication when the number of users grows

linearly with the blocklength. The result was published in other papers and is not reported

in the thesis.

1.3. Practical Neighbor Discovery Algorithms for the IoT

Before any data communication takes place in a wireless network, an access point

needs to first identify all active devices in its surrounding areas (aka its neighborhood).

The identity of a node is usually equivalent to its network interface address (NIA). The

goal of wireless device identification, also known as neighbor discovery, is to obtain the

NIAs of all active neighbors. For example, if the NIA is represented by 20 bits, and every

NIA is valid, then there are potentially 220 ≈ 1 million identities. If there are 4 billion

(distinct) identities, then the NIA is represented by at least 32 bits (like the IP address).

The study of the fundamental limit of Gaussian many-access channel shows that re-

liable neighbor discovery is an essential step to achieve the capacity. In the IoT, many

devices are of low power and low cost. A practical neighbor discovery scheme should in-

volve low complexity on the device side. In this thesis, we aim to propose a low-complexity

neighbor discovery algorithm by exploiting the bursty transmission nature.

Assuming the usual radio frequency processing and (discrete-time) sampling, the base-

band model for device identification can be described as follows. Suppose there are N

possible identities in total, which can also be viewed as the cardinality of the entire space



16

of valid NIAs. (N is typically an extremely large number. The actual number of devices

is usually smaller.) Device j is identified by its unique signature consisting of L symbols,

denoted as sj = [sj,0, · · · , sj,L−1], where sj,i = 0 for i < 0 or i ≥ L. The device transmits

the signature during the discovery period in order to be identified.2 Assume that device

j transmits the signature sj with delay of mj symbols relative to the beginning of the

period.

Consider the neighborhood of a receiver (e.g., an access point). Suppose K devices

are in the neighborhood. Let aj denote the channel coefficient between device j and the

receiver. If device j is not in the neighborhood (or does not exist), then aj = 0, whereas if

device j is in the neighborhood, aj 6= 0 represents the channel coefficient, which includes

the effects of large-scale fading (aka path loss) as well as small-scale block fading. The

received signal at time i can be expressed as

yi =
N∑
j=1

ajsj,i−mj + zi(1.2)

where zi denotes additive white Gaussian noise. The task of the receiver is to identify

which (K) coefficients aj are nonzero out of a very large number (N) of them based on

the observation through the linear model (1.2).

Conventionally, device identification is through contention-based random access. Name-

ly, each device repeatedly sends its identity packets enough times with random delays, so

that the access point will receive at least one of those packets free of collision. Due to

contention, many retransmissions are needed to guarantee reliable identification.

2If a device repeats a certain signal (e.g., its identity itself), the entire transmission is regarded as the
signature.



17

Contention-based identification has been studied by many authors (e.g. [7,8]). Such a

scheme is sufficient for cellular networks and local area networks, because identification is

carried out infrequently and a device, once identified, typically transmits a large amount

of data. On the contrary, in the IoT with a massive number of devices, where each device

typically has very small amount of data to transmit, the overhead becomes significant,

and scalability of the scheme becomes crucial.

It has also been proposed to accommodate IoT devices in the LTE family standards.

However, the number of IoT devices and the aggregate traffic, especially in the uplink, will

easily outgrow the amount of resources reserved for contentions in LTE and LTE-A [9].

An alternative ultra-scalable wireless access technique is absolutely needed to facilitate

future growth of the IoT.

Consider the model described by (1.2). Suppose the number of active devices K is

much smaller than the population size N , which is usually the case in the IoT. The

neighbor discovery problem boils down to recovering the support of an extremely sparse

vector: a = [a0, · · · , aN−1]T . If the delays mj are 0 for all devices, the problem clearly

belongs to a class of problems commonly referred to as compressed sensing (also known as

sparse recovery) [10]. The wisdom of compressed sensing is that, due to the sparse nature

of the desired vector, usually the number of measurements (or symbols yi here) needed to

recover a can be much smaller than the dimensionality (N) of the unknown signal.

Based on the insights from compressed sensing and multiuser detection, we believe the

key to ultra-scalability is to allow many nodes to transmit simultaneously to an access

point, and be decoded and identified jointly by the access point. In fact, synchronous

neighbor discovery schemes inspired by compressed sensing have been proposed [10]. It
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has been shown to have significant throughput gain over contention-based random access

schemes (especially if the overhead of framing and feedback is also accounted for). Asyn-

chronous neighbor discovery has also been studied in [11], but it involves a complexity

that grows polynomial in the total device population N .

In this thesis, we propose a neighbor discovery scheme that achieves three objectives:

1) small transmission length, 2) low computational complexity, and 3) reliable detec-

tion for asynchronous transmssion. A novel low-complexity wireless neighbor discovery

scheme, referred to as sparse orthogonal frequency division multiplexing (sparse-OFDM)

is proposed. By judiciously designing the codeword structure, sparse OFDM relates the

neighbor discovery algorithm to sparse Fourier transform. Thus, the recently proposed

sublinear algorithms can be leveraged [12]. Compared with the random access schemes,

sparse OFDM requires much shorter transmission length. Sparse OFDM adopts well-

established point-to-point capacity approaching codes and involves low complexity. It

provides practical physical layer capability for multipacket reception.
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CHAPTER 2

Gaussian Many-Access Channel

2.1. Introduction

Classical information theory characterizes the fundamental limits of communication

systems by studying the asymptotic regime of infinite coding blocklength. The prevailing

models in multiuser information theory assume a fixed (usually small) number of users,

where fundamental limits as the coding blocklength goes to infinity are studied. Even in

the large-system analysis of multiuser systems [2–4], the blocklength is sent to infinity

before the number of users is sent to infinity.1 In some sensor networks and emerging

machine-to-machine communication systems, a massive and ever-increasing number of

wireless devices with bursty traffic may need to share the spectrum in a given area. This

motivates us to rethink the assumption of fixed population of fully buffered users. Here

we propose a new many-user paradigm, where the number of users is allowed to increase

without bound with the blocklength.2

In this chapter, we introduce the many-access channel (MnAC) to model systems

consisting of a single receiver and many transmitters, the number of which is comparable

to or even larger than the blocklength [16, 17]. We study the asymptotic regime where

the number of transmitting devices (k) increases with the blocklength (n). The model

1The same can be said of the many-user broadcast coding strategy for the point-to-point channel proposed
in [13], and the CEO problem [14].
2The only existing model of this nature is found in [15], in which the authors sought for uniquely-decodable
codes for a noiseless binary adder channel with the number of users increasing with the blocklength.
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also accommodates random access, namely, it allows each transmitter to be active with

certain probability in each block. We assume synchronous transmission in the model,

while the capacity of strong asynchronous MnAC was studied in [18].

In general, the classical theory does not apply to systems where the number of users

is comparable or larger than the blocklength, such as in a machine-to-machine communi-

cation system with many thousands of devices in a given cell. One key reason is that, for

many functions of two variables f , limk→∞ limn→∞ f(k, n) 6= limn→∞ f(kn, n), i.e., letting

k →∞ after n→∞ may yield a different result than letting n and k = kn (as a function

of n) simultaneously tend to infinity. Moreover, the traditional notion of rate in bits per

channel use is ill-suited for the task in the many-user regime as noted (for the Gaussian

multiaccess channel) in [19, pp. 546-547] by Cover and Thomas, “when the total number

of senders is very large, so that there is a lot of interference, we can still send a total

amount of information that is arbitrary large even though the rate per individual sender

goes to 0.”

Capacity of the conventional multiaccess channel is well understood [20–22]. The

capacity can be established using the fact that joint typicality holds with high probability

as the blocklength grows to infinity. This argument, however, does not directly apply to

models where the number of users also goes to infinity. Specifically, joint typicality requires

the simultaneous convergence of the empirical joint entropy of every subset of the input

and output random variables to the corresponding joint entropy. Even though convergence

holds for every subset due to the law of large numbers, the asymptotic equipartition

property is not guaranteed because the number of those subsets increases exponentially

with the number of users [6]. Resorting to strong typicality does not resolve this because
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the empirical distribution over an increasing alphabet (due to increasing number of users)

does not converge.

In general, the received signal of the Gaussian MnAC is a noisy superposition of the

codewords chosen by the active users from their respective codebooks. The detection

problem boils down to identifying codewords based on their superposition. It is closely

related to sparse recovery, also known as compressed sensing, which has been studied in

a large body of works [23–32]. Information-theoretic limits of exact support recovery

was considered in [26], and stronger necessary and sufficient conditions have been derived

subsequently [28, 29, 32]. Using existing results in the sparse recovery literature, it can

be shown that the message length (in bits) that can be transmitted reliably by each user

should be in the order of Θ(n(log kn)/kn).

In this work, we provide a sharp characterization of the capacity of Gaussian many-

access channels as well as the user identification cost. As an achievable scheme, each user’s

transmission consists of a signature that identifies the user, followed by a message-bearing

codeword. The decoder first identifies the set of active users based on the superposition of

their unique signatures. (This is in fact a compressed sensing problem [10,33].) It then

decodes the messages from the identified active users. The length of the signature matches

the capacity penalty due to user activity uncertainty. The proof techniques find their roots

in Gallager’s error exponent analysis [34]. Also studied is a more general setup where

groups of users have heterogeneous channel gains and activity patterns. Again, separate

identification and decoding is shown to achieve the capacity region.

Unless otherwise noted, we use the following notational conventions: x denotes a

scalar, x denotes a column vector, and x denotes a matrix. The corresponding uppercase
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letters X, X, and X denote the corresponding random scalar, random vector and random

matrix, respectively. Given a set A, let xA = (xi)i∈A denote the subset of variables of x

whose indices are in A and let xA = (xi)i∈A be the matrix formed by columns of x whose

indices are in A. Let xn ≤n yn denote lim supn→∞(xn− yn) ≤ 0. That is, xn is essentially

asymptotically dominated by yn. All logarithms are natural. The binary entropy function

is denoted as H2(p) = −p log p− (1− p) log(1− p).

The rest of the chapter is organized as follows. Section 2.2 presents the system model

and main capacity results. Section 2.3 gives the proof of converse for the MnAC capacity.

Section 2.4 proves the random user identification cost. Section 2.5 shows that the MnAC

capacity is achievable using separate identification and decoding. Section 2.6 discusses

the challenges of applying successive decoding in MnAC. Section 2.7 analyzes the capacity

of MnAC with heterogeneous channel gains and activity patterns. Concluding remarks

are given in Section 3.8.

2.2. System Model and Main Results

Let n denote the number of channel uses, i.e., the blocklength. Let the number of users

be a function of n and be explicitly denoted as `n, so that it is tied to the blocklength.

The received symbols in a block form a column vector of length n:

(2.1) Y =
`n∑
k=1

Sk(wk) + Z

where wk is the message of user k, Sk(wk) ∈ Rn is the corresponding n-symbol codeword,

and Z is a Gaussian noise vector with independent standard Gaussian entries. Suppose

each user accesses the channel independently with identical probability αn during any
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given block. If user k is inactive, it is thought of as transmitting the all-zero codeword

Sk(0) = 0.

Definition 1. Let Sk and Y denote the input alphabet of user k and the output al-

phabet, respectively. An (M,n) symmetric code with power constraint P for the MnAC

channel (S1 × S2 × · · · × S`n , pY |S1,··· ,S`n ,Y) consists of the following mappings:

(1) The encoding functions Ek : {0, 1, . . . ,M} → Snk for every user k ∈ {1, · · · , `n},

which maps any message w to the codeword sk(w) = [sk1(w), · · · , skn(w)]T . In

particular, sk(0) = 0, for every k. Every codeword sk(w) satisfies the power

constraint:

(2.2)
1

n

n∑
i=1

s2
ki(w) ≤ P.

(2) Decoding function D : Yn → {0, 1, . . . ,M}`n, which is a deterministic rule as-

signing a decision on the messages to each possible received vector.

The average error probability of the (M,n) code is:

(2.3) P(n)
e = P {D(Y ) 6= (W1, . . . ,W`n)} ,

where W1, · · · ,W`n are independent, and for every k ∈ {1, · · · , `n},

(2.4) P {Wk = w} =


1− αn, w = 0,

αn
M
, w ∈ {1, . . . ,M}.

The preceding model reduces to the conventional `-user multiaccess channel in the

special case where `n = ` is fixed and αn = 1 as the blocklength n varies.
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2.2.1. The Message-Length Capacity

Definition 2 (Asymptotically achievable message length). We say a positive nonde-

creasing sequence of message lengths {v(n)}∞n=1, or simply, v(·), is asymptotically achiev-

able for the MnAC if there exists a sequence of (dexp(v(n))e, n) codes according to Defi-

nition 1 such that the average error probability P
(n)
e given by (2.3) vanishes as n→∞.

It should be clear that by asymptotically achievable message length we really mean a

function of the blocklength. The base of exp(·) should be consistent with the unit of the

message length. If the base of exp(·) is 2 (resp. e), then the message length is measured

in bits (resp. nats).

Definition 3 (Symmetric message-length capacity). For the MnAC channel described

by (2.1), a positive nondecreasing function B(n) of the blocklength n is said to be the

symmetric message-length capacity of the MnAC channel if, for any 0 < ε < 1, (1−ε)B(n)

is an asymptotically symmetric achievable message length, whereas (1 + ε)B(n) is not.

For the special case of a (conventional) multiaccess channel, the symmetric capacity

B(n) in Definition 3 is asymptotically linear in n, so that limn→∞B(n)/n is equal to

the symmetric capacity of the multiaccess channel (in, e.g., bits per channel use). From

this point on, by “capacity” we mean the message-length capacity in contrast to the

conventional capacity. In many-user information theory, B(n) need not grow linearly

with the blocklength.

Let Sk = [Sk(1), · · · ,Sk(M)] denote the matrix consisting of all but the first all-zero

codeword of user k. Let S = [S1, · · · ,S`n ] ∈ Rn×(M`n) denote the concatenation of the

codebooks of all users. For ease of analysis, we often use the following equivalent model
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for the Gaussian MnAC (2.1):

(2.5) Y = SX + Z,

where Z is defined as in (2.1) and X ∈ RM`n is a vector indicating the codewords

transmitted by the users. Specifically, X = [XT
1 ,X

T
2 , · · · ,XT

`n ]T , where Xk ∈ RM

indicates the codeword transmitted by user k, k = 1, · · · , `n, i.e.,

(2.6) Xk =

 0 with probability 1− αn

em with probability αn
M
, m = 1, . . . ,M

where em is the binary column M -vector with a single 1 at the m-th entry. Let

X `
m =

{
x =

[
xT1 , · · · ,xT`

]T
: xi ∈ {0, e1, · · · , em} , for every i ∈ {1, · · · , `}

}
.(2.7)

The signal X must take its values in X `n
M .

The following theorem is a main result of the work.

Theorem 1 (Symmetric capacity of the Gaussian many-access channel). Let n denote

the coding blocklength, `n denote the total number of users, and αn denote the probability

a user is active, independent of other users. Suppose `n is nondecreasing with n and

lim
n→∞

αn = α ∈ [0, 1].(2.8)

Denote the average number of active users as

kn = αn`n.(2.9)
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Then the symmetric message-length capacity B(n) of the Gaussian many-access channel

described by (2.1), with each user’s SNR being no greater than P , is characterized as

follows:

1) Suppose `n and kn are both unbounded, kn = O(n), and

`ne
−δkn → 0(2.10)

for every δ > 0. Let θ denote the limit of

(2.11) θn =
2`nH2(αn)

n log(1 + knP )
,

which may be ∞.

If θ < 1, then

B(n) =
n

2kn
log(1 + knP )− H2(αn)

αn
.(2.12)

If θ > 1, then a user cannot send even 1 bit reliably.

If θ = 1, then message length εn
2kn

log(1 + knP ) is not achievable for any ε > 0.

2) If `n is unbounded and kn is bounded, then message length εn is not achievable for any

ε > 0.

3) If `n is bounded, i.e., `n = ` <∞ for sufficiently large n, then

B(n) =


n
2

log(1 + P ) if α = 0,

n
2`

log(1 + `P ) if α > 0.
(2.13)
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A heuristic understanding of the expression of B(n) in (2.12) is as follows: If a genie-

aided receiver revealed the set of active users to the receiver, the total number of bits

that can be communicated through the MnAC with kn users would be approximately

(n/2) log(1 + knP ), so that the symmetric capacity is

B1(n) =
n

2kn
log(1 + knP ).(2.14)

The total uncertainty in the activity of all `n users is `nH2(αn) = knH2(αn)/αn, so the

capacity penalty on each of the kn active users is H2(αn)/αn. If every user is always active,

i.e., αn = 1, the penalty term is zero and the capacity resembles that of a multiaccess

channel.

By the current definition, the symmetric capacity (2.12) can be reduced to

B′(n) =
n

2kn
log kn −

H2(αn)

αn
,(2.15)

because log(1 + knP ) = log kn + o(log kn). We prefer the form of (2.12) for its connection

to the original capacity formular for the Gaussian multiaccess channel.

Fig. 2.1 illustrates the capacity B(n) given by (2.12) in the special case where P = 10

(i.e., the SNR is 10 dB), kn = n/4, with different scalings of user number `n. The purpose

is to show the trend of the capacity as the blocklength increases rather than the capacity at

finite length. The message-length capacity B(n) scales sub-linearly in n. Moreover, B(n)

depends on the scaling of kn and `n, whose effects cannot be captured by the conventional

multiaccess channels. In particular, if `n grows too quickly (e.g., `n = n3), an average

user cannot transmit a single bit reliably.
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Figure 2.1. Plot of B(n) given by (2.12), where P = 10, kn = n/4.

The assumptions in Case 1) of Theorem 1 prohibit two uninteresting cases: i) The

average number of active users kn grows faster than linear in the blocklength n; and ii)

the total number of users `n grows exponentially in n. For example, if kn = n(log n)2, an

average user will not be able to transmit a single bit reliably as n increases to infinity.

Time sharing with power allocation, which can achieve the capacity of the conventional

multiaccess channel [19], is inadequate for the MnAC in general. For example, if kn = 2n,

not a single channel use can be guaranteed for every active user. Moreover, if kn = n and

each user applies all energy in a single exclusive channel use, the resulting data rate is

generally poor.

2.2.2. The User Identification Cost

As a by-product in the proof of Theorem 1, we can derive the fundamental limits of random

user identification (without data transmission), where every user is active with certain

probability and the receiver aims to detect the set of active users. To quantify the cost

of user identification, we denote the total number of users as ` and let other parameters
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depend on `. (This is in contrast to the setting in Section 2.2.1.) The probability of a

user being active is denoted as α`, and the average number of active users is denoted as

k` = α``. Suppose n0 symbols are used for user identification purpose. Let Xa ∈ R` be a

random vector, which consists of independent and identically distributed (i.i.d.) Bernoulli

entries with mean α`. Then the received signal is

(2.16) Y a = SaXa + Za,

where Za consists of n0 i.i.d. standard Gaussian entries, and Sa = [Sa
1 · · · ,Sa

` ] with

Sa
k ∈ Rn0 being the signature of user k. Moreover, the realization of the signature must

satisfy the following power constraint:

1

n0

n0∑
i=1

(saki)
2 ≤ P.(2.17)

Definition 4 (Minimum user identification cost). We say the identification is erro-

neous in case of any miss or false alarm. For the channel described by (2.16), the minimum

user identification cost is said to be n(`) if n(`) > 0 and for every 0 < ε < 1, the probabil-

ity of erroneous identification vanishes as `→∞ if the signature length n0 = (1 + ε)n(`),

whereas the error probability is strictly bounded away from zero if n0 = (1− ε)n(`).

As in the case of capacity, the definition focuses on the asymptotics of ` → ∞, so

the minimum cost function n(·) is not unique. The random user identification problem

has been studied in the context of compressed sensing problem [26, 35]. The following

theorem gives a sharp characterization of how many channel uses n0 are needed for reliable

identification.
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Theorem 2 (Minimum identification cost through the Gaussian many-access chan-

nel). Let the total number of users be `, where each user is active with the same probability.

Suppose the average number of active users k` satisfies

lim
`→∞

`e−δk` = 0(2.18)

for every δ > 0. Let

n(`) =
`H2(k`/`)

1
2

log(1 + k`P )
.(2.19)

Suppose n(`)/k` has finite limit or diverges to infinity. The asymptotic identification cost

is characterized as follows:

1) If limk`→∞ n(`)/k` > 0, then the minimum user identification cost is n(`).

2) If limk`→∞ n(`)/k` = 0, then a signature length of n0 = εk` yields vanishing error

probability for any ε > 0; on the other hand, if n0 ≤ (1 − ε)n(`), then the identification

error cannot vanish as `→∞.

Note that (2.18) implies k` → ∞ as ` → ∞. In the special case where k` = d`1/de

for some d > 1, the minimum user identification cost is n(`) = 2(d− 1)k` + o(k`), which

is linear in the number of active users. The minimum cost function n(`) is illustrated in

Fig. 2.2.

In the following, we first prove the converse of Theorem 1, which can be particularized

to prove the converse of Theorem 2. Then we prove the achievability of Theorem 2, which

is an essential step leading to the achievability of Theorem 1 eventually.
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Figure 2.2. Plot of n(`) specified in Theorem 2, where P = 10, i.e., SNR =
10 dB.

2.3. Proof of the Converse of Theorem 1

We prove the converse for the three cases in Theorem 1, respectively.

2.3.1. Converse for Case 1): unbounded `n and unbounded kn

This proof requires more work than a straightforward use of Fano’s inequality, because the

size of the joint input alphabet may increase rapidly with the blocklength. To overcome

this difficulty, define for every given δ ∈ (0, 1),

(2.20) B`m(δ, k) =
{
x ∈ X `

m : 1 ≤ ||x||0 ≤ (1 + δ)k
}
,

which can be thought of as an `0 ball but the origin. Since X in (2.5) is a binary vector,

whose expected support size is kn, it is found in B`nM(δ, kn) with high probability for large

n.
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Based on the input distribution described in Section 2.2,

H(X) = `nH(X1) = `n(H2(αn) + αn logM).(2.21)

Let E = 1{X̂ 6= X} indicate whether the receiver makes an error, where X̂ is the

estimation of X. Consider an (M,n) code satisfying the power constraint (2.2) with

P
(n)
e = P{E = 1}. The input entropy H(X) can be calculated as

H(X) = H(X|Y ) + I(X;Y )

(2.22)

= H
(
X, 1

{
X ∈ B`nM(δ, kn)

}
|Y
)

+ I(X;Y )(2.23)

= H
(
1
{
X ∈ B`nM(δ, kn)

}
|Y
)

+H
(
X|1

{
X ∈ B`nM(δ, kn)

}
,Y
)

+ I(X;Y ),(2.24)

where we used the chain rule of the entropy to obtain (2.24). Because the error indicator

E is determined by X and Y , we can further obtain

H(X) = H
(
1
{
X ∈ B`nM(δ, kn)

}
|Y
)

+H
(
X, E|Y , 1

{
X ∈ B`nM(δ, kn)

})
+ I(X;Y )

(2.25)

= H
(
1
{
X ∈ B`nM(δ, kn)

}
|Y
)

+H
(
E|Y , 1

{
X ∈ B`nM(δ, kn)

})
+H

(
X|E,Y , 1

{
X ∈ B`nM(δ, kn)

})
+ I(X;Y )(2.26)

≤ H2

(
P
{
X ∈ B`nM(δ, kn)

})
+H2

(
P(n)
e

)
+H

(
X|E,Y , 1

{
X ∈ B`nM(δ, kn)

})
+ I(X;Y )(2.27)

≤ 2 log 2 +H
(
X|E,Y , 1

{
X ∈ B`nM(δ, kn)

})
+ I(X;Y ).(2.28)
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In the following, we will upper bound I(X;Y ) and H
(
X|E,Y , 1

{
X ∈ B`nM(δ, kn)

})
.

Lemma 1. Suppose X and Y follow the distribution described by (2.5), then

(2.29) I(X;Y ) ≤ n

2
log (1 + knP ) .

Proof. See Appendix A.1. �

Lemma 2. Suppose X and Y follow the distribution described by (2.5). If kn is an

unbounded sequence satisfying (2.10), then for large enough n,

H
(
X|E,Y , 1

{
X ∈ B`nM(δ, kn)

})
≤ 4P(n)

e (kn logM + kn + `nH2(αn)) + logM.(2.30)

Proof. See Appendix A.2. �

Combining (2.21), (2.28), and Lemmas 1 and 2, we can obtain

`nH2(αn) + kn logM ≤ 2 log 2 + 4P(n)
e (kn logM + kn + `nH2(αn))+

logM +
n

2
log(1 + knP ).(2.31)

Dividing both sides of (2.31) by kn and rearranging the terms, we have

(
1− 4P(n)

e

)
logM − 1

kn
logM +

(
1− 4P(n)

e

) H2(αn)

αn

≤ B1(n) +
2 log 2

kn
+ 4P(n)

e ,(2.32)
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where B1(n) is defined as (2.14). Since kn →∞, we have for large enough n,

(
1− 4P(n)

e −
1

kn

)(
logM +

H2(αn)

αn

)
≤ B1(n) + δ + 4P(n)

e .(2.33)

Since P
(n)
e vanishes and kn →∞ as n increases and δ can be chosen arbitrarily small,

according to (2.33), given any ε > 0, there exists some δ and for large enough n such that

the following holds:

logM ≤ (1 + ε)B1(n)− H2(αn)

αn
(2.34)

= (1 + ε− θn)B1(n),(2.35)

where θn is defined as (2.11), whose limit is denoted as θ. Since (2.35) holds for arbitrary

ε, if θ > 1, there exists a small enough ε such that logM < 0 for large enough n. It

implies B(n) = 0, meaning that an average user cannot send a single bit of information

reliably. If θ = 1, then (2.35) implies that for large enough n, logM < εB1(n) for any

ε > 0.

If θ < 1, B(n) given by (2.12) can be written as

B(n) = (1− θn)B1(n).(2.36)

The message length can be further upper bounded as

logM ≤
(

1 +
ε

1− θn

)
B(n),(2.37)

which implies logM ≤ (1 + ε)B(n) for any arbitrarily small ε. Thus, the converse for

Case 1) is established.
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We have the following result on the “overhead factor” θn.

Proposition 1. Let θn be defined as in (2.11). Consider the regime kn = Θ(n). The

following holds as n→∞:

(1) If `n = dane for some constant a > 0, then θn → 0 as n→∞.

(2) If `n = dande for some constant a > 0, d > 1 and c = limn→∞
kn
n

, then θn →

2c(d− 1).

Proof. The proof is straightforward from (2.11) as n→∞. �

Proposition 1 demonstrates the overhead of active user identification as a function of

the growth rate of `n. When `n grows linearly in n, the cost of detecting the set of active

users is negligible when amortized over n channel uses. On the other hand, when `n grows

too quickly in n, θn could be larger than 1, meaning that an average user cannot even

transmit a single bit reliably over a block. For user identification not to use up all channel

uses, we need

d < 1 +
1

2
lim sup
n→∞

n

kn
.(2.38)

This explains the capacity trends in Fig. 2.1.

2.3.2. Converse for Case 2): unbounded `n and bounded kn

The converse claim is basically that no linear growth in message length is achievable.

Suppose that, to the contrary, lim supn→∞B(n)/n = C for some C > 0. There must

exist some k0 ≥ 1 such that 1
2k0

log(1 + k0P ) < C. Then C is at least the symmetric

capacity of the conventional multiaccess channel with k0 users. However, as n → ∞,
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there is a non-vanishing probability that the number of active users is greater than 2k0.

Letting each user transmit a message length of B(n) would yield a strictly positive error

probability. Hence the converse is proved.

2.3.3. Converse for Case 3): bounded `n

If αn → 0, a transmitting user sees no interference with probability (1−αn)`n−1 → 1. The

converse is obvious because 1
2

log(1+P ) is the conventional capacity for the point-to-point

channel. The achievable message length cannot exceed n
2

log(1 + P ) asymptotically.

If αn → α > 0, the number of active users is a binomial random variable. (The channel

is nonergodic.) The probability that all ` users are active is α` > 0. Hence the converse

follows from the symmetric rate 1
2`

log(1 + `P ) for the conventional multiaccess channel

with ` users.

2.4. Proof of Theorem 2

In this section, we prove the converse and achievability of the minimum user identi-

fication cost (Theorem 2). It is a crucial step in the proof of the achievability part of

Theorem 1.

2.4.1. Converse

In either of the two cases in Theorem 2, it suffices to show that the probability of error

cannot vanish if n0 = (1 − ε)n(`) for any 0 < ε < 1. The converse of Theorem 2 follows

exactly from that of Theorem 1 by replacing M = 1 and letting n = n0. According to

(2.34), in order to achieve vanishing error probability for random user identification, for
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any 0 < ε < 1,

(1 + ε)
n0

2k`
log(1 + k`P ) ≥ H2(α`)

α`
.(2.39)

Therefore, the length of the signature must satisfy

n0 > (1− ε) `H2(α`)
1
2

log(1 + k`P )
(2.40)

for sufficiently large `.

2.4.2. Achievability

Let n(`) be given by (2.19). Pick an arbitrary fixed ε ∈ (0, P ). In the following, we

will show that we can achieve vanishing error probability in identification using signature

length

n0 =


(1 + ε)n(`), if lim

k`→∞
n(`)/k` > 0

εk`, if lim
k`→∞

n(`)/k` = 0.
(2.41)

We provide a user identification scheme whose error probability is upper bounded by

e−ck` for some positive constant c dependent on ε. Let the signatures of each user Sa
k be

generated according to i.i.d. Gaussian distribution with zero mean and variance

P ′ = P − ε.(2.42)

The receiver searches the binary activity vector that best explains the received signal.

We restrict the search to be among all binary `-vectors whose weight does not exceed the
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average k` by a small fraction, and formulate it as an optimization problem:

minimize ‖ Y a − Sax ‖2
2(2.43)

subject to x ∈ {0, 1}`

∑̀
i=1

xi ≤ (1 + δ`)k`,

where δ` controls the search region of x. We choose δ` to be some monotone decreasing

sequence such that δ2
`k` is unboundedly increasing and δ` log k` → 0. Specifically, we let

δ` = k
− 1

3
` .(2.44)

Denote Ed as the event of detection error and Fj as the event that the signature of

the j-th user violates the power constraint (2.2), j = 1, · · · , `. The probability of error in

the stage of activity identification P
(`)
e is thus calculated as

P(`)
e ≤ P

Ed ∪
 ⋃
j∈{1,··· ,`}

Fj

(2.45)

≤ P {Ed}+ `P {F1}(2.46)

using the union bound and the fact that all codewords are identically distributed.

Furthermore,

`P {F1} = `P

{
n0∑
i=1

(Sa1i)
2 > n0P

}
(2.47)

≤ `e−cn0 ,(2.48)
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where c is some positive number (which depends on ε) due to large deviation theory for

the sum of i.i.d. Gaussian random variables [36]. In either case of (2.41), n0 ≥n ak` for

some a > 0, so (2.48) implies

`P {F1} ≤` `e−δk`(2.49)

for some δ > 0, which vanishes as `→∞ by assumption (2.18).

We next derive an upper bound of the probability of detection error P {Ed}. Clearly,

P{Ed} = E {P{Ed|Xa}}(2.50)

≤ P{Xa /∈ B`1(δ`, k`)}+
∑

x∈B`1(δ`,k`)

P{Ed|Xa = x}P {Xa = x} .(2.51)

The support size of the transmitted signal Xa given by (2.16) follows the binomial dis-

tribution Bin(`, k`/`). By the Chernoff bound for binomial distribution [37],

P{Xa /∈ B`1(δ`, k`)} = P

{∑̀
i=1

Xa
i > (1 + δ`)k`

}
+ P

{∑̀
i=1

Xa
i = 0

}
(2.52)

≤ exp
(
−k`δ2

`/3
)

+ (1− k`/`)`,(2.53)

which vanishes due to (2.44) and the fact that (1− k`/`)` vanishes for unbounded k`. In

other words, the number of active user is smaller than (1 + δ`)k` with high probability.

In order to prove Theorem 2, it suffices to show that the second term on the right-hand

side (RHS) of (2.51) vanishes.

Pick arbitrary x∗ ∈ B`1(δ`, k`). Let its support be A∗, which must satisfy 1 ≤ |A∗| ≤

(1 + δ`)k`. We write P{Ed|Xa = x∗} interchangeably with P{Ed|A∗}, because there is a
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one-to-one mapping between x∗ and A∗. In the remainder of this subsection, we analyze

the decoding error probability conditioned on a fixed A∗ and drop the conditioning on A∗

for notational convenience, i.e., P {Ed} implicitly means P {Ed|A∗}. The randomness lies

in the signatures Sa and the received signal Y a from x∗. Define

(2.54) TA =

∣∣∣∣∣∣∣∣Y a −
∑
i∈A

Sa
i

∣∣∣∣∣∣∣∣2
2

−
∣∣∣∣∣∣∣∣Y a −

∑
i∈A∗

Sa
i

∣∣∣∣∣∣∣∣2
2

.

According to the decoding rule (2.43), a detection error may occur only if there is some

A ⊆ {1, · · · , `} such that A 6= A∗, such that |A| ≤ (1 + δ`)k`, and TA ≤ 0. Hence,

(2.55) Ed ⊆
⋃

A⊆{1,··· ,`}:
|A|≤(1+δ`)k`,A 6=A∗

{TA ≤ 0}.

In the following, we divide the exponential number of error events in (2.55) into a

relatively small number of classes. We will show that the probability of error of each class

vanishes and so does the overall error probability. Specifically, we write the union over A

according to the cardinality of the sets A∗ ∩ A and A\A∗. Let w1 = |A1| and w2 = |A2|,

where A1 = A∗\A represents the set of misses and A2 = A\A∗ represents the set of false

alarms. Then (w1, w2) must satisfy w1 ≤ |A∗|, w2 ≤ |A|, and |A∗| + w2 = |A| + w1.
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According to the decoding rule (2.43), (w1, w2) must be found in the following set:

W(`) = {(w1, w2) : w1 ∈ {0, 1, · · · , |A∗|}, w2 ∈ {0, 1, · · · , (1 + δ`)k`},

w1 + w2 > 0, |A∗|+ w2 ≤ (1 + δ`)k` + w1} .(2.56)

Further define the event Ew1,w2 as

(2.57) Ew1,w2 =
⋃

A⊆{1,··· ,`}:
|A∗\A|=w1,|A\A∗|=w2

{TA ≤ 0}.

By (2.55), Ed ⊆
⋃

(w1,w2)∈W(`) Ew1,w2 . Hence

P{Ed} ≤
∑

(w1,w2)∈W(`)

P{Ew1,w2}.(2.58)

We will show that when ` is large enough, there exists some constant c0 > 0 such that

P{Ew1,w2} ≤ e−k`c0 for all (w1, w2) ∈ W(`).

Define

(2.59) A1(w1) = {A1 : A1 ⊆ A∗, |A1| = w1}

and

(2.60) A2(w2) = {A2 : A2 ⊆ {1, · · · , `}\A∗, |A2| = w2} .
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Then for any A leading to an error event in Ew1,w2 specified by (2.57), it can be written

as A = A2 ∪ (A∗\A1), for some A1 ∈ A1(w1) and A2 ∈ A2(w2). Therefore, (2.57) gives

(2.61) Ew1,w2 =
⋃

A1∈A1(w1)

⋃
A2∈A2(w2)

{TA ≤ 0},

which implies

(2.62) 1 {Ew1,w2} ≤
∑

A1∈A1(w1)

 ∑
A2∈A2(w2)

1 {TA ≤ 0}

ρ

for every ρ ∈ [0, 1]. As a result,

P {Ew1,w2} = E {1 {Ew1,w2}}(2.63)

≤
∑

A1∈A1(w1)

E


 ∑
A2∈A2(w2)

1 {TA ≤ 0}

ρ(2.64)

where the expectation is taken over (Sa,Y a). We further calculate the expectation by

first conditioning on (Sa
A∗ ,Y

a) as follows:

P {Ew1,w2} ≤
∑

A1∈A1(w1)

E

E


 ∑
A2∈A2(w2)

1 {TA ≤ 0}

ρ ∣∣∣∣Sa
A∗ ,Y

a


(2.65)

≤
∑

A1∈A1(w1)

E


E
 ∑
A2∈A2(w2)

1 {TA ≤ 0}
∣∣∣∣Sa

A∗ ,Y
a


ρ ,(2.66)

where the expectation is taken first with respect to the probability measure pSa{1,··· ,`}\A∗ |SaA∗ ,Y a

and then with respect to the probability measure pSaA∗ ,Y a ; and Jensen’s inequality is ap-

plied in (2.66) to the concave function xρ, 0 < ρ ≤ 1. Note that Sa
{1,··· ,`}\A∗ and Sa

A∗

are independent and Y a only depends on Sa
A∗ , we have pSa{1,··· ,`}\A∗ |SaA∗ ,Y a(s1|s2,y) =



43

pSa{1,··· ,`}\A∗ (s1). The inner expectation in (2.66) is taken with respect to the probability

measure pSaA2
for each A2 ∈ A2(w2). Since the entries of Sa are i.i.d., the inner expecta-

tion yields identical results for all A2 ∈ A2(w2) and the outer expectation yields identical

results for all A1 ∈ A1(w1).

The number of choices for A1 is
(|A∗|
w1

)
, whereas the number of choices for A2 is no

greater than
(
`
w2

)
. Therefore, we apply the union bound to obtain

P {Ew1,w2} ≤
(|A∗|
w1

)(
`

w2

)ρ
E
{[

E
{

1 {TA ≤ 0}
∣∣Sa

A∗ ,Y
a
}]ρ}

,(2.67)

where A is now a fixed representative choice with |A∗\A| = w1 and |A\A∗| = w2.

We will obtain an upper bound of the detection error probability by further upper

bounding E
{

1 {TA ≤ 0}
∣∣Sa

A∗ ,Y
a
}

. Let

pY |SA(yi|sA,i) =
1√
2π

exp

−1

2

(
yi −

∑
k∈A

ski

)2
 .(2.68)

The conditional distribution of y given that the codewords sA are transmitted is given by

pY |SA(y|sA) =
∏n

i=1 pY |SA(yi|sA,i), where n is the dimension of y. Then for any λ ≥ 0,

the following holds due to (2.54):

E
{

1 {TA ≤ 0}
∣∣Sa

A∗ ,Y
a
}

= E

{
1

{
pY |SA(Y a|Sa

A)

pY |SA(Y a|Sa
A∗)
≥ 1

} ∣∣∣∣Sa
A∗ ,Y

a

}
(2.69)

≤ E

{(
pY |SA(Y a|Sa

A)

pY |SA(Y a|Sa
A∗)

)λ ∣∣∣∣Sa
A∗ ,Y

a

}
(2.70)

= p−λY |SA
(Y a|Sa

A∗)E
{
pλY |SA(Y a|Sa

A)
∣∣Sa

A∗ ,Y
a
}
,(2.71)
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where (2.71) follows because (Sa
A∗ ,Y ) is independent of Sa

A2
. For every function g (Sa

A∗ ,Y
a),

E {g (Sa
A∗ ,Y

a)} =
∫
Rn0

E
{
g (Sa

A∗ ,y) pY |SA(y|Sa
A∗)
}
dy. Combining (2.67) and (2.71)

yields

P {Ew1,w2} ≤
(|A∗|
w1

)(
`

w2

)ρ ∫
Rn0

E

{
p1−λρ
Y |SA

(y|Sa
A∗)

(
E

{
pλY |SA(y|Sa

A)

∣∣∣∣Sa
A∗

})ρ}
dy.

(2.72)

Due to the memoryless channel property, i.e., pY |SA(y|Sa
A) =

∏n0

i=1 pY |SA(yi|Sa
A,i), we

obtain

P {Ew1,w2} ≤
(|A∗|
w1

)(
`

w2

)ρ
(mλ,ρ(w1, w2))n0(2.73)

where

mλ,ρ(w1, w2) =

∫
R
E

{
p1−λρ
Y |SA(y|Sa

A∗)

(
E

{
pλY |SA(y|Sa

A)

∣∣∣∣Sa
A∗

})ρ}
dy.(2.74)

The first two terms of the RHS of (2.73) can be upper bounded as [19, Page 353]

(2.75)

(|A∗|
w1

)(
`

w2

)ρ
≤ exp

(
|A∗|H2

(
w1

|A∗|

)
+ ρ`H2

(w2

`

))
.

Moreover, by the Gaussian distribution of the codewords, the last term of the RHS of

(2.73) can be explicitly calculated (see Appendix A.3) to obtain

mλ,ρ(w1, w2) =

exp

(
1− ρ

2
log(1 + λw2P

′)− 1

2
log (1 + λ(1− λρ)w2P

′ + λρ(1− λρ)w1P
′)

)
.(2.76)
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Therefore, by (2.73)-(2.76),

(2.77) P{Ew1,w2} ≤ exp (−k`hλ,ρ(w1, w2)) ,

where

hλ,ρ(w1, w2) =
n0

2k`
log (1 + λ(1− λρ)w2P

′ + λρ(1− λρ)w1P
′)

− (1− ρ)n0

2k`
log (1 + λw2P

′)− |A
∗|
k`

H2

(
w1

|A∗|

)
− ρ`

k`
H2

(w2

`

)
.(2.78)

To show the capacity achievability, we next show that by choosing λ and ρ properly,

for large enough `, hλ,ρ(w1, w2) is strictly greater than some positive constant for all

(w1, w2) ∈ W(`).

Lemma 3. Fix ε ∈ (0, P ). Let P ′ = P −ε. Let n(`) be given by (2.19) and n0 be given

by (2.41). Suppose n(`)/k` has finite limit or diverges to infinity. There exists `∗ > 0 and

c0 > 0 such that for every ` ≥ `∗ the following holds: If the true signal xa ∈ B`1(δ`, k`),

i.e., 1 ≤ |A∗| ≤ (1 + δ`)k`, then for every (w1, w2) ∈ W(`) with W(`) defined as in (2.56),

there exist λ ∈ [0,∞) and ρ ∈ [0, 1] such that

hλ,ρ(w1, w2) ≥ c0.(2.79)

Proof. See Appendix A.4. �

Lemma 3 and (2.77) imply

P{Ew1,w2|A∗} ≤ e−c0k` ,(2.80)
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for all ` ≥ `∗, (w1, w2) ∈ W(`), and 1 ≤ |A∗| ≤ (1 + δ`)k`. Then as long as ` ≥ `∗, for any

x ∈ B`1(δ`, k`),

P{Ed|Xa = x} ≤
∑

(w1,w2)∈W(`)

P{Ew1,w2|Xa = x}(2.81)

≤
∑

(w1,w2)∈W(`)

e−c0k`(2.82)

≤ 4k2
` e
−c0k` ,(2.83)

where (2.83) is due to w1 ≤ 2k` and w2 ≤ 2k`. Therefore, the first term on the RHS of

(2.51) vanishes as ` increases. So does P{Ed}. Thus we can achieve arbitrarily reliable

identitifcation with SNR P ′ = P − ε and signature length n0 given by (2.41). Since ε can

be arbitrarily small, the achievability of Theorem 2 is established.

2.5. Proof of the Achievability of Theorem 1

2.5.1. Achievability for Case 3) with bounded `n

As `n is nondecreasing, `n → ` for some constant `. If αn → α > 0, with some positive

probability all ` users are active. Hence the achievability capacity follows from the result

for the conventional multiaccess channel with ` users.

If αn → 0, a transmitting user experiences a single-user channel with probability (1−

αn)`n−1 → 1. Therefore, it can achieve a vanishing error probability with the conventional

capacity for the point-to-point channel.
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Figure 2.4. Codebook structure. Each user maintains M codewords with
each consisting of a message-bearing codeword prepended by a signature.

2.5.2. Achievability for Case 1) and Case 2) with unbounded `n

We first assume unbounded kn and establish the achievability result. The case of bounded

kn is then straightforward.

We consider a two-stage approach: In the first stage, the set of active users are i-

dentified based on their unique signatures. In the second stage, the messages from the

active users are decoded. Let θn and its limit θ be defined as in Theorem 1. We consider

the cases of θ = 0 and θ > 0 at the same time. Fix ε ∈ (0,min(1, P )). Specifically, the

following scheme is used:

• Codebook construction: The codebooks of the `n users are generated indepen-

dently. Let

(2.84) n0 =

 εn, if θ = 0

(1 + ε) θnn, otherwise .

For user k, codeword sk(0) = 0 represents silence. User k also generates

(2.85) M = dexp [(1− ε)B(n)]e
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codewords as follows. First, generate M random sequences of length n−n0, each

according to i.i.d. Gaussian distribution with zero mean and variance P ′ = P−ε.

Then generate one signature of length n0 with i.i.d. N (0, P ′), denoted by Sa
k,

and prepend this signature to every codeword to form M codewords of length n.

In other words, the w-th codeword of user k takes the shape of Sk(w) =
(

Sak
Sbk(w)

)
.

The matrix of the concatenated codebooks of all users is illustrated in Fig. 2.4.

• Transmission: For user k to be silent, it is equivalent to transmitting sk(0).

Otherwise, to send message wk 6= 0, user k transmits Sk(wk).

• Channel: Each user is active independently with probability αn. The active

users transmit simultaneously. The received signal is Y given by (2.5).

• Two-stage detection and decoding: Upon receiving Y , the decoder performs the

following:

(1) Active user identification: Let Y a denote the first n0 entries of Y , cor-

responding to the superimposed signatures of all active users subject to noise.

Y a is mathematically described by (2.16). The receiver estimates Xa according

to (2.43). The output of this stage is a set A ⊆ {1, · · · , `n} that contains the

detected active users.

(2) Message decoding: Let Y b denote the last n − n0 entries of Y , corre-

sponding to the superimposed message-bearing codewords. The receiver solves
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the following optimization problem:

minimize ||Y b − Sb
[
xT1 , · · · ,xT`n

]T ||2(2.86)

subject to xk ∈ X 1
M , k = 1, · · · , `n(2.87)

xk = 0, ∀k /∈ A(2.88)

xk 6= 0, ∀k ∈ A(2.89)

Basically the receiver performs the maximum likelihood decoding for the set of

users in the purported active user set A. The position of 1 in each recovered

nonzero xk indicates the message from user k.

Theorem 3 (Achievability of the Gaussian many-access channel). Let θn be defined

as (2.11) and B(n) be defined as (2.12). Suppose limn→∞ θn < 1. For the MnAC given by

(2.1), for any given constant ε ∈ (0, 1), the message length of (1−ε)B(n) is asymptotically

achievable using the preceding scheme.

The remainder of this section is devoted to the proof of Theorem 3. In Section 2.5.3, we

show that the set of active users can be accurately identified in stage 1. In Section 2.5.4, we

show that the users’ messages can be accurately decoded in stage 2 assuming knowledge

of the active users. The results are combined in Section 2.5.5 to establish the achievability

part of Theorem 3.

2.5.3. Optimal User Identification

We shall invoke Theorem 2 (proved in Section 2.4) to quantify the cost of reliable user

identification. To adapt to the notation in this section, we apply Theorem 2 with ` and k`
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being replaced by `n and kn, respectively. With the change of notations, n(`) as defined

in Theorem 2 can be written as

n(`) =
`nH2(kn/`n)

1
2

log(1 + knP )
(2.90)

= θnn,(2.91)

where θn is given by (2.11).

According to Theorem 2, choosing the signature length n0 = (1 + ε)θnn and n0 = εkn

yields vanishing error probability in user identification for the case of limn→∞ θnn/kn >

0 and limn→∞ θnn/kn = 0, respectively, where ε ∈ (0, 1) is an arbitrary constant. In

the following, we make use of this result to prove that choosing n0 according to (2.84)

guarantees reliable user identification.

First, consider θ = 0. By (2.84), the signature length is n0 = εn for some ε. In the

case of limn→∞ θnn/kn > 0, since θn vanishes, it must have n0 ≥n (1 + ε)θnn. In the case

of limn→∞ θnn/kn = 0, since kn = O(n), n0 = εn implies n0 ≥n ε′kn for some ε′ > 0. By

Theorem 2, the choice of n0 is sufficient for reliable user identification.

Second, consider θ > 0. By (2.84), the signature length is n0 = (1 + ε)θnn. Since

kn = O(n), it must have limn→∞ θnn/kn > 0. Thus, the signature length n0 obviously

achieves reliable user identification by Theorem 2.

2.5.4. Achieving the Capacity of MnAC with Known User Activities

In previous work [16], we studied the capacity of the Gaussian MnAC where all users are

always active and the number of users is sublinear in the blocklength, i.e., kn = o(n). In
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that case, random coding with Feinstein’s suboptimal decoding, which suffices to achieve

the capacity of conventional multiaccess channel capacity, can achieve the capacity of the

Gaussian MnAC. Proving the capacity achievability for faster scaling of the number of

active users is much more challenging, mainly because the exponential number of possible

error events prevents one from using the simple union bound. Here, we derive the capacity

of the MnAC for the case where the number of users may grow as quickly as linearly with

the blocklength by lower bounding the error exponent of the error probability due to

maximum-likelihood decoding. The results also complement a related study of many-

broadcast models in [6].

Theorem 4 (Capacity of the Gaussian many-access channel without random access).

For the MnAC with kn always-active users, suppose the number of channel uses is n and

the number of users kn grows as O(n), the symmetric capacity is

B1(n) =
n

2kn
log(1 + knP ).(2.92)

In particular, for any ε ∈ (0, 1), there exists a sequence of codebooks with message length-

s (in nats) B1(n)(1 − ε) such that the average error probability is arbitrarily small for

sufficiently large n.

In the following, we will prove Theorem 4. We can model the MnAC with known user

activities using (2.5) with αn = 1, i.e., kn = `n. Upon receiving the length-n vector y, we
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estimate x =
[
xT1 , · · · ,xTkn

]T
using the maximum likelihood decoding:

minimize ||y − sx||2(2.93)

subject to xk = em, for some m = 1, · · · ,M.(2.94)

Define Fj as the event that user j’s codeword violates the power constraint (2.2), j =

1, · · · , kn. Define Ek as the error event that k users are received in error. Suppose

P{Ek|A∗} is the probability of Ek given that the true signal is x∗ with support A∗. By

symmetry of the codebook construction, the average error probability can be calculated

as

P(n)
e ≤ P

{
kn⋃
k=1

Ek ∪
kn⋃
j=1

Fj
}

(2.95)

≤ 1

Mkn

∑
A∗

kn∑
k=1

P{Ek|A∗}+
kn∑
j=1

P {Fj} .(2.96)

Let A be the support of the estimated x according to the maximum likelihood decod-

ing. Define A1 and A2 in the same manner as that in Section 2.5.3, i.e., A1 = A∗\A and

A2 = A\A∗. In this case, |A| = |A∗| = kn and |A2| = |A1| = k. Further denote γ = k/kn

as the fraction of users subjected to errors. Then we write P{Ek|A∗} and P{Eγ|A∗} inter-

changeably. In the following analysis, we consider a fixed A∗ and drop the conditioning

on A∗ for notational convenience. Following similar arguments leading to (2.73), letting
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λ = 1
1+ρ

and considering
(
kn
γkn

)
possible sets of A1 and Mγkn possible sets of A2, we have

P{Eγ} ≤
(
kn
γkn

)
Mγknρ

(∫
R
E

{
p

1
ρ+1

Y |SA(y|SA∗)

(
E

{
p

1
ρ+1

Y |SA(y|SA)

∣∣∣∣SA∗

})ρ}
dy

)n(2.97)

=

(
kn
γkn

)
Mγknρ

(∫
R
E

{
E

{
p

1
ρ+1

Y |SA(y|SA∗)

∣∣∣∣SA∗∩A

}(
E

{
p

1
ρ+1

Y |SA(y|SA)

∣∣∣∣SA∗

})ρ}
dy

)n
.

(2.98)

By symmetry, E

{
p

1
ρ+1

Y |SA(y|SA)

∣∣∣∣SA∗

}
= E

{
p

1
ρ+1

Y |SA(y|SA∗)

∣∣∣∣SA∗∩A

}
, which results in

P{Eγ} ≤
(
kn
γkn

)
Mγknρ exp(−nE0(γ, ρ)),(2.99)

where E0(γ, ρ) is defined by

E0(γ, ρ) = − log

[∫
R
E

{[
E

{(
pY |SA(y|SA)

) 1
ρ+1

∣∣∣∣SA∗

}]1+ρ
}
dy

]
.(2.100)

By the inequality
(
kn
γkn

)
≤ exp(knH2(γ)), we can further upper bound P{Eγ} as

(2.101) P{Eγ} ≤ exp [−nf(γ, ρ)] ,

where

(2.102) f(γ, ρ) = E0(γ, ρ)− γρkn
n
v(n)− kn

n
H2(γ),

and v(n) = logM . Intuitively, E0(γ, ρ) in (2.101) is an achievable error exponent for the

error probability caused by a particular A being detected in favor of A∗ and the terms
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knH2(γ) + γρknv(n) correspond to the cardinality of all possible A leading to the error

event Eγ.

By particularizing (2.76) with w1 = w2 = γkn and λ = 1
1+ρ

, we can derive E0(γ, ρ)

explicitly as

E0(γ, ρ) = − logmλ,ρ(w1, w2)|w1=w2=γkn,λ= 1
1+ρ

(2.103)

=
ρ

2
log

(
1 +

γknP
′

ρ+ 1

)
.(2.104)

The achievable error exponent for P (Eγ) is determined by the minimum error exponent

over the range of γ, i.e.,

Er = min
1
kn
≤γ≤1

max
0≤ρ≤1

f(γ, ρ).(2.105)

The following Lemma is key to establishing Theorem 4.

Lemma 4. Let M be such that the message length v(n) = logM is given by

(2.106) v(n) = (1− ε) n

2kn
log(1 + knP

′).

Suppose kn = O(n), there exists n∗ and c0 > 0 such that for every n ≥ n∗,

P{Ek|A∗} ≤ e−c0n(2.107)

holds uniformly for all 1 ≤ k ≤ kn and for all |A∗|.

Proof. See Appendix A.5. �
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Due to Lemma 4, for large enough n,

kn∑
k=1

P{Ek|A∗} ≤ kne
−c0n(2.108)

which vanishes as n increases. Moreover, following the same argument as (2.48), the

second term of the RHS of (2.96) vanishes and hence P
(n)
e given by (2.96) can be proved

to vanish. As a result, Theorem 4 is established.

2.5.5. Achieving the Capacity of MnAC with On-off Random Access

In this subsection, we combine the results of Section 2.5.3 and Section 2.5.4 to prove the

achievability result for Case 1) and Case 2) in Theorem 3. We first prove the case of

unbounded kn, and the case of bounded kn follows naturally. Let θ denote the limit of θn.

Case 1): unbounded `n and unbounded kn.

We further divide this case into two sub-cases.

Sub-case a: 0 < θ < 1.

We need to show that the message length (1− ε)B(n) is asymptotically achievable for

any fixed ε ∈ (0, 1).

The detection errors are caused by activity identification error or message decoding

error. It has been shown by (2.53) that with high probability the number of active users

is no more than (1 + δn)kn. As a result, Theorem 2 and Theorem 4 conclude that the

message length

(1− ε′)(n− n0)

2(1 + δn)kn
log (1 + (1 + δn)knP ) ,(2.109)

where n0 = (1 + ε′)θnn, is asymptotically achievable for any ε′ > 0.
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In order to prove the achievability, it suffices to show that there exists ε′ such that the

message length given by (2.109) is asymptotically greater than

(1− ε)B(n) =
(1− ε)(1− θn)n

2kn
log (1 + knP ) .(2.110)

The intuition of proof is that for sufficiently large n, (1+δn)kn is approximately kn, and we

can always find a small enough ε′ such that (1−ε′)(n−n0) is greater than (1−ε)(1−θn)n.

We choose some small enough ε′ > 0 such that

(1− ε′)2 − ε′(1− ε′)2 1 + θ

1− θ > 1− ε.(2.111)

This is feasible because the left-hand side of (2.111) is equal to 1 if ε′ = 0.

Since log (1 + (1 + δn)knP ) / log(1 + knP )→ 1 and δn → 0 as n increases, we have

log (1 + (1 + δn)knP )

(1 + δn)
≥n (1− ε′) log(1 + knP ).(2.112)

The difference between (2.109) and (1− ε)B(n) is calculated as

(1− ε′)(n− n0)

2(1 + δn)kn
log (1 + (1 + δn)knP )− (1− ε)B(n)

≥n
[

(1− ε′)2(1− n0/n)

1− θn
− (1− ε)

]
B(n)(2.113)

=

[
(1− ε′)2 − ε′(1− ε′)2 θn

1− θn
− (1− ε)

]
B(n)(2.114)

≥n
[
(1− ε′)2 − ε′(1− ε′)2 1 + θ

1− θ − (1− ε)
]
B(n)(2.115)
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where (2.115) is due to θn ≤n (1 + θ)/2. By (2.111), the RHS of (2.115) is greater than

zero. It means that for large enough n, the achievabile message length (2.109) is greater

than (1− ε)B(n), which establishes the achievability.

Sub-case b: θ = 0.

The proof for the case of vanishing θn is analogous. We need to show that message

length (1− ε)B1(n) is asymptotically achievable for any fixed ε ∈ (0, 1).

The number of active users is no more than (1 + δn)kn with high probability. As a

result, Theorem 2 and Theorem 4 conclude that the message length

(1− ε′)(n− n0)

2(1 + δn)kn
log (1 + (1 + δn)knP ) ,(2.116)

where n0 = ε′n, is asymptotically achievable for any ε′ > 0.

In order to prove Theorem 3, it suffices to show that there exists ε′ such that the

message length given by (2.116) is asymptotically greater than

(1− ε)B1(n) = (1− ε) n

2kn
log (1 + knP ) .(2.117)

Choose some small enough ε′ > 0 such that

(1− ε′)3 > (1− ε).(2.118)
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The difference between (2.116) and (1− ε)B1(n) is calculated as

(1− ε′)(n− n0)

2(1 + δn)kn
log (1 + (1 + δn)knP )− (1− ε)B1(n)

≥n
[
(1− ε′)2(1− n0/n)− (1− ε)

]
B1(n)(2.119)

=
[
(1− ε′)3 − (1− ε)

]
B(n),(2.120)

where (2.119) is due to (2.112). By the choice of ε′ given by (2.118), (2.120) is greater

than zero. It concludes that for large enough n, the achievable message length (2.116) is

greater than (1− ε)B1(n), which establishes the achievability.

Case 2): unbounded `n and bounded kn

In the case of unbounded `n and bounded kn, there is nonvanishing probability that

the number of active users is equal to any finite number. The number of active users is

no longer fewer than (1 + δn)kn with high probability. Let sn be any increasing sequence.

There is high probability that the number of users is fewer than (1 + δn)sn. As a result,

by treating sn as the unbounded kn as in Case 1), we can apply the established achievable

results for Case 1). The achievability result for Case 2) is summarized in the following

theorem.

Theorem 5. Let sn be any increasing sequence satisfying sn = O(n), `ne
−δsn → 0 for

every δ > 0 and

lim
n→∞

2`nH2(sn/`n)

n log(1 + snP )
< 1.(2.121)
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Then any message length given by

(1− ε)
(
n

2sn
log(1 + snP )−H2(sn/`n)

)
(2.122)

is asymptotically achievable

Proof. See Appendix A.6. �

2.6. On Successive Decoding for Many-Access Channels

In conventional multiaccess channels, the sum capacity can be achieved by successive

decoding. A natural question is: Can the sum capacity of the MnAC be achieved using

successive decoding? We consider the system model where all users have the same power

constraints, assuming no random activity and the number of users being kn = an for

some a > 0. We provide a negative answer for the case where Gaussian random codes are

used and successive decoding is applied. Throughout the discussion in this section, we do

not seek to achieve the symmetric capacity, but the sum capacity achieved by successive

decoding.

Suppose Gaussian random codes are used, i.e., each user generates its codewords as

i.i.d. Gaussian random variables with zero mean and variance P . Thus the codewords of

other users look like Gaussian noise to any given user. The first user to be decoded has the

largest interference from all the other kn−1 users and its signal-to-interference-plus-noise

ratio (SINR) is Q = P
1+(kn−1)P

. Suppose the first user transmits with message length

v(n) = (1− ε)nC,(2.123)
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where C = 1
2

log(1 +Q). We will show that the error probability is strictly bounded from

zero. The intuition is that the error probability usually decays at the rate of exp(−δnC),

where δ is some positive constant dependent on ε. In the MnAC setting, if the interference

due to many users is so large that nC converges to a finite constant, the error exponent

is not large enough to drive the error probability to zero as the blocklengh increases.

Lemma 5. Suppose Gaussian random codes are used and successive decoding is ap-

plied. There exist universal constants A1 > 0 and A2 > 0, such that the error probability

of the first user is lower bounded as

P(n)
e ≥ Q(x)e

−A1Tx
3

S3/2

(
1− A2Tx

S3/2

)
− e−(λ−1)(n−1)εC ,(2.124)

where Q(x) = 1√
2π

∫∞
x

exp(−u2

2
)du, S = 2nQ(2 +Q),

x =
2(λεn+ 1− λε)C(1 +Q)√

S
,(2.125)

and

T = nE
{

(−Q(1− Z2)− 2
√
QZ)3

}
(2.126)

with Z being a standard Gaussian random variable.

Proof. See Appendix A.7. �
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Let kn = an for some constant a > 0. Then, as n→∞,

nQ→ 1

a
,(2.127)

S → 4

a
,(2.128)

T → 0,(2.129)

nC → 1

2a
,(2.130)

x→ ελ

2
√
a
.(2.131)

Therefore,

lim
n→∞

P(n)
e ≥ Q

(
ελ

2
√
a

)
− e− (λ−1)ε

2a .(2.132)

Using the lower bound of Q(x) ≥ 1√
2π

(
1
x
− 1

x3

)
e−x

2/2, it can be seen that when the

exponential term is dominating, there exist some small enough λε such that the first term

in (2.132) is greater than the second term. In this case, the error probability is strictly

bounded away from zero. Fig. 2.5 plots the numerical results of the RHS of (2.132) for

different values of a and λ. It can be seen that for the different values of a, there exists

some λ that makes the lower bound of error probability (2.132) strictly greater than zero.

2.7. Many-Access Channel with Heterogeneous User Groups

In this section, we will generalize the characterization of capacity region to the case

where groups of users have heterogeneous channel gains and activity patterns. Suppose

`n users can be divided into a finite number of J groups, where group j consists of

β(j)`n users with
∑J

j=1 β
(j) = 1. Further assume every user in group j has the same
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Figure 2.5. Lower bound of error probability given by (2.132) for successive
decoding with ε = 10−3.

power constraint P (j). Each user in group j transmits with probability α
(j)
n . We refer to

such MnAC with heterogeneous channel gains and activity patterns as the configuration(
{α(j)

n }, {β(j)}, {P (j)}, `n
)

. The error probability is defined as the probability that the

receiver incorrectly detects the message of any user in the system. The problem is what

is the maximum achievable message length for users in each group such that the average

error probability vanishes.

Definition 5 (Asymptotically achievable message length tuple). Consider a MnAC of

configuration
(
{α(j)

n }, {β(j)}, {P (j)}, `n
)

. A sequence of
(
dexp(v(1)(n))e, · · · , dexp(v(J)(n))e

n) code for this configuration consists of a
(
dexp(v(j)(n))e, n

)
symmetry code for every

user in group j according to Definition 1, j = 1, · · · , J .

We say a message length tuple
(
v(1)(n), · · · , v(J)(n)

)
is asymptotically achievable if

there exists a sequence of
(
dexp(v(1)(n))e, · · · , dexp(v(J)(n))e, n

)
codes such that the av-

erage error probability vanishes as n→∞.
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Definition 6 (Capacity region of the many-access channel). Consider a MnAC of

configuration
(
{α(j)

n }, {β(j)}, {P (j)}, `n
)

. The capacity region is the set of asymptotical-

ly achievable message length tuples. In particular, for every
(
B(1)(n), · · · , B(J)(n)

)
in

the capacity region, if the users transmit with message length tuple
(
(1− ε)B(1)(n), · · · ,

(1− ε)B(J)(n)
)
, the average error probability vanishes as n → ∞. If any user trans-

mits with message length outside the capacity region, reliable communication cannot be

achieved.

Theorem 6. Consider a MnAC of configuration
(
{α(j)

n }, {β(j)}, {P (j)}, `n
)

. Suppose

`n → ∞ and α
(j)
n → α(j) ∈ [0, 1]. Let the average number of active users in group j be

k
(j)
n = α

(j)
n β(j)`n = O(n), such that `ne

−δk(j)
n → 0 for every δ > 0 and every j = 1, · · · , J .

Let θ
(j)
n be defined as

(2.133) θ(j)
n =

2β(j)`nH2

(
α

(j)
n

)
n log k

(j)
n

.

and let θ(j) denote its limit. Suppose log k
(j1)
n / log k

(j2)
n → 1 for any j1, j2 ∈ {1, · · · , J}. If∑J

j=1 θ
(j) < 1, then the message length capacity region is characterized as

J∑
j=1

k(j)
n B(j)(n) ≤ n

2
log

(
J∑
j=1

k(j)
n

)
−

J∑
j=1

β(j)`nH2

(
α(j)
n

)
.(2.134)

If
∑J

j=1 θ
(j) > 1, then some user cannot transmit a single bit reliably.

It is interesting to note that as far as the asymptotic message lengths are concerned,

the impact of the transmit power is inconsequential. Also, the only limitation on the
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message is their weighted average. This is in contrast to the classical multiaccess channel,

where the sum rate of each subset of users is subject to a separate upper bound in general.

2.7.1. Converse

The proof of converse follows similarly as in Section 2.3. We only sketch the proof here.

Consider the system model described by (2.5). Suppose the message length transmitted

by each user in group j is v(j)(n), j = 1, · · · , J . Let X̃j denote a vector, which stacks the

vectors Xk, for all k belonging to group j. Since there are a total of β(j)`n users in group

j and the distributions of Xk are the same for all k in the same group j, we have

H
(
X̃j

)
= β(j)`nH(Xk)(2.135)

= β(j)`n
(
H2

(
α(j)
n

)
+ α(j)

n v(j)(n)
)
.(2.136)

Define J ⊆ {1, · · · , J}. Further denote X̃J as the vector consisting of {X̃j : j ∈ J }.

Thus,

H
(
X̃J

)
=
∑
j∈J

H
(
X̃j

)
.(2.137)

Applying the chain rule, we have

H
(
X̃J

)
= I

(
X̃J ;Y

)
+H

(
X̃J |Y

)
(2.138)

= H
(
X̃J |X̃{1,··· ,J}\J

)
−H

(
X̃J |Y

)
+H

(
X̃J |Y

)
(2.139)

≤ I
(
X̃J ;Y |X̃{1,··· ,J}\J

)
+H

(
X̃J |Y

)
.(2.140)



65

Following the argument in Lemma 1, we have

I
(
X̃J ;Y |X̃{1,··· ,J}\J

)
≤ n

2
log

(
1 +

∑
j∈J

k(j)
n P (j)

)
.(2.141)

In order to achieve vanishing error probability, following the argument in Lemma 2, we

have

H
(
X̃J |Y

)
= o

(∑
j∈J

k(j)
n v(j)(n) + β(j)`nH2

(
α(j)
n

))
.(2.142)

Combining (2.136), (2.137), (2.140), (2.141), and (2.142), we have for large enough n,

(1− ε)
∑
j∈J

[
k(j)
n v(j)(n) + β(j)`nH2

(
α(j)
n

)]
≤ n

2
log

(
1 +

∑
j∈J

k(j)
n P (j)

)
,(2.143)

for every ε > 0.

Since the power in each group is bounded, we have log

(
1 +

∑
j∈J

k
(j)
n P (j)

)
/ log

(∑
j∈J

k
(j)
n

)
tends to 1 as n increases. Thus, (2.143) implies that for every ε > 0 and every J ⊆

{1, · · · , J},

∑
j∈J

k(j)
n v(j)(n) ≤ (1 + ε)

n

2
log

(∑
j∈J

k(j)
n

)
−
∑
j∈J

β(j)`nH2

(
α(j)
n

)
.(2.144)

As in (2.15), we have dropped the power terms in the capacity expression to ease the rest

of the proof. By (2.144), we have

∑
j∈J

k(j)
n v(j)(n) ≤

[
1 + ε−

∑
j∈J

θ(j)
n ξ(J ,j)

n

]
n

2
log

(∑
j∈J

k(j)
n

)
,(2.145)
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where

ξ(J ,j)
n =

log
(
k

(j)
n

)
log

(∑
j∈J

k
(j)
n

) .(2.146)

For any J1,J2 ⊆ {1, · · · , J}, we have

log
(

minj∈J1 k
(j)
n

)
log
(

maxj∈J2 k
(j)
n

)
+ log J

≤
log

( ∑
j∈J1

k
(j)
n

)

log

( ∑
j∈J2

k
(j)
n

) ≤ log
(

maxj∈J1 k
(j)
n

)
+ log J

log
(

minj∈J2 k
(j)
n

) .(2.147)

Taking the limit of n→∞ on both sides of (2.147), by the assumption that log k
(j1)
n / log k

(j2)
n

tends to 1 for any j1, j2, we have

log

( ∑
j∈J1

k
(j)
n

)

log

( ∑
j∈J2

k
(j)
n

) → 1.(2.148)

It implies that ξ
(J ,j)
n → 1 for all j ∈ J . If

∑J
j=1 θ

(j) > 1, particularizing (2.145) with

J = {1, · · · , J} implies that for large enough n, v(j)(n) = 0 for all j = 1, · · · , J .

If
∑J

j=1 θ
(j) < 1, the achievable message length can be further upper bounded as

∑
j∈J

k(j)
n v(j)(n) ≤

1 +
ε

1− ∑
j∈J

θ
(j)
n ξ

(J ,j)
n

BJ (n),(2.149)
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Figure 2.6. Transmission scheme for J = 3 groups.

where

BJ (n) =
n

2
log

(∑
j∈J

k(j)
n

)
−
∑
j∈J

β(j)`nH2

(
α(j)
n

)
.(2.150)

Applying (2.149) with J = {1, · · · , J} and ξ
(J ,j)
n → 1, the achievable message length

tuple must satisfy

∑
j∈{1,··· ,J}

k(j)
n v(j)(n) ≤ (1 + ε)B{1,··· ,J}(n)(2.151)

for every ε > 0. Thus, the converse part of Theorem 6 is established.

Note that by (2.149), any achievable message length tuple must satisfy

∑
j∈J

k(j)
n v(j)(n) ≤ (1 + ε)BJ (n)(2.152)

for all J ⊆ {1, · · · , J}. However, in the regime of unbounded kn, (2.149) implies that these

constraints are dominated by the one for J = {1, · · · , J}, because BJ (n) ≥n B{1,··· ,J}(n)

for all J ⊆ {1, · · · , J}.
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2.7.2. Achievability

We need to prove that the region of the achievable message length tuple covers the region

specified by (2.134). In particular, we will show that the message length tuple satisfying

J∑
j=1

k(j)
n v(j)(n) ≤ (1− ε)

[
n

2
log

(
J∑
j=1

k(j)
n

)
−

J∑
j=1

β(j)`nH2

(
α(j)
n

)]
(2.153)

is asymptotically achievable for every ε > 0.

One achievable scheme is to detect active users in each group and their transmitted

messages in a time-division manner. In particular, in the first stage, we let users in group

1 transmit the signatures before group 2, and so on. The signature length transmitted

by users in group j is n
(j)
0 , j = 1, · · · , J . In the second stage, we let each group share the

remaining time resource n−∑J
j=1 n

(j)
0 . Users in group 1 transmit their message-bearing

codewords before group 2, and so on. The time resource allocated to group j in the

second stage is φj

(
n−∑J

j=1 n
(j)
0

)
, where φj ≥ 0 and

∑J
j=1 φj = 1. At the receiver side,

the receiver performs user identification according to the group order, and then decode

the transmitted messages according to the group order. The overall scheme is illustrated

in Fig. 2.6.

Let θ
(j)
n be given by (2.133), which can be regarded as the fraction of resource to detect

the active users in group j. According to Theorem 2 and Theorem 4, the message length

tuple satisfying

v(j)(n) = (1− ε′)φ(j)
n−∑J

j′=1 n
(j′)
0

2k
(j)
n

log
(
k(j)
n

)
,(2.154)
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where

(2.155) n
(j)
0 =

 (1 + ε′/2)θ
(j)
n n, if θ(j) > 0

ε′

2J
n, if θ(j) = 0

,

is achievable for every ε′ ∈ (0, 1).

If θ(j′) > 0, by (2.148),

n
(j′)
0

2
log(k(j)

n ) = (1 + ε′/2)β(j′)`nH2

(
α(j′)
n

) log
(
k

(j)
n

)
log
(
k

(j′)
n

)(2.156)

≤n (1 + ε′)β(j′)`nH2

(
α(j′)
n

)
.(2.157)

If θ(j′) = 0,

n
(j′)
0

2
log(k(j)

n ) =
ε′

2J

n

2
log k(j)

n .(2.158)

Therefore,

J∑
j′=1

n
(j′)
0

2
log(k(j)

n ) ≤n
ε′

2

n

2
log k(j)

n +
J∑

j′=1

(1 + ε′)β(j′)`nH2

(
α(j′)
n

)
.(2.159)

By (2.154), the achievable message length is calculated as

k(j)
n v(j)(n) ≥n (1− ε′)φ(j)

[
(1− ε′/2)

n

2
log k(j)

n − (1 + ε′)
J∑
j=1

β(j)`nH2

(
α(j)
n

)](2.160)

≥n (1− ε′)φ(j)

[
(1− ε′)n

2
log

(
J∑
j=1

k(j)
n

)
− (1 + ε′)

J∑
j=1

β(j)`nH2

(
α(j)
n

)]
.(2.161)
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According to (2.161), there must exist some small enough ε′ such that for large enough n,

k(j)
n v(j)(n) ≥ φ(j)(1− ε)

[
n

2
log

(
J∑
j=1

k(j)
n

)
−

J∑
j=1

β(j)`nH2

(
α(j)
n

)]
(2.162)

for all j = 1, · · · , J .

Since (2.162) holds for any φj > 0, by varying the convex combination due to φ(j),

j = 1, · · · , J , the region spanned by the achievable message tuple (2.154) covers the region

specified by (2.153). The achievability result is thus established.

2.8. Conclusion

In this chapter, we have proposed a model of many-access channel, where the number

of users scales with the coding blocklength as a first step towards the study of many-user

information theory. New notions of message length and symmetric capacity have been

defined. The symmetric capacity of a many-access channel is shown to be a function

in the channel uses, consisting of two terms. The first term is the symmetric capacity

of many-access channel with knowledge of the set of active users and the second term

can be regarded as the cost of user identification in random access channels. Separate

identification and decoding has been shown to be capacity achieving. The detection

scheme can be extended to achieve the capacity region of a many-access channel with a

finite number of groups experiencing different channel gains.

The results presented in this work reveal the capacity growth in the asymptotic regime.

The holy grail is a many-user information theory for finite but large number of users

and finite but large block length that applies accurately in practice. The challenge of

developing such a theory is difficult to overestimate (see, e.g., [38,39]).
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The many-access channel model together with the capacity result and the compressed

sensing based identification technique will provide insights for the optimal design in e-

merging applications with massive sporadic access [40–42], such as in the Internet of

Things and machine-to-machine communication, where the number of devices in a cell

may far exceed the blocklength.
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CHAPTER 3

Asynchronous Neighbor Discovery

3.1. Introduction

By some estimate [43], there will be more than 200 billion sensor enabled objects

world-wide in the Internet of Things (IoT) by year 2020. There can be over a million such

devices within 500 meter range in a densely populated area. For any wireless device to

function in the IoT or an ad hoc network, the first step is to discover access points and/or

other communication parties within range and also be discovered by them. This is called

neighbor discovery.

Neighbor discovery is an essential step for medium access protocols and routing pro-

tocols. There has been a large body of research works on neighbor discovery for general

networks [8,44,45]. In conventional networks, the overhead of neighbor discovery is often

thought of as amortized over the long data transmission. However, a typical IoT device

makes bursty transmissions and the message is usually short in a single transmission. It

has been shown that the neighbor discovery overhead may considerably reduce the da-

ta throughput in systems involving a massive number of devices [17]. It is critical to

minimize the neighbor discovery overhead.

Due to its unique features [1], the IoT poses additional challenges for designing an

ultra-scalable scheme. The total number of IoT devices is extremely large and it is hard
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to achieve perfect synchronization. Many IoT devices are of low cost and low power. A

scalable scheme should have relatively low computational complexity at the device side.

The current technology and protocols may be inadequate to address the challenges.

For example, a naive time division multiple access (TDMA) scheme to schedule all the

devices would incur too much latency. Neighbor discovery using conventional multiuser

detection approaches, say code division multiple access (CDMA) or orthogonal frequency-

division multiple access (OFDMA), generally involves a complexity that scales polynomial

in the number of devices [45], which is also unaffordable considering the large latency and

power consumption. In this chapter, we propose an efficient neighbor discovery scheme

that tackles the above-mentioned issues.

3.1.1. Related Work

Network layer approaches: Network layer protocol designs for neighbor discovery can

be categorized into randomized and deterministic algorithms. A main objective is to

optimize random access probability or the transmit schedule of each device such that the

system throughput is maximized [7, 8, 44, 46, 47]. Instead of purely avoiding collision,

the FlashLinQ technology developed by Qualcomm assigns channels based on signal-to-

interference ratios and achieves superior performance over carrier sense multiple access

with collision avoidance (CSMA/CA) systems [48,49]. The neighbor discovery algorithm

proposed in this chapter can be regarded as a physical layer technique, which can be

optimized with the network layer protocols to improve the system performance.

Coded random access: Recently, the idea of codes on graph has been applied in ran-

dom access [40,41]. One scheme is named coded slotted ALOHA, where the packets are
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repeatedly transmitted in different slots and are decoded using successive cancellation.

These works assume synchronization transmission and perfect interference cancellation.

The asynchrounous model has been studied in [50–52], where the asynchronicity is mod-

eled to cause interference. However, perfect interference cancellation was still assumed.

Rateless codes have been proposed for multiple access in machine-to-machine commu-

nications [53], where the channel gains are assumed to be known. As the number of

users increases, the imperfect channel estimatioon is detrimental to the performance of

successive cancellation.

In common with coded slotted ALOHA, our neighbor discovery scheme also applies the

design of erasure correcting codes in the successive cancellation framework. Our proposed

scheme is different in many aspects. Our scheme is a one-shot transmission. Moreover,

we carefully characterize the error propagation effects due to residual channel estimation

error.

Multi-user detection approaches: Neighbor discovery can be formulated as multiuser

detection from the perspective of physical layer processing [45]. Due to the bursty traffic

patterns, the number of active devices is typically orders of magnitude smaller than the

total local device population. Based on this crucial observation, low-complexity neighbor

discovery algorithms inspired by compressed sensing were proposed [10,33]. These algo-

rithms can reduce the transmission length by over 50% compared with the 802.11 type

protocols, but they require synchronous transmissions. The LASSO algorithm was pro-

posed to detect active devices in asynchronous CDMA random access [11], but it involves

a high complexity when the total number of users is large. Ideally, the complexity of a

desirable scheme only scales polynomial with the number of active users.
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3.1.2. Our Contributions

In this work, we propose a novel scheme, referred to as sparse orthogonal frequency-

division multiplexing (sparse-OFDM), for asynchronous neighbor discovery. A key feature

that distinguishes the proposed scheme from previous schemes is that sparse OFDM

exploits both the parallel channel access enabled by OFDM and the bursty transmission

nature in the IoT. Specifically, sparse OFDM judiciously allocates the sparsely separated

channels to the devices. The resulting signal structure relates neighbor discovery to the

sparse Fourier transform, studied in, e.g., [12], which applies to time-domain signals whose

Fourier transform domain representation is sparse. The main features of sparse OFDM

are as follows:

(1) When the number of active devices and the maximum delay in terms of sample

points is sublinear relative to the device population, sparse OFDM can correctly

detect the active devices with high probability. It only requires sublinear com-

putational complexity and a sublinear number of transmit symbols in terms of

the device population.

(2) Sparse OFDM is a one-shot transmission as opposed to scheduling the devices to

transmit many frames in random access protocols. It utilizes the low-complexity

point-to-point capacity-approaching codes, while at the same time exploits the

multiuser diversity from successive cancellation.

(3) Sparse OFDM is inspired by the recent development of the sparse Fourier trans-

form [12] and sparse Hadamard transform [54]. The previous works assume the

signal amplitudes belong to a known discrete alphabet, and the signal amplitude
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can be perfectly recovered [12, 55, 56]. In this work, we assume arbitrary sig-

nal amplitudes, and characterize the effect of error propagation due to imperfect

signal estimations leveraging the results on random hypergraphs.

(4) Sparse OFDM provides practical physical-layer capability for multipacket recep-

tion. The scheme can be jointly designed with the random access protocol to

further optimize the performance [57,58]. Moreover, sparse OFDM can be easily

adapted to the case of peer-to-peer broadcasting, where each device has multiple

bits of information to send. Sparse OFDM is particularly appealing in the IoT,

where a typical message is short.

3.1.3. Chapter Organization

The rest of the chapter is organized as follows. Section 3.2 presents the system model and

main results. Section 3.3 describes the signalling scheme of sparse OFDM. Section 3.4

presents the asynchronous neighbor discovery algorithm. Section 3.5 and Section 3.6

provide proofs of the theoretical performance guarantees for synchronous and asynchro-

nous transmission, respectively. Section 3.7 presents the numerical results. Section 3.8

concludes the chapter.

Throughout the chapter, the index of a vector or each dimension of a matrix starts

from 0. The elements of a B × C matrix are denoted as ycb, where c = 0, · · · , C − 1

and b = 0, · · · , B − 1. We write the b-th row vector as yb =
(
y0
b , · · · , yC−1

b

)
and the

c-th column vector as yc =
(
yc0, · · · , ycB−1

)
. We denote the real and imaginary parts of a

variable X as XR and XI , respectively. All logarithms are base 2.
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3.2. System Model and Main Results

Consider a network with N devices in total. Let K ⊆ {0, · · · , N − 1} denote an

arbitrary set of active devices, where K = |K| is the number of active devices. We

assume symbol synchronicity without frame synchronicity, i.e., the delay of each device’s

transmission is an integer number of symbol intervals. Fig. 3.1 shows the three-user

model. Moreover, the delay of any device is no greater than M symbol intervals due to

propagation delay and clock/timing differences between the transmitting and receiving

devices. To yield scalable results, we let both the number of active devices K and the

maximum delay M scale up with N as N →∞ in general. We assume all the devices are

aware of a reference frame start point of their neighbors. This can be easily achieved by

using a common a beacon signal. Device k transmits an L-symbol codeword, described

as sk,0, . . . , sk,L−1. It suffices to consider a single receiver and its discovery problem. In

the absence of frequency selectivity, the received signal at every (integer) time i is given

by

xi =
∑
k∈K

aksk,i−mk + wi,(3.1)

where ak ∈ C is the channel coefficient, mk is the transmission delay of device k, and

wi are independently and identically distributed (i.i.d.) circularly symmetric complex

Gaussian random variables with distribution CN (0, 2σ2). The discovery scheme is based

on signals within a single codeword duration. From each receiver’s point of view, the

signal sk,i = 0 for i < 0 and i ≥ L for all k.

We shall design a transmission and detection scheme with small transmission length

and low computational complexity. Each codeword is appropriately designed so that the
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Figure 3.1. Frame-asynchronous symbol-synchronous three-user model.

codelength L is sublinear in N when K and M are sublinear in N . The following two

theorems are the key results of this work:

Theorem 7. Suppose the device transmissions are perfectly synchronized to the receiv-

er’s frame, i.e., M = 0. Suppose the noise variance is fixed and the channel amplitudes of

all active devices is at least a. For every a, ε > 0, there exist α0, α1, K0 > 0 such that for

every N and K satisfying N ≥ K ≥ K0, there exists a code of length L ≤ α0K logN , such

that P{K̂ 6= K} ≤ ε for every subset K of active users of size not larger than K, where

K̂ is the estimated set of active devices. In addition, the number of arithmetic operations

needed for computing K̂ is no greater than α1K(logK)(logN).

Theorem 8. Suppose the transmission delay of each device is an integer number of

symbol intervals upper bounded by M . Suppose the noise variance is fixed and the channel

amplitude of every active device lies in the region of [a, ā]. For every a, ā, ε > 0, there

exist α0, α1, K0 > 0 such that for every N and K satisfying N ≥ K ≥ K0, there exists

a code of length L ≤ α0((K + M) logN + K log(K + M)), such that P{K̂ 6= K} ≤ ε for

every subset K of active users of size not larger than K, where K̂ is the estimated set of

active devices. In addition, the number of arithmetic operations needed for computing K̂

is no greater than α1K ((logK)(logN) +KM log(K +M)).
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Theorem 7 implies that arbitrarily reliable synchronous neighbor discovery is achieved

asymptotically with codelength of O(K logN) and O(K(logK)(logN)) arithmetic oper-

ations. Theorem 8 implies that arbitrarily reliable asynchronous neighbor discovery is

achievable asymptotically with codelength of O((K + M) logN + K log(K + M)) and

O (K(logK)(logN) +K2M log(K +M)) arithmetic operations. Synchronous neighbor

discovery, i.e., M = 0, requires a smaller codelength and fewer arithmetic operations than

the asynchronous case. In both theorems, a lower bound on the signal strengths is needed

for successful sparse recovery [26]. In a practical system, if the channel gain between two

devices is too small, they are not regarded as neighbors of each other.

The maximum relative delay M is usually small in practice. The delay depends on

the timing difference and the maximum distance between a device and the receiver. For

example, a distance of 300 meters implies free space propagation delay of one microsecond,

which spans 20 samples if the sampling frequency is 20 MHz. Suppose the maximum delay

M is constant. When the number of active users K is sublinear in terms of the device

population N , i.e., K = o(N), the transmission lengths for both the synchronous and

asynchronous schemes are sublinear in the number of devices. When K = o(
√
N), the

number of arithmetric operations involved in the asynchronous scheme is also sublinear

in N .

3.3. Sparse OFDM Signaling

Our scheme inherits the idea of OFDM. OFDM divides the spectrum into B orthog-

onal subcarriers. The subcarriers are assigned to different devices for transmission. In

conventional OFDM, we need B ≥ N subcarriers if we need to schedule the transmissions
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of all devices at the same time. If the number of devices is large, there will be many

narrow subcarriers. The proposed scheme is referred to as sparse OFDM, because we

divide the spectrum into B � N sparsely spaced subcarriers.

In the following, to facilitate the exposition, we will describe our signaling scheme

in three steps. First, we consider noiseless neighbor discovery where the total device

population N is smaller than the number of available OFDM frequency bins B. Second,

we consider noiseless neighbor discovery where B < N and a single device is active. Third,

we consider the general noisy neighbor discovery, where B < N and K < N devices are

active.

3.3.1. Device Identification in the Case of B ≥ N

The key idea for addressing arbitrary delay is to use the fact that the frequency of a

sinusoidal signal is invariant to delay, where the delay merely causes a phase shift. Suppose

each OFDM symbol contains B+M samples, where M can be regarded as a cyclic prefix

length accounting for the unknown delay. SinceN ≤ B, we can choose a discrete frequency

bk ∈ {0, . . . , B − 1} to uniquely identify device k. The discrete-time signal structure is

given by

sk,i = gk exp

(
ι2πbki

B

)
, i = 0, · · · , B +M − 1,(3.2)

where gk ∈ R is a known design parameter of unit amplitude.

At the receiver side, the signals from all the neighbors arrive after a reference frame

start point. The receiver discards the first M samples of each sparse OFDM symbol and

collect the remaining B samples as y = (y0, · · · , yB−1), where yi = xi+M , i = 0, · · · , B−1.
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If each device is assigned a unique tone, performing B-point discrete Fourier transform

(DFT) on y yields a tone at the bk-th frequency bin if and only if device k is active.

Therefore, the signaling scheme (3.2) is sufficient to detect the active devices in a noiseless

B-device case with a computational complexity of O(B logB) needed by the Fast Fourier

Transform (FFT) algorithm. The delay mk only affects the phase of the DFT value, so

we can uniquely identify the user based on its frequency. This important insight will lead

to the signaling design for a general case.

3.3.2. Single Device Identification in the Case of B < N

Suppose there are N > B devices and only a single device k is transmitting. We still

want to apply the signaling scheme (3.2). Suppose performing a B-point DFT on y yields

a tone at the b-th frequency bin, we still cannot identify which device is active, because

there may be multiple devices assigned to this bin. The way to resolve this problem is to

transmit multiple OFDM symbols and embed the device information through coefficient

gk in (3.2).

Let C = dlogNe and (k)2 = (k1, · · · , kC) denote the binary representation of device

index k. We design
(
g0
k, · · · , gCk

)
=
(
1, (−1)k1 , · · · , (−1)kC

)
. We apply the signaling

scheme (3.2) to C + 1 OFDM symbols, with the c-th symbol having gk = gck in (3.2). In

particular, we let device k transmit
(
s0
k, · · · , sCk

)
, where sck = (sck,0, · · · , sck,B+M−1) and

sck,i = gck exp

(
ι2πbki

B

)
,(3.3)

for i = 0, · · · , B+M−1 and c = 0, · · · , C. The common codelength is thus (C+1)(B+M)

symbols. Denote yc = (yc0, · · · , ycB−1) with yci = xi+c(B+M)+M , i = 0, · · · , B − 1, i.e.,
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discard the first M samples in each OFDM symbol interval. Performing B-point DFT on

the c-th OFDM symbol yc yields

Y c
b =

1

B

B−1∑
i=0

exp

(
−ι2πbi

B

)
yci(3.4)

=
∑

k∈K:bk=b

Akg
c
k, b = 0, · · · , B − 1,(3.5)

where

Ak = ak exp (ι2πbk(M −mk)/B) .(3.6)

As in the B ≤ N case, the delay mk only affects the phase of the frequency value of the

received signal from device k. The frequency binning effectively separates the devices.

Thus, each frequency bin b is associated with a length-(C+1) vector Y b = (Y 0
b , · · · , Y C

b ).

It can be seen that g0
k serves as a reference symbol capturing the channel coefficients. In

our setting, Y 0
b = Ak. Therefore, the j-th bit of the binary representation of k can be

estimated as kj = 0 if Y j+1
b /Y 0

b = 1 and kj = 1 if Y j+1
b /Y 0

b = −1.

The two design parameters bk (frequency) and gk (gain) play important roles. In

particular, gk is used to carry the device index information. The frequency bk is designed

to separate devices into different frequency bins. By design, the relationship between

the device index and its transmit frequency is represented by a bipartite graph. In the

bipartite graph, the devices represent left nodes and the B frequency bins represent right

nodes. Left node i is connected with right node j if device i transmits at the j-th frequency

bin. We call a frequency bin a zeroton, singleton or multiton, if no device, a single device,

or more than one device transmit at the frequency tone, respectively. Fig. 3.2(a) illustrates
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Figure 3.2. Bipartite graph representation of sparse OFDM. Left nodes
represent devices and right nodes represent frequency bins. The active
devices are marked in red. (a) The bipartite graph of sparse OFDM for a
single subframe. (b) The bipartite graph of sparse OFDM for two subframes
to resolve collision, where only the active (red) devices are shown. (c) Worst-
interference bipartite graph.

Figure 3.3. Frame structure of sparse OFDM. A frame consists of T sub-
frames, where every subframe contains C0 +C1 +C2 +C3 OFDM symbols.

an example of bipartite graph with a total of N = 7 devices, K = 3 active devices, and

B = 3 frequency bins.

When there is a single active device in the noiseless setting, the device can be identified

with O((B +M) logN) samples and computational complexity of O(B(logN)(logB)).

3.3.3. Identification of Multiple Active Devices With and Without Noise

When multiple devices are active, the devices may use colliding tones, so that the device

information cannot always be directly recovered from Y j+1
bk

/Y 0
bk

, j = 0, · · · , dlogNe. The
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idea is to let the devices transmit at random frequency bins for multiple subframes. We

first identify active devices from the singleton bins and then use the identified device

information to bootstrap the detection of other devices.

The presence of noise raises additional questions: 1) How can we reliably estimate

the channel coefficients? 2) How can we robustly estimate the device information in the

noisy setting? 3) How can we distinguish a frequency bin to be a zeroton, singleton or

multiton? In the following, we further enhance the signaling scheme to address these

three challenges.

The overall frame structure is described in Fig. 3.3. The frame structure contains T

subframes used for device identification and one additional subframe for synchronization

pilots.

Signaling for subframes: We first introduce the signaling of the subframes. Each

subframe consits of three segments and the i-th segment consists of Ci OFDM symbols,

i = 1, · · · , 3. Every OFDM symbol in the first three segments has the same signal

structure (3.2), except that gk in (3.2) is replaced by judiciously designed symbols. For

ease of notation, the subframe index is suppressed. Let the length-C design vector for

device k be

gk =


1

g̃k

ġk

(3.7)

where the all-one vector 1 of length C0, g̃k ∈ RC1 and ġk ∈ RC2 are the design vectors

for the first C0 OFDM symbols, the second C1 OFDM symbols, and the remaining C2
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OFDM symbols, respectively. The total number of OFDM symbols in each subframe is

C = C0 + C1 + C2.(3.8)

Under the noisy setting, performing B-point FFT on the c-th OFDM symbol yields

Y c
b =

∑
k∈K:bk=b

Akg
c
k +W c

b , b = 0, · · · , B − 1,(3.9)

where W c
b are i.i.d. complex Gaussian variables with distribution CN (0, 2σ2/B). For

each subframe, the frequency values at the b-th bin Y b is a vector of length C and can

be written as

Y b =


Ȳ b

Ỹ b

Ẏ b

(3.10)

=
∑

k∈K:bk=b

Ak


1

g̃k

ġk

+


W̄ b

W̃ b

Ẇ b

 .(3.11)

Note that the assigned frequency bin bk, design vector gk and received frequency vector

Y b may be different for different subframes.

The design vector is inspired by the generalized low-density parity-check (LDPC)

framework for sublinear compressive sensing [59]. Specifically, the first all-one segment

is used to estimate the channel coefficients. The second segment is used to estimate the

device index. In the absence of noise, g̃k =
(
1, (−1)k1 , · · · , (−1)kC

)
carries the device
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information. Under the noisy setting, the values of g̃k are corrupted. We thus apply

error-control code to encode the device index into vector g̃k with C1 = dlogNe/R OFDM

symbols, where R is the code rate. The third segment is used for singleton verification.

We let the entries of ġk be generated according to i.i.d. Radamacher (±1) variables. The

number of symbols C0, C1 and C2 will be specified later.

For device k, we let bk be taken independently uniformly at random from {0, · · · , B−

1} for each subframe (it may be different across subframes). Performing FFT on the

OFDM symbols results in hashing of the devices into B bins uniformly at random in each

subframe. Fig. 3.2 (b) illustrates an example for T = 2 subframes. The reason of using

T subframes and different bk is to resolve the bin collisions. The intuition is that, with a

sufficient number of subframes, a sufficient number of devices are hashed to a singleton

bin in at least one subframe with high probability.

Signaling for timing synchronization: The pilots consists of C3 OFDM symbols, which

are used to estimate of the delay of each device. Each symbol consists of B samples. For

each OFDM symbol, we assign pseudonoise sequences on the frequencies such that the

time-domain samples are Gaussian distributed. The synchronization can be achieved by

performing the correlation between the received signal and the pilots.

3.4. Asynchronous Neighbor Discovery Algorithm

We first describe a robust bin detection that achieves two goals: (i) It can distinguish

whether a frequency bin is a zeroton, a singleton, or a multiton bin; (ii) For singleton

bins, it can detect the device index reliably. Then we describe the overall asynchronous

neighbor discovery scheme.
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3.4.1. Robust Singleton Detection

We focus on a certain device k that is hashed to a singleton bin bk = b. The frequency

value is given by Y b =
[
Ȳ
†
b, Ỹ

†
b, Ẏ

†
b

]†
.

3.4.1.1. Channel Phase Estimation. We want to reliably estimate the phase of Ak.

The underlying reason is that if the phase estimate is accurate enough, then we can further

estimate the device index.

We use the first C0 symbols in each subframe to estimate the phase of Ak as

θ̂ = ∠

(
1

C0

C0−1∑
c=0

Ȳ c
b

)
.(3.12)

Suppose device k transmits at a singleton frequency bin and C0 is large enough, we can

obtain an accurate estimate of the channel phase.

3.4.1.2. User Index Estimation. With the phase estimation θ̂k, we can compensate

the phase of Ak for each bin and try to decode the device index information. It can be seen

that for singleton bins, the random transformation g̃ck → Re
{
Ỹ c
b e
−ιθ̂k
}

is equivalent to a

binary-input additive white Gaussian noise (BI-AWGN) channel. It will be shown that

with a proper choice of the symbol number C0, a large proportion of the signal strength

can be preserved with high probability.

In order to robustly estimate the information bits (k0, · · · , kdlogNe−1), we apply error

control codes to code over the bits. Instead of transmitting dlogNe binary symbols, we

transmit C1 = dlogNe/R binary symbols, where the symbols are the coded bits with

code rate R. In particular, we construct C1 = dlogNe/R symbols with g̃ck = (−1)rk,c ,



88

c = 0 · · · , C1 − 1, and

[rk,0, · · · , rk,C1−1] = [k0, · · · , kdlogNe−1]G,(3.13)

where the operation is over the binary field and G ∈ FdlogNe×C1

2 is a generator matrix of

an error-control code with rate R. We can apply the low-complexity capacity approaching

codes [60]. For each bin b, we first perform hard decoding on Re
{
Ỹ c
b e
−ιθ̂k
}

for each symbol

c, further decode the sequence and then obtain the estimated index information. We focus

on index estimation from singleton bins, which allows us to subsequently apply the well-

studied point-to-point capacity approaching codes. Performing index estimation on a

zeroton or multiton bin may produce false alarms. We will need a singleton verification

step to prevent these false alarms.

3.4.1.3. Singleton Verification. Suppose a device has no collision on its frequency

tone, its index information can be reliably estimated. This, however, is not true for

multiton and zeroton bins. We need to provide a mechanism to verify if the estimated

index comes from a singleton bin. We generate C2 symbols in each subframe with ġck

being i.i.d. Rademacher variables, i.e., P{ġck = ±1} = 1/2.

We consider the analysis on a fixed bin b. First, we claim bin b is a zeroton if the

energy of the frequency bin value is low, i.e.,

||Ẏ b||22 ≤ η,(3.14)



89

where η is some threshold constant. Suppose k̂ is the estimated index from bin b. We

perform the following validation process. We estimate the nonzero signal as

Ȧk̂ =
1

C2

ġ†
k̂
Ẏ b.(3.15)

Then we claim that k̂ is a correct estimate only if it passes the energy threshold test,

||Ẏ b − Ȧk̂ġk̂||22 ≤ η.(3.16)

The above validation scheme is similar to that used for sparse DFT and sparse WHT

in [56,61]. The singleton verification approach proved to work for signal amplitudes lying

in a known alphabet, whereas we show that it can effectively identify the singletons for

arbitrary signal amplitudes that are bounded away from zero.

3.4.2. Overall Framework

Sparse OFDM effectively achieves random access over both frequency and time. The

device index can be reliably estimated whenever it is hashed to a singleton frequency bin

regardless of the delay. Once a device index is estimated, its contribution to the connected

bins can be canceled, which may result in more singleton bins. This successive cancellation

framework is similar to that proposed in [12]. There are, however, two challenges. First,

the frequency bin values due to (3.6) depends on both the transmit frequency and its

random delay. We need to estimate the delay in order to perform successive cancellation.

Second, the residual error of channel estimation may propagate due to the successive

cancellation process. For reliable neighbor recovery, we need to characterize the error

propagation effects.
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Algorithm 1 Robust-Bin-Detect (Y )

Input: Bin values Y = [Ȳ , Ỹ , Ẏ ], where Ȳ ∈ CC0 , Ỹ ∈ CC1 and Ẏ ∈ CC2 .
Output: Estimated active device index i.
if ||Ẏ ||2 < η then

Declare zeroton and return i← ∅.
end if
Phase estimation: θ̂ ← phase

(
1T Ȳ /C0

)
.

Index location: Z ← Re{Ỹ e−ιθ̂},
k̂ ← Decoder(Z).
Singleton verification:
Ȧk̂ ← ġ†

k̂
Ẏ /C2.

if ||Ẏ − Ȧk̂ġk̂||22 ≤ η then

Return i← k̂.
else

Return i← ∅.
end if

The first T subframes are used for bin detection. Denote the set of samples in the

synchronization subframe as

I = {(B +M)CT, (B +M)CT + 1, · · · , (B +M)CT +BC3 − 1}.(3.17)

Define the decision statistic as

T (m) =
∑
i∈I

yi+ms
∗
k,i.(3.18)

Assume no noise and correct delay estimate, T (m) = |ak|2BC3. We estimate the delay of

device k as

m̂k = arg max
m=0,··· ,M

|T (m)|.(3.19)
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Algorithm 2 Asynchronous Neighbor Discovery via Sparse OFDM

Output: Detected active devices K̂.
Initialize: Set B as the set of unprocessed bins. Set L = ∅.
Global singleton estimation:
for b ∈ B do

k̂ ← Robust-Bin-Detect
(
Ȳ b, Ỹ b, Ẏ b

)
.

if k̂ 6= ∅ then
K̂ ← K̂ ∪ {k̂}
L ← L ∪ {k̂}.
B ← B\b.
Estimate m̂k̂ and âk̂ according to (3.19) and (3.20).

end if
end for
Successive cancellation:
for k ∈ L do
L ← L\k.
for Every bin b ∈ B that is connected with k do

Ȳ b ← Ȳ b − âk exp
(
ι2πb(M−m̂k)

B

)
1.

Ỹ b ← Ỹ b − âk exp
(
ι2πb(M−m̂k)

B

)
g̃k.

Ẏ b ← Ẏ b − âk exp
(
ι2πb(M−m̂k)

B

)
ġk.

k̂ ← Robust-Bin-Detect
(
Ȳ b, Ỹ b, Ẏ b

)
.

if k̂ 6= ∅ then
K̂ ← K̂ ∪ {k̂}
L ← L ∪ {k̂}.
B ← B\b.

end if
end for

end for

Given an estimate of delay m̂k, the channel coefficient is estimated to be

âk =
1

C
g†kY be

− ι2πbk(M−m̂k)

B .(3.20)
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The frequency value of the connected unprocessed bin b′ is then updated according to

Y b′ ← Y b′ − âk exp

(
ι2πb′(M − m̂k)

B

)
gk.(3.21)

3.5. Proof of Theorem 7 (the Synchronous Case)

We prove Theorem 7 in the asymptotic regime as K increases without bound. Here

is an outline of the proof using O(·) notation and a rigorous proof is provided in the Sec-

tion 3.5.1 to 3.5.3. We choose some B = O(K) and T = O(1). In the codeword structure,

the number of symbols is chosen as C0 = C1 = C2 = O(logN). Due to synchronici-

ty, there is no need to estimate the delays, so we set C3 = 0. The total transmission

length is L = TBC = O (K logN). For each subframe, we need to perform B-point FFT

for C = O(logN) symbols. The total computational complexity is O(K(logK)(logN))

(FFT) operations. For each bin, the index estimation involves O(logN) operations and

the phase estimation involves O(logN) operations. Since there are O(K) bins, the total

complexity due to phase estimation and index estimation is O(K logN). Since there are

T = O(1) subframes, the total computational complexity is O (K(logK)(logN)).

Neighbor discovery is said to fail if there is any miss or false alarm. The analysis

for the bin detection error probability follows exactly as in [62] if the channel coefficient

is known or is constrained to lie in a finite alphabet. The key challenge here is that

the channel coefficient is an arbitrary unknown value and the residual estimation error

may propagate through the successive cancellation process. We will prove that neighbor

discovery fails with probability O(1/K) for some T = O(1), B = O(logK) and C =
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O(logN). Specifically, the parameters are chosen as

T ≥ 3(3.22)

B = β0K(3.23)

C0 = dlogNe(3.24)

C1 = dlogNe/R(3.25)

C2 = β1dlogNe,(3.26)

where β0 ≥ 2T (T − 1), R is the code rate of a low-complexity binary-symmetric channel

(BSC) capacity-approaching codes such that the transmission of logN bits under an SNR

of a2/(32σ2/B) succeeds with probability higher than 1 − 1/N2 [60], and β1 is some

constant that will be specified later (Theorem 10). Given the parameter setting, the

total number of OFDM symbols in each subframe is C = (1 + β1 + 1/R)dlogNe. The

correctness of neighbor discovery is established based on the following claims, whose proofs

are provided in subsequent subsections.

Claim 1. Let G denote the ensemble of bipartite graphs induced by sparse OFDM that

consist of only trees and unicyclic components, and the largest component has fewer than

β2 logK left nodes, where β2 is some constant depending on β0. Given the parameter

setting (3.22)-(3.26), the induced bipartite graph P {G ∈ G} ≥ 1−γ0/K, where γ0 is some

constant depending on β0.
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Claim 2. Given G ∈ G and the parameter setting (3.22)-(3.26), the residual error

of channel estimation are Gaussian variables with zero mean and variance bounded by

β3σ
2/B, where β3 = 8β2/β1.

Claim 3. Given G ∈ G and the parameter setting (3.22)-(3.26), the robust bin detec-

tion Algorithm 1 fails to identify a zeroton, a singleton, or a multiton with probability no

greater than γ1/K
2 for some γ1.

Suppose the robust bin detection does not make any error and G ∈ G, then every

device will be detected based on the successive cancellation process in Algorithm 2 [63].

Therefore, neighbor discovery fails only if either G /∈ G or the robust bin detection makes

an error throughout the detection process, denoted as error event Eb. The error probability

of neighbor discovery is upper bounded as

Ps = P{Eb ∪ (G /∈ G)}(3.27)

≤ P{Eb|G ∈ G}+ P{G /∈ G}.(3.28)

Every time a device is recovered, Algorithm 1 is performed on its connected bins,

which is at most T = O(1). Throughout the detection process, Algorithm 1 runs for at

most KT times. By the union bound and the result of Claim 3,

P{Eb|G ∈ G} ≤ γ1KT/K
2 = γ1T/K.(3.29)

Combining Claim 1, (3.28) and (3.29), neighbor discovery fails with probability less

than (γ0 + γ1T )/K. Therefore, given the choice of T , B and C, neighbor discovery
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fails with probability less than ε for K ≥ (γ0 + γ1T )/ε. The required codelength is

BTC = β0β2TKdlogNe.

3.5.1. Proof of Claim 1

Consider the bipartite graph of sparse OFDM for multiple subframes in Fig. 3.2(b). The

left nodes are randomly connected with a set of B bins in each subframe. If two node

are connected with a common frequency bin, they would cause interference to each other

in the successive peeling process due to the propagation of channel estimation error. We

consider another bipartite graph, referred to as worst-interference bipartite graph where

the frequency bins for T subframes collapse into one set ofB bins. In the worst-interference

graph, left node i is connected with bin j if it is connected with bin j at least once in some

subframe. Fig. 3.2(c) illustrates an example of the worst-interference bipartite graph.

In the worst-interference bipartite graph, each device is randomly hashed to at most

T out of B bins. The well-established results in random hypergraph show that with

B ≥ 2T (T − 1)K bins, the worst-interference bipartite graph consists of only trees and

unicyclic components, and the largest component has fewer than β2 logK left nodes with

probability 1−γ0/K, where β2 is some constant depending on β0 [59,64]. The intuition is

that as B gets larger, the bipartite graph becomes sparser and consists of a large number

of isolated components. Since the number of paths from left node i to left node j in the

original bipartite graph (e.g., Fig. 3.2(b)) must be fewer than that in the worst-interference

bipartite graph (e.g., Fig. 3.2(c)), Claim 1 is proved.
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Figure 3.4. Error propagation graph for device 2.

3.5.2. Proof of Claim 2

We make use of the error propagation graph proposed in [59] to characterize the residual

estimation error of channel estimation. For completeness, we describe the idea of error

propagation graph in the following.

An error propagation graph for device k is a subgraph induced by the recovery algo-

rithm, which contains the signal nodes that are estimated in the iterations before device

k is recovered, and have paths to node k. Fig. 3.4 illustrates the the error propagation

graph for device 2.

Define the channel estimation error of device k as

pk = Ak − Âk,(3.30)

where Ak is given by (3.6) and Âk = g†Y /C is the estimate according to (3.20) with

M = m = 0. Let bk be the measurement bin used to recover the device k. Define the
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point error of Ak as

ek = − 1

C
g†kW bk .(3.31)

We will keep track of pk using the error propagation graph. The estimation error can

be calculated recursively according to some message passing rules over the graph. In

particular, let pk be the channel estimation error propagated from signal node k and qj

be the error vector of length-C propagated from the measurement bin j. The errors can

be calculated according to the following rules:

pk = ek +
(
−C−1g†kqin(k)

)
(3.32)

qj =
∑
k∈in(j)

pkgk,(3.33)

where in(k) denotes the indices of the measurement bins (signal nodes) incoming to signal

node (measurement bin) k. Since we use one singleton bin to decode the device index,

the input message to a signal node k is from one measurement bin in(k).

Let S(t) denote the signal indices that are recovered in the t-th iteration. We first

show that (3.32) and (3.33) hold for any k ∈ S(1) ∪ S(2) and then show that they hold

for any k by induction. Consider the estimation of Ak, k ∈ S(1). The frequency value of

bin bk and the residual estimation error are given by

Y bk = Akgk + W bk(3.34)

pk = ek.(3.35)
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Consider the estimation for Ak, k ∈ S(2). With the successive cancellation process,

for k ∈ S(1), the updated measurement vector of bk and the estimation error becomes

Y bk = Akgk + W bk +
∑

`∈S(1):` connected with bk

e`g`(3.36)

pk = ek +
∑

`∈S(1):` connected with bk

e`

(
−C−1g†kg`

)
(3.37)

= ek +
(
−C−1g†kqbk

)
,(3.38)

where qbk =
∑

`∈ in (bk) e`g`. It is important to note that |g†kg`C−1| ≤ 1 for every realiza-

tion of the design vectors.

Suppose message passing rules (3.32) and (3.33) hold for k ∈ S(t− 1). For k ∈ S(t),

with successive cancellation, the updated frequency value is

Y bk = Akgk + W bk +
∑

`∈in(bk)

p`g`.(3.39)

The channel estimation error is

pk = Ak −
1

C
g†kY bk(3.40)

= ek −
∑

`∈in(bk)

C−1p`g
†
kg`(3.41)

= ek − C−1g†kqbk ,(3.42)

where (3.42) follows from the definition of qbk . In the error propagation graph, bk = in(k)

and the message passing rules are thus proved to hold for any k by induction.
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By the error message passing rules (3.32) and (3.33), the estimation error of Ak,

k ∈ S(t), is calculated as

pk = ek +
∑

`∈∪t−1
j=1S(j)∩D(k)

P (`,k)∑
p=1

d`,p

 e`,(3.43)

where D(k) be the connected subgraph of the bipartite graph containing node k, P(`, k) is

the number of paths from node ` to node k in D(k), and d`,p is some coefficient depending

on both the design parameters {gk} and the path, which satisfies |d`,p| ≤ 1.

Fig. 3.4 illustrates an example. The number of paths from node 0 to node 2 is P(0, 2) =

2, with the corresponding coefficients being d0,1 = −g†2g0/C and d0,2 = g†1g0g
†
2g1/C

2.

The number of paths from node 1 to node 2 is P(1, 2) = 1, with the coefficients being

d1,1 = −g†2g1/C.

Suppose G ∈ G, the frequency value for any singleton bin bk for device k can be written

as

Y bk = Akgk + W bk + V bk ,(3.44)

where V bk is the interference on bin bk due to the channel estimation residual errors.

Mathematically, it can be calculated as

V bk =
∑

`∈∪t−1
j=1S(j)∩D(k)

P (`,k)∑
p=1

e`d`,pg`p ,(3.45)

where `p ∈ in(bk) depends on the path from ` to bin bk. The point error e` is given by

(3.31). It is easy to see that every point error is independent of the design parameters

{gk} of all the devices and is distributed according to CN (0, 2σ2/BC).
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Suppose the bipartite graph belongs to G, P (`, k) is less than or equal to 2. Moreover,

by Claim 1, the number of left nodes in each component is less than β2 logK. Conditioned

on the design parameters g` of the previously identified devices, each entry of V bk is

Gaussian variable with zero mean and variance bounded by 8β2 logKσ2/BC = β3σ
2/B,

where β3 = 8β2/β1.

3.5.3. Proof of Claim 3

Let Eb,0, Eb,1, Eb,2 denote the failure of robust bin detection for a zeroton, singleton and

multiton, respectively. Suppose G ∈ G, we will show that with a proper choice of the

threshold η in Algorithm 2, the error probabilities can be bounded as P{Eb,i} = O(1/K2),

i = 0, 1, 2. Then the bin detection error is less than γ1/K
2 for some γ1.

As described in the proof of Claim 2, the frequency values of a bin b can be written as

Y b =
∑

k∈K:bk=b

Akgk + W b + V b,(3.46)

where the sum is over the set of active devices that are hashed to frequency bin b and not

yet recovered, and V b is due to the residual channel estimation errors from the recovered

devices. The detection error depends on V b and hence on the number of devices that

cause interference. Let Zb = W b + V b denote the interference plus noise. We set the

energy thresholds as

η = C2τ0/
√
B(3.47)

where τ0 is some constant that will be specified later.
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3.5.3.1. Zeroton Error Detection. The zeroton error Eb,0 occurs only if ||Ẏ b|| is

greater than the threshold η. Thus,

P{Eb,0} = P
{
||Żb||22 ≥ η

}
(3.48)

≤ C2P

{
|Żb,c|2 ≥

η

C2

}
.(3.49)

Let g denote the set of design parameters gk of all the previously identified devices.

Conditioned on g, each entry of Zb is distributed according to CN (0, 2σ2
z), where σz ≤

(1 + β3/2)σ2/B. The probability of passing the energy threshold is

P

{
|Żb,c|2 ≥

η

C2

∣∣g} ≤ 2P

{
|Re{Żb,c}|2 ≥

η

2C2

∣∣g}(3.50)

≤ 4e
− η

4σ2
zC2(3.51)

≤ 4e
− Bη

(4+2β3)σ2C2 .(3.52)

With fixed B and C2, there exists τ0 such that C24e
− Bη

(4+2β3)σ2C2 ≤ 1/K2. Moreover, (3.52)

holds for every realization of g, by averaging g, we have

P
{
||Żb||22 ≥ η

}
≤ C2P

{
|Żb,c|2 ≥

η

C2

}
(3.53)

≤ 1

K2
.(3.54)

Combining (3.49) and (3.54), we have

P{Eb,0} ≤
1

K2
.(3.55)
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3.5.3.2. Singleton Error Detection. Suppose device k is hashed to a singleton bin

b. Let Eb,1 denote the bin detection error. A singleton detection error occurs due to

three events: (1) Eb,1,0 =
{
||Ẏ b||22 < η

}
; (2) Eb,1,1 =

{
||Ẏ b − Ȧkġk||22 > η

}
; (3) Eb,1,2 ={

k̂b 6= k
}

. Thus Eb,1 ⊆ Eb,1,0 ∪ Eb,1,1 ∪ Eb,1,2.

By large deviation, with high probability ||Ẏ b|| is concentrated around C2(|ak|2 +2σ2
z).

Since τ0 is some fixed constant, 2σ2
zτ0 is smaller than |ak|2 for large enough K. Following

a similar derivation in [56], it can be shown that

P {Eb,1,0} = O

(
1

K2

)
.(3.56)

We next upper bound the probability of Eb,1,1. Let Ȧk = ġ†kẎ b/C2. We have

Ẏ b − Ȧkġk =

(
I − 1

C2

ġkġ
†
k

)
Żb.(3.57)

Let Q = I − 1
C2
ġkġ

†
k. Since ġ†kġk = C2, ġk is the eigenvector of ġkġ

†
k/C2. Since

ġkġ
†
k/C2 is a rank-1 matrix, it has only a single nonzero eigenvalue which is 1. Therefore,

the eigenvalue decomposition of Q can be written as

Q = UΛU †(3.58)

= Udiag{0, 1, · · · , 1}U †(3.59)
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where U is a unitary matrix. Then we have

||Ẏ b − Ȧkġk||22 = ||QŻb||22(3.60)

= ||ΛU †Żb||22(3.61)

=

C2−1∑
c=1

|Z ′c|2,(3.62)

where Z ′ = U †Żb and (3.62) is due to Λ = diag(0, 1, · · · , 1). Since ||Żb||22 = ||Z ′||22, we

have

P
{
||Ẏ b − Ȧkġk||22 ≥ η

}
= P

{
C2−1∑
c=1

|Z ′c|2 ≥ η

}
(3.63)

≤ P
{
||Żb||22 ≥ η

}
(3.64)

≤ 1

K2
,(3.65)

where (3.65) follows from (3.54). Therefore, we have

P {Eb,1,1} ≤
1

K2
.(3.66)

We next bound the error probability of Eb,1,2. We first show that the phase compensa-

tion is accurate with high probability. Second, we show that the interference only causes

a slight SNR degradation with high probability. Third, the device index recovery can be

regarded as transmission over a BSC channel and a large enough C1 can help recover the

index information.
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We estimate the phase of θ = ∠Ak as (3.12). Let Z̄ =
C0−1∑
c=0

(
W̄ c
b + V̄ c

b

)
/C0. Then the

estimated phase is calculated as

θ̂ = ∠
(
Ak + Z̄

)
.(3.67)

From the geometric interpretation, the maximum phase offsets occurs when the noise is

orthogonal to the measurement. We choose a small θ0 such that θ0 <
π
3

and sin θ0 > θ0/2,

then

P
{
|θ̂ − θ| > θ0

}
≤ P

{
arcsin

|Z̄|
|Ak|

> θ0

}
(3.68)

≤ P
{
|Z̄| > a sin θ0

}
(3.69)

≤ P

{
|Z̄| > aθ0

2

}
(3.70)

≤ P

{
|Re{Z}| > aθ0

4

}
+ P

{
|Im{Z}| > aθ0

4

}
(3.71)

≤ 4 exp

(
− a

2θ2
0

32σ2
z

)
,(3.72)

where (3.72) is due to P{N (0, 1) > x} ≤ e−x
2/2.

Therefore, given B = β0K, with high probability 1− e−Ω(K),

Re
{
Ake

−ιθ̂
}

= a cos(θ̂ − θ)(3.73)

≥ a cos θ0(3.74)

≥ a/2.(3.75)
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We consider the corruption of signal strength from interference V . Since Ṽ c
b is

Gaussian distributed with variance less than or equal to β3σ
2/B, P

{
|Re{Ṽ c

b }| ≥ a/4
}
≤

e−Ω(K). Combining (3.75), we have Re
{
Ake

−ιθ̂g̃ck + Ṽ c
b

}
= cg̃ck with c ≥ a/4 for all

c = 0, · · · , C1−1 with probability higher than 1−C1e
−Ω(K). Conditioned on this, the de-

vice index transmission corrupted by noise W b can be regarded as transmission over BSC

channel with an SNR at least (a/4)2/(2σ2/B) = a2/(32σ2/B) . Since the error-control

code with rate R used to encode the device index information (k0, · · · , kdlogNe−1) is chosen

such that the index can be recovered correctly with probability at least 1 − 1/N2, the

singleton error occurs with probability

P {Eb,1,2} ≤
1

N2
.(3.76)

By (3.56), (3.66) and (3.76), we conclude

P {Eb,1} ≤
γ′

N2
,(3.77)

for some γ′.

3.5.3.3. Multiton Error Detection. It is proved in Appendix B.1 that

P {Eb,2} ≤ 1/K2.(3.78)

Therefore, combining (3.55), (3.77) and (3.78), we conclude that the robust bin detection

correctly identify the zeroton, singleton or multiton with probability higher than 1−γ1/K
2

for some γ1.
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3.6. Proof of Theorem 8

In the asynchronous neighbor discovery case, we choose the parameters according to

(3.22)–(3.26). The number of OFDM symbols used for synchronization is C3 = β3dlog(K+

M)e, where β3 are specified later. In the codeword structure, the number of symbols in

each subframe is C = O(logN). The total transmission length in transmit symbols is

thus

L = T (B +M)C +BC3(3.79)

= O ((K +M) logN +K log(K +M)) .(3.80)

The FFT operation and channel estimation involve the same number of operations as the

synchronous. Different from the synchronous, each device needs to estimate its delay once.

The complexity of delay estimation is MKC3 = O(MK log(K + M)) (corresponding to

M times auto-correlations). A total of K devices need to estimate their delays. The total

computational complexity is thus O (K(logK)(logN)) +O (K2M log(K +M)).

The following lemma shows that for each device the delay estimate is correct with

high probability.

Lemma 6. Suppose the conditions specified in Theorem 8 hold. Suppose the bipartite

graph G ∈ G and the parameters are chosen according to (3.22)–(3.26), there exists some

positive β3 such that C3 = β3dlog(K + M)e OFDM symbols are used for timing synchro-

nization and the delay of a device estimated according to (3.19) is correct with probability

O(1/K2).

Proof. See Appendix B.2. �
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Figure 3.5. Error probability of support recovery in the case of synchronous
transmission. The device population is N = 238.

By the union bound and Lemma 6, the delay of each device can be correctly estimated

with probability 1−O(1/K). Conditioned on that the device delays are correctly detected,

the residual errors of channel estimation can be exactly characterized as the synchronous

case. The proof for correct asynchronous neighbor discovery follows that for synchronous

case.

3.7. Simulation Results

3.7.1. Synchronous neighbor discovery

We simulate the error probability of asynchronous neighbor discovery via sparse OFDM.

The total number of devices is N = 238. The frame consists of T = 3 subframes. The

number of measurement bins is B = d1.5Ke, where K is the number of active devices. The

number of OFDM symbols for phase estimation singleton verification are set as C0 = 6
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Figure 3.6. Rate of missed detection in the case of synchronous transmis-
sion. The device population is N = 238.
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Figure 3.7. Rate of false alarm in the case of synchronous transmission.
The device population is N = 238.

and C2 = 6, respectively. We adopt a rate R = 0.9 random LDPC code as subcode. The
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number of OFDM symbols carrying device index information is thus C1 = logN/R. The

number of OFDM symbols used in synchronization is C3 = 8.

Fig. 3.5 shows the error probability of support recovery for asynchronous neighbor

discovery. In each simulation, if there exists missed detection or false alarm, it claims to

have an error. Fig. 3.6 and Fig. 3.7 show the miss and false alarm rates, respectively.

We define the missed detection (false alarm) rate as the average number of misses (false

alarms) in each simulation normalized by the number of devices.

Simulation shows that under SNR of 6 dB, in order to achieve miss detection and false

alarm rate of 10−4, the transmission length required to identify K = 100 out of 238 devices

is around 25000 samples. In the case of a 20 MHz channel bandwidth, the transmission

time is approximately 1.25 ms.

3.7.2. Discrete delay

We simulate the error probability of asynchronous neighbor discovery via sparse OFDM.

The system parameters are the same as in the synchronous setting. The device population

is N = 238 and the maximum delay in terms of transmit samples is M = 20 still. The

delay of each device transmission is assumed to be multiples of Ts. Fig. 3.8 shows the

error probability of support recovery for asynchronous neighbor discovery. Fig. 3.9 and

Fig. 3.10 show the missed detection rate and false alarm rate, respectively. As in the

synchronous setting, the error probability is low under moderate SNR, which confirms

our theoretical analysis. In order to achieve a similar error performance, the required

transmission length is more than that of synchronous setting. As the number of active

devices K increases, the increase of transmission length due to delay becomes less.
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K = 10, code length = 5895
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Figure 3.8. Error probability of support recovery in the case of discrete
delay. The device population is N = 238 and the maximum delay is M = 20.
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Figure 3.9. Rate of missed detection in the case of discrete delay. The
device population is N = 238 and the maximum delay is M = 20.
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Figure 3.10. Rate of false alarm in the case of discrete delay. The device
population is N = 238 and the maximum delay is M = 20.

3.7.3. Comparison with random access

3.7.3.1. Slotted ALOHA. First, consider slotted ALOHA, where every device trans-

mits a frame with probability p independently in each slot over an Ns-slot period. The

probability of one given neighbor being missed is equal to the probability that the device

is unsuccessful in all Ns slots:

Pmiss,aloha =
(
1− (1− p)K−1p

)Ns
.(3.81)

Setting p = 1/K minimizes Pmiss,aloha. Suppose each slot consists of (only) 25 symbols.

3.7.3.2. CSMA. It is challenging, if not impossible, to implement CSMA-based wireless

access. Due to the power asymmetry between devices and access points, a device may

not be able to sense another device’s transmission in the same cell. Suppose, nonetheless,

devices can sense each other and CSMA is used. When the channel is idle, the devices
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start their timers. The device whose timer expires the first transmits. When the channel

becomes busy, the devices stop their timers. Device i has a chance to transmit if its timer

is the minimum in some slot. The probability that a given device never gets a chance to

transmit is

Pmiss,csma = (1− P {T1 < min{T2, · · · , TK}})Ns .(3.82)

In order to reliably transmit the device index logN bits, the number of symbols

required in each frame is at least logN/ log(1 + SNR). Therefore, depending on the

achieved missed detection rate, the total number of symbols required is Ns logN/ log(1 +

SNR). Under SNR = -4 dB, it can be seen from Fig. 3.9 and Fig. 3.10 that sparse OFDM

can achieve missed detection and false alarm rate low than 10−4. The advantage of

sparse OFDM over random access becomes more obvious as the number of active devices

increases. For example, when K = 50, the transmission length of sparse OFDM is around

16000, while slotted ALOHA and CSMA requires more than 35000 symbols to achieve

a missed detection rate of 10−4. Sparse OFDM can effectively reduce the transmission

length by over 50%. Moreover, the rate reduction is even greater for larger K and a lower

error probability requirement.

3.8. Conclusion

We have proposed a low-complexity asynchronous neighbor discovery scheme for very

large networks with applications to the Internet of Things. The scheme, referred to as

sparse OFDM, applies the recently developed sparse Fourier transform to compressed

neighbor discovery. Compared with random access schemes, sparse OFDM requires much
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shorter transmission length by exploiting the multiaccess nature of the channel and the

multiuser detection gain. Sparse OFDM adopts well-established point-to-point capacity

approaching codes and involves low complexity. It provides practical physical layer capa-

bility for multipacket reception and it would be a useful next step to extend this technique

to the design of asynchronous neighbor discovery network protocols.
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CHAPTER 4

Conclusion and Future Work

In this thesis, a novel many-user paradigm has been proposed, where the number of

users in the system scale with the blocklength. The motivation is to model emerging

communication systems with massive access. Important applications include the Internet

of Things, machine-to-machine communications and sensor networks, where the number

of users is comparable or even exceeds the blocklength.

As a first step towards the many-user information theory, we have studied in Chapter 2

the Gaussian many-access channel, which consists of a single receiver and many transmit-

ters. The transmitters access the channel with random on-off patterns. The many-access

channel can be used to model the uplink transmission in the Internet of Things. A new

notion of channel capacity has been defined and the symmetric capacity of the Gaussian

many-access channel is derived. One achievability scheme is to first detect the active users

and then decode their messages.

One insight from the study of the fundamental limit of the many-access channel is

that user identification, also known as neighbor discovery, is a crucial step to achieve the

capacity. In Chapter 3, a low-complexity asynchronous neighbor discovery scheme, termed

as sparse OFDM, has been proposed. In conventional OFDM, a large number of narrow

subcarriers are needed to schedule all the devices to transmit at the same time. Instead,

sparse OFDM divides the spectrum into a small number of sparsely spaced subcarriers

and randomly assign the subcarriers to the users. Sparse OFDM can provide reliable
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neighbor discovery for asynchronous transmissions. Moreover, it is of low complexity and

low overhead.

We conclude the thesis by highlighting the future research directions.

Many-user source coding: Shannon’s lossless source coding problem is concerned with

the minimum number of bits needed for representing a discrete memoryless source. The

key to the answer is the asymptotic equipartition property (AEP) of the i.i.d. sequence

X1, . . . , Xn with distribution PX as n → ∞, which states that there are approximately

2nH(X) typical sequences, whose probabilities are similar, and which collectively almost

exhaust all the probability. Thus, the minimum compression ratio is essentially H(X)

bits per symbol.

With multiple correlated sources, the classical distributed lossless source coding prob-

lem is solved by understanding the joint AEP of correlated sequences [65]. It is interesting

to develop a theory of distributed many-source coding, for the situation of k (correlated)

sources, where k is so large that it is comparable to the length of the source sequences n.

The central question is what is the minimum number of bits it takes, as n becomes large,

to encode the kn sources distributedly, so that they can be reconstructed by a decoder.

Finte block length analysis: The asymptotic results of many-user information theory

will be used to approximate the performance of systems with large, albeit finite block-

length and number of users. Finite blocklength analysis of the capacity will provide

more insight by analyzing the back-off from capacity for a fixed blocklength and an error

probability [38].

Finite-blocklength analysis of some multiuser channels has been carried out in [66–69],

where the dispersion terms quickly become intractable as the number of users increases.
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In the many-user paradigm, with blocklength n and kn users, it will be interesting to

investigate the first-order scaling of the maximum achievable message length as a function

of the blocklength and the error probabilities.

Neighbor discovery for symbol-asynchronous models: In our work of asychronous neigh-

bor discovery, we assume a frame-asynchronous symbol-synchronous model, where the

delay of each device is in the unit of symbol interval. This assumption allows success-

ful estimation of the delay such that successive cancellation can be applied. In practice,

however, it is hard to achieve symbol synchronicity due to arbitrary propagation delay

or clock mismatch. It will be interesting to study the performance of neighbor discovery

for the symbol-asynchronous model and the performance tradesoff between the delay and

transmission length.
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APPENDIX A

Appendix for Chapter 2

A.1. Proof of Lemma 1

To upper bound the input-output mutual information of the white Gaussian noise

channel, it sufficies to identify the power constraint on the input signal sX based on the

power constraint (2.2) on s and the structure of the binary vector X.

According to the distribution of X, we can obtain the marginal distribution of Xi,

i = 1, · · · ,M`n, as P{Xi = 0} = 1 − αn
M

and P{Xi = 1} = αn
M

. Therefore, E{Xi} = αn
M

and

(A.1) E{XiXj} =


αn
M

if i = j

0 if i 6= j, i, j ∈ I(`) for some `(
αn
M

)2
otherwise

.

where we let the indices corresponding to transmitter ` be I(`) = {(`−1)M+1, · · · , `M},

` = 1, · · · , `n. Thus, the covariance matrix K = E
{

(X − EX)(X − EX)T
}

can be

calculated as

(A.2) Kij =



αn
M

(
1− αn

M

)
i = j,

−
(
αn
M

)2
i 6= j, i, j ∈ I(`) for some `,

0 otherwise.
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Let tr(·) find the trace of a matrix. The power constraint on the codewords induces

the power constraint on sX as

tr
(
sKsT

)
= tr

(
KsTs

)
(A.3)

=
M`n∑
i=1

M`n∑
j=1

n∑
k=1

Kijskiskj(A.4)

=
n∑
k=1

αn
M

(
1− αn

M

)M`n∑
i=1

s2
ki −

(αn
M

)2
`n∑
`=1

∑
i 6=j,i,j∈I(`)

skiskj

(A.5)

=
n∑
k=1

αn
M

M`n∑
i=1

s2
ki −

(αn
M

)2
`n∑
`=1

∑
i∈I(`)

∑
j∈I(`)

skiskj

(A.6)

≤ nαn
M

M`n∑
i=1

1

n

n∑
k=1

s2
ki(A.7)

≤ knnP,(A.8)

where (A.7) is due to

∑
i∈I(`)

∑
j∈I(`)

skiskj =

∑
i∈I(`)

ski

2

≥ 0,(A.9)

and the last inequality is due to the power constraint 1
n

∑n
k=1 s

2
ki ≤ P .
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Since X → sX → Y forms a Markov chain, we can obtain an upper bound of

I(X;Y ) as

I(X;Y ) ≤ I(sX;Y )(A.10)

≤ max
tr(sKsT )≤knnP

I(sX;Y )(A.11)

≤ n

2
log(1 + knP ),(A.12)

where (A.12) follows by the results on parallel Gaussian channels [19, Chapter 10].

A.2. Proof of Lemma 2

Conditioned on E = 0, H
(
X|E = 0,Y , 1

{
X ∈ B`nM(δ, kn)

})
= 0. Therefore, we can

obtain

H
(
X|E,Y , 1

{
X ∈ B`nM(δ, kn)

})
=

H(X|E = 1,Y ,X /∈ B`nM(δ, kn))P{E = 1,X /∈ B`nM(δ, kn)}

+H(X|E = 1,Y ,X ∈ B`nM(δ, kn))P{E = 1,X ∈ B`nM(δ, kn)}.(A.13)

We upper bound the first term on the right hand side of (A.13) as follows: X can take at

most (M + 1)`n values and ||X||0 follows the binomial distribution Bin(`n, αn) with mean

`nαn = kn, then P{X /∈ B`nM(δ, kn)} can be upper bounded by e−c(δ)kn [37], where c(δ) is
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some constant depending on δ by the large deviations for binomial distribution. Then

H(X|E = 1,Y ,X /∈ B`nM(δ, kn))P{E = 1,X /∈ B`nM(δ, kn)} ≤ e−c(δ)kn`n log(M + 1)

(A.14)

≤n logM.(A.15)

For the second term on the RHS of (A.13), P{E = 1,X ∈ B`nM(δ, kn)} ≤ P
(n)
e and

H(X|E = 1,Y ,X ∈ B`nM(δ, kn)) ≤ log |B`nM(δ, kn)|.(A.16)

The cardinality of B`nM(δ, kn) is

|B`nM(δ, kn)| =
(1+δ)kn∑
j=1

(
`n
j

)
M j(A.17)

≤ (1 + δ)knM
(1+δ)kn max

1≤j≤(1+δ)kn

(
`n
j

)
.(A.18)

If (1 + δ)kn ≥ `n
2

, then

max
1≤j≤(1+δ)kn

(
`n
j

)
≤ 2`n(A.19)

≤ exp(2(1 + δ)kn log 2).(A.20)

If (1 + δ)kn <
`n
2

, then

max
1≤j≤(1+δ)kn

(
`n
j

)
≤
(

`n
(1 + δ)kn

)
(A.21)

≤ exp(`nH2((1 + δ)αn)).(A.22)



132

We further upper bound H2((1+δ)αn) in terms of H2(αn). By the mean value theorem,

there exists some γ′n in between αn and (1 + δ)αn such that

H2((1 + δ)αn)−H2(αn) = δαn log
1− γ′n
γ′n

,(A.23)

where log 1−x
x

is the first order derivative of H2(x). Since log 1−x
x

is decreasing in x, we

have

H2((1 + δ)αn)−H2(αn) ≤ δαn log
1− αn
αn

≤ δH2(αn).(A.24)

As a result,

(A.25)

log |B`nM(δ, kn)| ≤ log ((1 + δ)kn) + (1 + δ)kn logM + 2(1 + δ)kn log 2 + (1 + δ)`nH2(αn).

For large enough n, we have log ((1 + δ)kn) ≤ (1 + δ)kn. Then

H(X|E = 1,X ∈ B`nM(δ, kn),Y ) ≤n 4(kn logM + kn + `nH2(αn)).(A.26)

Combining (A.13), (A.15) and (A.26) yields the lemma.
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A.3. Derivation of (2.78)

We will derive the closed-form expression of (2.74), which is calculated as

mλ,ρ(w1, w2) =

∫
R
E

{
p1−λρ
Y |SA(y|Sa

A∗)

(
E

{
pλY |SA(y|Sa

A)

∣∣∣∣Sa
A∗

})ρ}
dy

(A.27)

=

∫
R
E

{
p1−λρ
Y |SA(y|Sa

A∗)

(
E

{
pλY |SA(y|Sa

A)

∣∣∣∣Sa
A∗\A1

})ρ}
dy(A.28)

=

∫
R
E

{
E
{
p1−λρ
Y |SA(y|Sa

A∗)
∣∣∣Sa

A∗\A1

}(
E

{
pλY |SA(y|Sa

A)

∣∣∣∣Sa
A∗\A1

})ρ}
dy(A.29)

where (A.28) follows because A ∩ A∗ = A∗\A1.

Let Z1 =
∑

k∈A1
Sak , Z2 =

∑
k∈A2

Sak and Z3 =
∑

k∈A∗\A1
Sak . Since |A1| = w1 and

|A2| = w2, we have Z1 ∼ N (0, v1), Z2 ∼ N (0, v2), Z3 ∼ N (0, v3), where v1 = w1P
′,

v2 = w2P
′ and v3 = (|A∗| − w1)P ′.

We can write

E
{
pλY |SA(y|Sa

A)|Sa
A∗\A1

}
= E

{(
1√
2π
e−

(y−Z3−Z2)2

2

)λ ∣∣∣∣Z3

}
(A.30)

=

∫
R

(
1√
2π
e−

(y−Z3−z2)2

2

)λ
1√

2πv2

e
− z22

2v2 dz2(A.31)

=

(
1√
2π

)λ√
t3
v2

e
µ2

3
2t3 e−

λ(y−Z3)2

2

∫
R

1√
2πt3

e
− (z2−µ3)2

2t3 dz2(A.32)

=

(
1√
2π

)λ√
t3
v2

e
µ2

3
2t3 e−

λ(y−Z3)2

2 ,(A.33)

where 1
t3

= λ+ 1
v2

and µ3 = λ(y − Z3)t3.
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Similarly,

E
{
p1−λρ
Y |SA(y|Sa

A∗)|Sa
A∗\A1

}
= E

{(
1√
2π

)1−λρ

e−
(1−λρ)(y−Z3−Z1)2

2

∣∣∣∣Z3

}(A.34)

=

(
1√
2π

)1−λρ ∫
R
e−

(1−λρ)(y−Z3−z1)2

2
1√

2πv1

e
− z21

2v1 dz1(A.35)

=

(
1√
2π

)1−λρ√
t4
v1

e
µ2

4
2t4 e−

(1−λρ)(y−Z3)2

2

∫
R

1√
2πt4

e
− (z1−µ4)2

2t4 dz1(A.36)

=

(
1√
2π

)1−λρ√
t4
v1

e
µ2

4
2t4 e−

(1−λρ)(y−Z3)2

2 ,(A.37)

where 1
t4

= 1− λρ+ 1
v1

and µ4 = (1− λρ)(y − Z3)t4.

Then

(
E
{
pλY |SA(y|Sa

A)|Sa
A∗\A1

})ρ
E
{
p1−λρ
Y |SA(y|Sa

A∗)|Sa
A∗\A1

}
=

1√
2π

(√
t3
v2

)ρ√
t4
v1

e
ρµ2

3
2t3

+
µ2

4
2t4
− (y−Z3)2

2 .(A.38)
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Plugging µ3, t3, µ4 and t4 yields
µ2

3

t3
= λ2v2(y−Z3)2

1+λv2
and

µ2
4

t4
= (1−λρ)2(y−Z3)2v1

1+(1−λρ)v1
. Let

t0 = 1√
2π

(√
t3
v2

)ρ√
t4
v1

and 1
t5

= 1− ρλ2v2

1+λv2
− (1−λρ)2v1

1+(1−λρ)v1
. We have

∫
R
E
{(

E
{
pλY |SA(y|Sa

A)|Sa
A∗\A1

})ρ
E
{
p1−λρ
Y |SA(y|Sa

A∗)|Sa
A∗\A1

}}
dy

= t0

∫
R

∫
R

1√
2πv3

e
− z23

2v3 e
ρλ2v2(y−z3)2

2(1+λv2)
+

(1−λρ)2(y−z3)2v1
2(1+(1−λρ)v1)

− (y−z3)2

2 dz3dy(A.39)

= t0

∫
R

√
t5
v3

e
− z23

2v3

∫
R

1√
2πt5

e
− (y−z3)2

2t5 dydz3(A.40)

= t0

∫
R

√
t5
v3

e
− z23

2v3 dz3(A.41)

=

(√
t3
v2

)ρ√
t4t5
v1

(A.42)

= (1 + λv2)−ρ/2
(

1 + λv2

1 + λ(1− λρ)v2 + λρ(1− λρ)v1

)1/2

.(A.43)

Therefore, mλ,ρ(w1, w2) is given by (2.76).

A.4. Proof of Lemma 3

We first establish the following two lemmas that will be useful in the proof.

Lemma 7. Suppose (2.18) holds, i.e., lim
`→∞

`e−δk` = 0 for every δ > 0, then for every

constant w̄ ≥ 0,

lim
`→∞

`

k`
H2

(w̄
`

)
= 0.(A.44)
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Proof. The case of w̄ = 0 is trivial. Suppose w̄ > 0. Since w̄/`→ 0,

`

k`
H2

(w̄
`

)
=

`

k`

(
w̄

`
log

`

w̄
−
(

1− w̄

`

)
log
(

1− w̄

`

))
(A.45)

≤n
`

k`

(
w̄

`
log

`

w̄
+
(

1− w̄

`

) 2w̄

`

)
(A.46)

≤ w̄

k`
(log `− log w̄ + 2) .(A.47)

Since `e−δk` → 0 for every δ > 0, we have ` ≤` eδk` , so that log ` ≤` δk`. This implies

(log `)/k` → 0, so that the right hand side of (A.47) vanishes. �

Lemma 8. Suppose (2.18) holds for every δ > 0. Let A > 0, B > 0 and w̄ ≥ 1 be

constants. Let {a`} and {b`} be two sequences that satisfy b` ≤ a`, lim
`→∞

k`
a`

= a ∈ [0,∞),

and lim
`→∞

k`
b`

= b ∈ (0,∞). Let A` be a sequence that satisfies lim inf`→∞A` = A. Define

h`(·) on [0, a`] as

h`(w) = A` log(1 +Bw)− a`
k`
H2

(
w

a`

)
.(A.48)

Let w∗` achieve the global minimum of h`(·) restricted to [w̄, b`]. For large enough `, either

w∗` = w̄ or w∗` ∈ [cb`, b`], where

c = min

{
bA

64(1 + Aa)
, 1

}
.(A.49)

Proof. The function h`(w) is equal to the difference of two concave functions. Its first

two derivatives on (0, a`) are:

h′`(w) =
A`B

1 +Bw
+

1

k`
log

w

a` − w
(A.50)
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and

h′′` (w) =
a`

k`w(a` − w)
− A`B

2

(1 +Bw)2
(A.51)

=
a`g`(w)

k`w(a` − w)(1 +Bw)2
,(A.52)

where

g`(w) = (B2 + k`A`B
2/a`)w

2 + (2B − k`A`B2)w + 1.(A.53)

Due to (2.18), k` →∞ as `→∞. For large enough `, g`(0) = 1, g`(1) = −A`B2k` +

A`B
2k`/a` + (B + 1)2 < 0, and g`(a`) = (Ba` + 1)2 > 0. Moreover, the minimum of the

quadratic function g`(w) is achieved at:

v` =
k`A`B − 2

2B(1 + k`A`/a`)
.(A.54)

Since 1
2
k`A`B ≥n 2, we have k`A`B − 2 ≥n 1

2
k`A`B. Also, A`k`/a` ≤` 1 + 2Aa. We have

v`
b`
≥n

1
2
k`
b`
A`B

2B(1 + A`
k`
a`

)
(A.55)

≥n
1
2

(
1
2
b
) (

1
2
A
)

2(2 + 2Aa)
(A.56)

=
bA

32(1 + Aa)
.(A.57)

Note that b` →∞ and (A.57) implies v` →∞. For large enough `, since h′′` (w) < 0 for

every w ∈ [w̄, v`], h`(w) is concave over [w̄, v`]. Since v`/b` ≥n 2c, we have either w∗` = w̄

or w∗` ∈ [cb`, b`] for large enough `. �



138

The general idea for proving Lemma 3 is to divide W(`) into two regions based on

whether the error probabily is dominated by false alarms or miss detections, and to lower

bound hλ,ρ(w1, w2) given by (2.78) for (w1, w2) in those two regions separately. It is crucial

to note that Lemma 3 claims the existence of a uniform lower bound of hλ,ρ(w1, w2), i.e.,

`∗ is such that for all ` ≥ `∗, hλ,ρ(w1, w2) ≥ c0 regardless of (w1, w2), which in general

depend on `.

Define

φ` =
n(`)

k`
=

2`H2(α`)

k` log(1 + k`P ′)
,(A.58)

which can be regarded as the identification cost per active user. Let

φ = lim
`→∞

φ`,(A.59)

which may be ∞. As φ ≥ 0, we prove the cases of φ > 0 and φ = 0 separately.

A.4.1. The case of φ > 0

In this case, by (2.41), the signature length is n0 = (1 + ε)φ`k`. As we shall see, if the

number of false alarms w2 = |A\A∗| is small, the error probability is dominated by miss

detections; whereas for relatively large w2, the error probability is dominated by false

alarms.

Define the following positive constant:

w̄ = max

{
4

P ′
e(8+4ε)/φ, 1

}
.(A.60)
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We will derive lower bounds of hλ,ρ(w1, w2) for the cases of 0 ≤ w2 ≤ w̄ and w̄ < w2 ≤

(1 + δ`)k` separately.

A.4.1.1. The case of 0 ≤ w2 ≤ w̄. Recall that ρ ∈ [0, 1] and λ ∈ [0,∞) can be chosen

arbitrarily to yield a lower bound. We shall always choose them to satisfy 0 ≤ λρ ≤ 1.

This implies that

log (1 + λ(1− λρ)w2P
′ + λρ(1− λρ)w1P

′) ≥ 1

2
log (1 + λ(1− λρ)w2P

′) +

1

2
log (1 + λρ(1− λρ)w1P

′) .(A.61)

In this case, a lower bound of hλ,ρ(w1, w2) can be splitted into two parts as

hλ,ρ(w1, w2) ≥ g1
λ,ρ(w1) + g2

λ,ρ(w2),(A.62)

where

g1
λ,ρ(w1) =

n0

4k`
log (1 + λρ(1− λρ)w1P

′)− |A
∗|
k`

H2

(
w1

|A∗|

)
(A.63)

and

g2
λ,ρ(w2) =

n0

4k`
log (1 + λ(1− λρ)w2P

′)− (1− ρ)n0

2k`
log (1 + λw2P

′)− ρ`

k`
H2

(w2

`

)
.

(A.64)

Note that g1
λ,ρ(0) = g2

λ,ρ(0) = 0. However, since (w1, w2) ∈ W(`), they cannot be

0 simultaneously. In the following, we lower bound g1
λ,ρ(w1) for w1 ≥ 1 and g2

λ,ρ(w2) for

w2 ≥ 1. Then hλ,ρ(w1, w2) can be lower bounded by the minimum of the two lower bounds

of g1
λ,ρ(w1) and g2

λ,ρ(w2).
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Choose λ = 2/3 and ρ = 3/4. We have

g2
2/3,3/4(w2) =

n0

4k`
log

(
1 +

w2P
′

3

)
− n0

8k`
log

(
1 +

2w2P
′

3

)
− 3`

4k`
H2

(w2

`

)
.(A.65)

Since (1 + x)r ≤ 1 + rx for r ∈ [0, 1], we have

log(1 + rx) ≥ r log(1 + x)(A.66)

for x ≥ 0 and the equality is achieved only if x = 0. Letting r = 1/2, x = 2w2P
′/3, we

can see that for w2 > 0,

log

(
1 +

w2P
′

3

)
>

1

2
log

(
1 +

2w2P
′

3

)
.(A.67)

Define a positive constant

ε′ = min
1≤w2≤w̄

φ

8

[
log

(
1 +

w2P
′

3

)
− 1

2
log

(
1 +

2w2P
′

3

)]
.(A.68)

By Lemma 7, `
k`
H2(w̄/`) vanishes as ` increases. We can find some `0 > 2w̄ such that

for all ` ≥ `0, φ` > φ/2 and 3`
4k`
H2(w̄/`) ≤ ε′

2
.

For every ` ≥ `0, we have H2(w2/`) ≤ H2(w̄/`) for 1 ≤ w2 ≤ w̄ and thus g2
2/3,3/4(w2)

is lower bounded as

g2
2/3,3/4(w2) ≥ φ`

4

[
log

(
1 +

w2P
′

3

)
− 1

2
log

(
1 +

2w2P
′

3

)]
− 3`

4k`
H2(w̄/`)(A.69)

≥ ε′ − ε′

2
(A.70)

=
ε′

2
.(A.71)
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Meanwhile,

g1
2/3,3/4(w1) =

(1 + ε)φ`
4

log

(
1 +

w1P
′

4

)
− |A

∗|
k`

H2

(
w1

|A∗|

)
.(A.72)

When w1 ≥ 1, we shall invoke Lemma 8 to show that the minimum of the RHS of (A.72)

is achieved at either w1 = 1 or some value close to k`. Define

a = min

{
φ

16
log

(
1 +

P ′

4

)
, 1

}
(A.73)

We consider the following three cases separately:

case a): 1 ≤ |A∗| ≤ ak`, 1 ≤ w1 ≤ |A∗|(A.74)

case b): ak` ≤ |A∗| ≤ (1 + δ`)k`, ak`/2 ≤ w1 ≤ |A∗|(A.75)

case c): ak` ≤ |A∗| ≤ (1 + δ`)k`, 1 ≤ w1 ≤ ak`/2.(A.76)

For every ` ≥ `0, g1
2/3,3/4(w1) in case a) is lower bounded as

g1
2/3,3/4(w1) ≥ φ`

4
log

(
1 +

P ′

4

)
− a(A.77)

≥ φ

8
log

(
1 +

P ′

4

)
− a(A.78)

≥ φ

16
log

(
1 +

P ′

4

)
.(A.79)

In case b), g1
2/3,3/4(w1) is lower bounded as

g1
2/3,3/4(w1) ≥ (1 + ε)φ`

4
log

(
1 +

ak`P
′

8

)
− (1 + δ`),(A.80)
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which grows without bound as ` increases.

In case c), w1/|A∗| ≤ 1/2. Since H2(·) is increasing on [0, 1/2], by (A.72),

g1
2/3,3/4(w1) ≥ (1 + ε)φ`

4
log

(
1 +

w1P
′

4

)
− (1 + δ`)k`

k`
H2

(
w1

ak`

)
(A.81)

≥ 2

a

[
(1 + ε)aφ`

8
log

(
1 +

w1P
′

4

)
− ak`

k`
H2

(
w1

ak`

)]
.(A.82)

Applying Lemma 8 with A` = (1 + ε)aφ`/8, B = P ′/4, a` = ak`, w̄ = 1 and b` = ak`/2,

we conclude that there exists `1 such that for all ` ≥ `1, the RHS of (A.82) restricted to

w1 ∈ [1, ak`/2] achieves the minimum either at 1 or on [cak`/2, ak`/2] for some c ∈ (0, 1].

Moreover, H2

(
1
ak`

)
vanishes as ` increases. There exists some `2 such that for all ` ≥ `2,

H2

(
1
ak`

)
≤ φ

32
log
(
1 + P ′

4

)
and φ` ≥ φ/2.

For every ` ≥ max{`1, `2}, if the minimum of the RHS of (A.82) is achieved at 1, then

g1
2/3,3/4(w1) in case c) is lower bounded as

g1
2/3,3/4(w1) ≥ φ`

4
log

(
1 +

P ′

4

)
− 2H2

(
1

ak`

)
(A.83)

≥ φ

8
log

(
1 +

P ′

4

)
− 2H2

(
1

ak`

)
(A.84)

≥ φ

16
log

(
1 +

P ′

4

)
.(A.85)

For every ` ≥ max{`1, `2}, if the minimum of the RHS of (A.82) is achieved on

[cak`/2, ak`/2], then then g1
2/3,3/4(w1) in case c) is lower bounded as

g1
2/3,3/4(w1) ≥ φ`

4
log

(
1 +

cak`P
′

8

)
− 2,(A.86)

which grows without bound as ` increases.
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By (A.79), (A.80), (A.85) and (A.86), it concludes that for all ` ≥ max{`0, `1, `2},

g1
2/3,3/4(w1) ≥ φ

16
log
(
1 + P ′

4

)
for all 1 ≤ w1 ≤ |A∗| and for all 1 ≤ |A∗| ≤ (1 + δ`)k`.

Combining the lower bound of g1
2/3,3/4(w2) given by (A.71), we conclude that for all ` ≥

max(`0, `1, `2) and for all (w1, w2) ∈ W(`) with 0 ≤ w2 ≤ w̄, h2/3,3/4(w1, w2) can be

uniformly lower bounded as

h2/3,3/4(w1, w2) ≥min

{
ε′

2
,
φ

16
log

(
1 +

P ′

4

)}
.(A.87)

A.4.1.2. The case of w̄ < w2 ≤ (1 + δ`)k`. Letting λ = 1/2 and ρ = 1 in (2.78), and

using the fact that w1 ≥ 0 and |A∗|/k` ≤ 2, we have

h1/2,1(w1, w2) ≥ n0

2k`
log

(
1 +

w2P
′

4

)
− `

k`
H2

(w2

`

)
− |A

∗|
k`

H2

(
w1

|A∗|

)
(A.88)

≥ (1 + ε)φ`
2

log

(
1 +

w2P
′

4

)
− `

k`
H2

(w2

`

)
− 2.(A.89)

Applying Lemma 8 with A` = (1 + ε)φ`/2, B = P ′/4, a` = ` and b` = (1 + δ`)k`,

we can conclude that there exists some `3 such that for all ` ≥ `3, the minimum of the

RHS of (A.89) restricted to [w̄, (1 + δ`)k`] is achieved either at w̄ or on [ck`, (1 + δ`)k`],

for some c ∈ (0, 1]. Moreover, by Lemma 7, there exists some `4 such that for all ` ≥ `4,

`
k`
H2(w̄/`) ≤ 1 and φ` > φ/2.

For every ` ≥ max{`3, `4}, if the minimum of the RHS of (A.89) is achived at w̄, then

h1/2,1(w1, w2) is uniformly lower bounded as

h1/2,1(w1, w2) ≥ φ

4
log

(
1 +

w̄P ′

4

)
− 2(A.90)

≥ ε.(A.91)
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For every ` ≥ max{`3, `4}, if the minimum of the RHS of (A.89) is achieved on

[ck`, (1 + δ`)k`], we consider two cases:

case a): ` > 2(1 + δ`)k`(A.92)

case b): ` ≤ 2(1 + δ`)k`(A.93)

In case a), w2/` < 1/2. Since H2(·) is increasing on [0, 1/2], by (A.89), we have

h1/2,1(w1, w2) ≥ (1 + ε)φ`
2

log

(
1 +

ck`P
′

4

)
− `

k`
H2

(
(1 + δ`)k`

`

)
− 2(A.94)

≥ (1 + ε)φ`
2

log

(
1 +

ck`P
′

4

)
− (1 + δ`)

`

k`
H2

(
k`
`

)
− 2(A.95)

=
φ`
2

[
(1 + ε) log

(
1 +

ck`P
′

4

)
− (1 + δ`) log(1 + k`P

′)

]
− 2,(A.96)

where (A.95) follows from (A.24), and (A.96) is due to (A.58). By (2.44), δ` log(1 + k`P
′)

vanishes as k` increases. Moreover,

lim
k`→∞

log

(
1 +

ck`P
′

4

)
− log(1 + k`P

′) = log(c/4).(A.97)

Thus, the RHS of (A.96) grows without bound (uniformly for (w1, w2)) as ` increases.

In case b), by (A.89), we have

h1/2,1(w1, w2) ≥ (1 + ε)φ`
2

log

(
1 +

ck`P
′

4

)
− `

k`
− 2(A.98)

≥ (1 + ε)φ`
2

log

(
1 +

ck`P
′

4

)
− 5,(A.99)

which grows without bound (uniformly for (w1, w2)) as ` increases.
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By (A.91), (A.96) and (A.99), we conclude that for all ` ≥ max{`3, `4},

h1/2,1(w1, w2) ≥ ε(A.100)

uniformly for all 0 ≤ w1 ≤ |A∗|, w̄ ≤ w2 ≤ (1 + δ`)k`, and 1 ≤ |A∗| ≤ (1 + δ`)k`.

Combining (A.87) and (A.100), we conclude that Lemma 3 holds for the case of φ > 0

with `∗ = max{`0, `1, `2, `3, `4}.

A.4.2. The case of φ = 0

In this case, n0 = εk` by (2.41). We let λ = 3/5, ρ = 5/6. Note that (A.62) - (A.64)

remain true in this case.

Consider first g2
3/5,5/6(w2). By (A.66), we have

log

(
1 +

3w2P
′

10

)
≥ 1

2
log

(
1 +

3w2P
′

5

)
.(A.101)

Thus,

g2
3/5,5/6(w2) =

ε

4
log

(
1 +

3w2P
′

10

)
− ε

12
log

(
1 +

3w2P
′

5

)
− 5`

6k`
H2

(w2

`

)
(A.102)

≥ ε

24
log

(
1 +

3w2P
′

5

)
− 5`

6k`
H2

(w2

`

)
.(A.103)

Applying Lemma 8 with A` = ε/20, B = 3P ′/5, w̄ = 1, a` = ` and b` = (1 + δ`)k`, we

conclude that there exists some `5 such that for all ` ≥ `5, the minimum of the RHS of

(A.103) restricted to w2 ∈ [1, (1 + δ`)k`] is achieved at either 1 or on [ck`, (1 + δ`)k`] for

some c ∈ (0, 1]. Moreover, by Lemma 7, there exists some `6 such that for all ` ≥ `6,

5`
6k`
H2

(
1
`

)
≤ ε

48
log
(
1 + 3P ′

5

)
.
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For every ` ≥ max{`5, `6}, if the minimum of the RHS of (A.103) is achieved at 1,

then g2
3/5,5/6(w2) is lower bounded as

g2
3/5,5/6(w2) ≥ ε

24
log

(
1 +

3P ′

5

)
− 5`

6k`
H2

(
1

`

)
(A.104)

≥ ε

48
log

(
1 +

3P ′

5

)
.(A.105)

For every ` ≥ max{`5, `6}, if the minimum of the RHS of (A.103) is achieved on

[ck`, (1 + δ`)k`], we consider two cases:

case a): ` > 2(1 + δ`)k`(A.106)

case b): ` ≤ 2(1 + δ`)k`.(A.107)

In case a), w2/` < 1/2. Since H2(·) is increasing on [0, 1/2], we have

g2
3/5,5/6(w2) ≥ ε

24
log

(
1 +

3ck`P
′

5

)
− 5`

6k`
H2

(
(1 + δ`)k`

`

)
(A.108)

≥ ε

24
log

(
1 +

3ck`P
′

5

)
− (1 + δ`)

5`

6k`
H2

(
k`
`

)
(A.109)

=
ε

24
log

(
1 +

3ck`P
′

5

)
− (1 + δ`)

5φ`
12

log (1 + k`P )(A.110)

=

[
ε

24
− (1 + δ`)

5φ`
12

log (1 + k`P )

log
(
1 + 3ck`P ′

5

)] log

(
1 +

3ck`P
′

5

)
.(A.111)

where (A.109) is due to (A.24). Since φ` → 0, we have

(1 + δ`)
5φ`
12

log (1 + k`P )

log
(
1 + 3ck`P ′

5

) → 0.(A.112)
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The right hand side of (A.111) thus grows without bound (uniformly for all w2) as `

increases.

In the case b), we have

g2
3/5,5/6(w2) ≥ ε

24
log

(
1 +

3ck`P
′

5

)
− 5`

6k`
(A.113)

≥ ε

24
log

(
1 +

3ck`P
′

5

)
− 10

3
.(A.114)

which grows without bound (uniformly for all w2) as k` increases.

By (A.105), (A.111) and (A.114), we conclude that for all ` ≥ max{`5, `6},

g2
3/5,5/6(w2) ≥ ε

48
log

(
1 +

3P ′

5

)
(A.115)

holds uniformly for all 1 ≤ w2 ≤ (1 + δ`)k`.

Consider next g1
3/5,5/6(w1).

g1
3/5,5/6(w1) =

ε

4
log

(
1 +

w1P
′

4

)
− |A

∗|
k`

H2

(
w1

|A∗|

)
.(A.116)

Define

a = min

{
ε

8
log

(
1 +

P ′

4

)
, 1

}
.(A.117)
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We consider the following three cases:

case a): 1 ≤ |A∗| ≤ ak`, 1 ≤ w1 ≤ |A∗|(A.118)

case b): ak` ≤ |A∗| ≤ (1 + δ`)k`, ak`/2 ≤ w1 ≤ |A∗|(A.119)

case c): ak` ≤ |A∗| ≤ (1 + δ`)k`, 1 ≤ w1 ≤ ak`/2.(A.120)

In case a), g1
3/5,5/6(w1) is uniformly lower bounded as

g1
3/5,5/6(w1) ≥ ε

4
log

(
1 +

P ′

4

)
− a(A.121)

≥ ε

8
log

(
1 +

P ′

4

)
.(A.122)

In case b), g1
3/5,5/6(w1) is uniformly lower bounded as

g1
3/5,5/6(w1) ≥ ε

4
log

(
1 +

ak`P
′

8

)
− (1 + δ`),(A.123)

which grows without bound as k` increases.

In case c), w1/|A∗| ≤ 1/2. Since H2(·) is increasing on [0, 1/2], we have

g1
3/5,5/6(w1) ≥ ε

4
log

(
1 +

w1P
′

4

)
− (1 + δ`)H2

(
w1

ak`

)
(A.124)

≥ ε

4
log

(
1 +

w1P
′

4

)
− 2

a

ak`
k`
H2

(
w1

ak`

)
.(A.125)

Applying Lemma 8 with A` = aε/8, B = P ′/4, a` = ak`, w̄ = 1 and b` = ak`/2, we

conclude that there exists some `7 such that for all ` ≥ `7, the RHS of (A.125) restricted
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to w1 ∈ [1, ak`/2] achieves minimum either at 1 or on [cak`/2, ak`/2] for some c ∈ (0, 1].

Moreover, there exists some `8 such that for all ` ≥ `8, H2

(
1
ak`

)
≤ ε

16
log
(
1 + P ′

4

)
.

For every ` ≥ max{`7, `8}, if the minimum of the RHS of (A.125) is achieved at w1 = 1,

then g1
3/5,5/6(w1) in case c) is lower bounded as

g1
3/5,5/6(w1) ≥ ε

4
log

(
1 +

P ′

4

)
− 2H2

(
1

ak`

)
(A.126)

≥ ε

8
log

(
1 +

P ′

4

)
.(A.127)

For every ` ≥ max{`7, `8}, if the minimum is achieved on [cak`/2, ak`/2], then g1
3/5,5/6(w1)

in case c) is uniformly lower bounded as

g1
3/5,5/6(w1) ≥ ε

4
log

(
1 +

ack`P
′

8

)
− 2,(A.128)

which grows without bound as k` increases.

By (A.122), (A.123), (A.127) and (A.128), it concludes that for all ` ≥ max{`7, `8},

g1
3/5,5/6(w1) ≥ ε

8
log

(
1 +

P ′

4

)
(A.129)

holds uniformly for all 1 ≤ w1 ≤ |A∗|. Combining the lower bound of g2
3/5,5/6(w2) given

by (A.115), we conclude that for all ` ≥ max{`5, `6, `7, `8}, and all 1 ≤ |A∗| ≤ (1 + δ`)k`,

h2/3,3/4(w1, w2) ≥ min

{
ε

48
log

(
1 +

3P ′

5

)
,
ε

8
log

(
1 +

P ′

4

)}
(A.130)

holds uniformly for all all (w1, w2) ∈ W(`). Consequently, Lemma 3 is established for

the case of φ = 0. Combining the results of Appendix A.4.1 and Appendix A.4.2 proves

Lemma 3.
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A.5. Proof of Lemma 4

The lemma was proved for kn = o(n) in [16]. In this thesis, we prove the achievability

result for kn = O(n). Throughout the proof, we focus on the case where kn grows without

bound as n increases, because the case of bounded kn was included in [16].

Let f(γ, ρ) be defined as (2.102). Choosing ρ = 1, we have

f(γ, 1) =
1

2
log

(
1 +

γknP
′

2

)
− (1− ε)γ

2
log(1 + knP

′)− kn
n
H2(γ).(A.131)

Denote cn = kn/n and c = lim supn→∞ cn. By differentiating f(γ, 1) with respect to γ, we

have

df(γ, 1)

dγ
=

knP
′

4 + 2γknP ′
− 1− ε

2
log(1 + knP

′) +
kn
n

log
γ

1− γ ,(A.132)

and

d2f(γ, 1)

dγ2
=

cn
γ(1− γ)

− (knP
′)2

2(2 + γknP ′)2
.(A.133)

Note that kn = O(n), kn is increasing without bound and γ ≥ 1/kn. Evidently,

8cn ≤n knP ′2/4(A.134)

≤ 1

4
(knP

′)2γ.(A.135)

Therefore, for sufficiently large n,

8cnknP
′γ + 8cn ≤

1

2
(knP

′)2γ(A.136)
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holds uniformly for all γ ∈ [1/kn, 1]. Thus, for sufficiently large n,

d2f(γ, 1)

dγ2
=

(1 + 2cn)γ2(knP
′)2 − (knP

′)2γ + 8cnknP
′γ + 8cn

2(2 + γknP ′)2γ(1− γ)
(A.137)

≤ (1 + 2cn)γ2(knP
′)2 − (knP

′)2γ + 1
2
(knP

′)2γ

2(2 + γknP ′)2γ(1− γ)
(A.138)

=
[(1 + 2cn)γ − 1/2] (knP

′)2

2(2 + γknP ′)2(1− γ)
(A.139)

≤ [(1 + 4c)γ − 1/2] (knP
′)2

2(2 + γknP ′)2(1− γ)
(A.140)

holds uniformly for all γ.

We pick the constant γ′ = 1/2
1+4c

. Since 0 ≤ c <∞, we have 0 < γ′ ≤ 1/2. By (A.140),

for sufficiently large n, d2f(γ,1)
dγ2 < 0 holds uniformly for all 1/kn ≤ γ ≤ γ′. It means f(γ, 1)

is concave over γ ∈ [1/kn, γ
′]. Therefore, there exists some N0 such that for all n ≥ N0,

min
1/kn≤γ≤1

f(γ, 1) = min

{
f(1/kn, 1), min

γ′≤γ≤1
f(γ, 1)

}
.(A.141)

If the minimum is achieved at γ = 1/kn, we have

f(1/kn, 1) =
1

2
log

(
1 +

P ′

2

)
− (1− ε)

2kn
log(1 + knP

′)− kn
n
H2

(
1

kn

)
.(A.142)

Since (1/kn) log(1 + knP
′) and kn

n
H2(1/kn) vanishes as kn increases, there exists N1 such

that for all n ≥ N1,

f(1/kn, 1) ≥ 1

4
log

(
1 +

P ′

2

)
.(A.143)
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If the minimum is achieved on [γ′, 1], we can lower bound f(γ, 1) as

f(γ, 1) ≥ 1

2
log

(
1 +

γ′knP
′

2

)
− (1− ε)

2
log(1 + knP

′)− kn
n
.(A.144)

Since log (1 + γ′knP
′/2)− log(1 + knP

′) and kn/n converge to some constants, the lower

bound given by (A.144) grows without bound as n increases.

In summary, combining (A.141), (A.143) and (A.144), it concludes that for all n ≥

max{N0, N1} and all |A∗|, the error exponent is lower bounded

Er ≥ min
1/kn≤γ≤1

f(γ, 1)(A.145)

≥ 1

4
log

(
1 +

P ′

2

)
.(A.146)

The lemma is thus established.

A.6. Proof of Theorem 5

Unlike the case of unbounded kn, there is a nonvanishing probability that the number

of active users is zero. Let A∗ denote the set of active users and Ed denote the event

of detection error. Given an increasing sequence sn satisfying the conditions specified in

Theorem 5. The overall error probability can be calculated as

P {Ed} ≤ P {|A∗| > sn}+ P {Ed|1 ≤ |A∗| ≤ sn}+ P {Ed||A∗| = 0} .(A.147)
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By the Chernoff bound for binomial distribution [37], the probability that the number

of active users is greater than sn is calculated as

P {|A∗| > sn} ≤ exp
(
−kn(sn/kn − 1)2/3

)
,(A.148)

which vanishes as sn grows without bound.

Note that the sequence sn satisfies `ne
−δsn → 0 for every δ > 0 and

lim
n→∞

2snH2(sn/`n)

n log(1 + snP )
< 1,(A.149)

which are the regularity conditions for unbounded kn as specified in Case 1) of Theorem 1.

The error probability P {Ed|1 ≤ |A∗| ≤ sn} vanishes by following exactly the same as the

analysis for the case of unbounded kn (i.e., Case 1)) by treating sn as an unbounded kn.

We consider the identification error when |A∗| = 0. If no user is active, the received

signal in the first n0 channel uses is purely noise, i.e., Y a = Za. By the user identification

rule (2.43) with kn replaced by sn, a detection error occurs if at least one user is claimed

to be active. The detection error probability can be calculated as

P {Ed||A∗| = 0} ≤
(1+δn)sn∑
w=1

(
`n
w

)
P

{∣∣∣∣∣∣∣∣Za −
w∑
i=1

Sa
i

∣∣∣∣∣∣∣∣2 ≤ ||Za||2
}
.(A.150)

Let S̄ =
∑w

i=1 S
a
i . The entries of S̄ are i.i.d. according to N (0, wP ′). We have

P

{∣∣∣∣∣∣∣∣Za −
w∑
i=1

Sa
i

∣∣∣∣∣∣∣∣2 ≤ ||Za||2
}

= P

{
n0∑
i=1

Za
i S̄i ≥

1

2
||S̄||2

}
(A.151)

= E

{
P

{
n0∑
i=1

Za
i S̄i ≥

1

2
||S̄||2

}∣∣∣∣S̄
}
.(A.152)
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Conditioned on S̄,
∑n0

i=1 Z
a
i S̄i ∼ N (0, ||S̄||2). Therefore,

E

{
P

{
n0∑
i=1

Za
i S̄i ≥

1

2
||S̄||2

}∣∣∣∣S̄
}
≤ E

{
Q

( ||S̄||
2

)}
(A.153)

≤ E

{
e−
||S̄||2

8

}
(A.154)

= (1 + wP ′/4)−
n0
2(A.155)

where (A.154) is due to Q(x) = 1√
2π

∫∞
x

exp(−u2

2
)du ≤ e−x

2/2, and (A.155) follows because

||S̄||2/wP is chi-squared distributed with n0 degrees of freedom and E
{
etX
}

= (1−2t)−n/2

for a chi-squared distributed variable X with n degrees of freedom.

Combining (A.150), (A.152) and (A.155), the detection error probability for |A∗| = 0

can be upper bounded as

P {Ed||A∗| = 0} ≤
(1+δn)sn∑
w=1

exp
(
`nH2(w/`n)− n0

2
log(1 + wP ′/4)

)
.(A.156)

Let θn be given by (2.11) with kn replaced by sn and define θ = limn→∞ θn. By the

choice of the signature length given by (2.84), n0 ≥n δn, where δ = min(ε, θ(1 + ε)/2).

For a large enough n, the error probability can be further upper bounded as

P {Ed||A∗| = 0} ≤
(1+δn)sn∑
w=1

exp (−snh(w)) ,(A.157)

where

h(w) =
δn

2sn
log(1 + wP ′/4)− `n

sn
H2

(
w

`n

)
.(A.158)
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Note that sn = O(n). Applying Lemma 8 with ` = n, w̄ = 1, An = δn/(2sn), kn = sn,

an = `n and bn = (1 + δn)sn, we conclude that for large enougn n, the minimum of h(w)

restricted to [1, (1 + δn)sn] is achieved either at 1 or [csn, (1 + δn)sn] for some 0 < c ≤ 1.

As long as sn satisfies the conditions as specified in Theorem 5, `n
sn
H2 (1/`n) vanishes

as n increases by Lemma 7. For large enough n, if the minimum of h(w) is achieved at

w = 1, h(w) is uniformly lower bounded by some constant c0 > 0. If the minimum of h(w)

is achieved on [csn, (1 + δn)sn], it implies that h(w) grows without bound. It concludes

that there exists some N0, such that for all n ≥ N0, h(w) is uniformly lower bounded by

c0 for all 1 ≤ w ≤ (1 + δn)sn.

By (A.157), there exists some N0 and c0 > 0 such that for all n ≥ N0,

P {Ed||A∗| = 0} ≤ (1 + δn)sne
−c0sn .(A.159)

Therefore, P {Ed||A∗| = 0} vanishes as the blocklength n increases. Since the three terms

on the RHS of (A.147) all vanish, the overall detection error probability also vanishes.

A.7. Proof of Lemma 5

Since the users adopt Gaussian random codes, by treating the other users as interfer-

ence, the first user to be decoded effectively sees Gaussian noise with variance 1+(kn−1)P .

In order to prove the lemma, we show that the error probability of any (dexp(v(n))e, n)

code for the first user, where the message length v(n) is given by (2.123), is lower bounded

by some positive constant.

Let Pm(v(n), n) denote the average error probability for the first user achieved by

the best channel code of blocklength n with message length v(n), where each codeword
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satisfies the maximal power constraint (2.2). Let Pe(v(n), n) denote the average error

probability for the first user achieved by the best channel code of blocklength n with

message length v(n), where each codeword satisfies the equal power constraint, i.e., each

codeword lies on a power-sphere
∑n

i=1 ski = nP . According to [70, eq. (83)], we have

Pm(v(n− 1), n− 1) ≥ Pe(v(n− 1), n).(A.160)

We will lower bound Pe(v(n− 1), n) in order to show that Pm(v(n), n) is strictly bounded

away from zero for v(n) given by (2.123).

Let λ > 1 be an arbitrary constant. Following the notations in [71, eq. (13)], let the

decoding threshold be γ = (n− 1)(1− λε)C, P ′Y be the distribution of n i.i.d. Gaussian

random variables with zero mean and variance 1+knP , PY |X=[
√
P ,··· ,

√
P ] be the distribution

of n i.i.d. Gaussian random variables with mean
√
P and variance 1 + (kn − 1)P , and

β1−εn

(
PY |X=[

√
P ,··· ,

√
P ], P

′
Y

)
, where βα(P, P ′) is the minimum error probability of the

binary hypothesis test under hypothesis P ′ if the error probability under hypothesis P

is not larger than 1 − α. The error probability Pe(v(n − 1), n) is lower bounded as (see

also [71, eq. (88)])

Pe(v(n− 1), n) ≥ P

{
1

2(1 +Q)

n∑
i=1

Q(1− Z2
i ) + 2

√
QZi ≤ −λεnC − (1− λε)C

}

− e−(λ−1)(n−1)εC .(A.161)

We will follow a similar step as in [71] to further calculate the RHS of (A.161). Let

Xi = −Q(1 − Z2
i ) − 2

√
QZi, where Zi are i.i.d. standard Gaussian random variables.
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Then EXi = 0. By recalling Rozovsky’s large deviation result [71, Theorem 5], we have

P

{
n∑
i=1

Xi > x
√
S

}
≥ Q(x)e

−A1Tx
3

S3/2

(
1− A2Tx

S3/2

)
,(A.162)

where A1, A2 are some universal constants, S =
∑n

i=1E|Xi|2, and T =
∑n

i=1E|Xi|3 which

is equivalent to (2.126).

Then the first term in (A.161) can be calculated as

P

{
1

2(1 +Q)

n∑
i=1

Q(1− Z2
i ) + 2

√
QZi ≤ −λεnC − (1− λε)C

}
= P

{
n∑
i=1

Xi ≥ x
√
S

}
,

(A.163)

where x = 2(λεn+1−λε)C(1+Q)√
S

.

We can derive that S = 2nQ(2 +Q). Since Q = P
1+(kn−1)P

→ 0 as n increases, we have

E|Xi|3 = O
(
Q3/2

)
.(A.164)

Moreover, since k = an, we have T = O
(
nQ3/2

)
and therefore T tends to zero as n

increases.
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APPENDIX B

Appendix for Chapter 3

B.1. Proof of Multiton Error

We rewrite the bin values as follows,

Ẏ b =
∑

k∈K:bk=b

Akġk + Żb,(B.1)

where Żb = Ẇ b + V̇ b.

Suppose the incorrect estimate index from bin b is k0. We have

Ȧk0 =
∑

k∈K:bk=b

1

C2

Akġ
†
k0
ġk +

1

C2

ġ†k0
Żb.(B.2)

Thus,

Ẏ b − Ȧk0 ġk0
=

∑
k∈K:bk=b

Ak

(
I − ġk0

ġ†k0

C2

)
ġk +

(
I − ġk0

ġ†k0

C2

)
Żb.(B.3)

Let

S =
∑

k∈K:bk=b

Akġk(B.4)
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and Q = I − 1
C2
ġk0

ġ†k0
, then the first term in (B.3) can be written as

∑
k∈K:bk=b

Ak

(
I − ġk0

ġ†k0

C2

)
ġk = QS.(B.5)

The multiton bin cannot be distinguished when there exists some k0 such that ||Y b−

Ȧk0 ġk0
||22 ≤ η. In the following, we upper bound the error probability assuming k0 /∈ {k ∈

K : bk = b}. A similar analysis can be carried out for the case of k0 ∈ {k ∈ K : bk = b}.

The intuition is that if k0 is the true device index, Y b − Ȧk0 ġk0
consists of noise and is

of low power. For ease of notation, we write
∑

k∈K:bk=b

as
∑
k

in the following. The error

probability can be upper bounded as

P {Eb,1,2} ≤ P

{
||Y b − Ȧk0 ġk0

||22 ≤ η

∣∣∣∣||QS||22 ≥
(C2 − 1)

∑
k |Ak|2

2

}
+

P

{
||QS||22 ≤

(C2 − 1)
∑

k |Ak|2
2

}
.(B.6)

B.1.0.1. Bounding the first item of (B.6). As in (3.59), Q can be written as Q =

UΛU †, where Λ = diag{0, 1, · · · , 1}. We can write (B.3) as

||Ẏ b − Ȧk0gk0
||22 = ||QS + QŻb||22(B.7)

= ||ΛU †S + ΛU †Żb||22(B.8)

= ||S′ + ΛZ ′||22,(B.9)

where S′ = ΛU †S and Z ′ = U †Żb.
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By the triangular inequality ||ΛZ ′||2 + ||S′ + ΛZ ′||2 ≥ ||S′||2, we have

P

{
||Y b − Ȧk0 ġk0

||22 ≤ η

∣∣∣∣||QS||22 ≥
(C2 − 1)

∑
k |Ak|2

2

}
= P

{
||S′ + ΛZ ′||2 ≤

√
η

∣∣∣∣||S′||22 ≥ (C2 − 1)
∑

k |Ak|2
2

}
(B.10)

≤ P

{
||S′||2 − ||ΛZ ′||2 ≤

√
η

∣∣∣∣||S′||22 ≥ (C2 − 1)
∑

k |Ak|2
2

}
.(B.11)

For large enough K,
(C2−1)

∑
k |Ak|2

2
≥ 4η. Therefore, for large enough K,

P

{
||S′||2 − ||ΛZ ′||2 ≤

√
η

∣∣∣∣||S′||22 ≥ (C2 − 1)
∑

k |Ak|2
2

}
≤ P

{
||ΛZ ′||2 ≥

√
η

∣∣∣∣||S′||22 ≥ (C2 − 1)
∑

k |Ak|2
2

}
(B.12)

≤ 1/K2,(B.13)

where (B.13) is due to (3.65).

B.1.0.2. Bounding the second item of (B.6). We introduce the definition of sub-

Gaussian variable, which will be used in the proof.

Definition 7. X is σ-subGaussian if there exists σ > 0 such that

(B.14) E {exp(tX)} ≤ exp(σ2t2/2), ∀t ≥ 0.

Definition 8 (subGaussian norm). The subGaussian norm of the random variable X

is defined as

||X||φ2 = sup
p≥1

p−1/2 (E|X|p)1/p .(B.15)
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The second item of (B.6) is derived in the following steps. We first show that the

real and imaginary parts of S are subGaussian variables. Then, we show that ||QS||22
are concentrated around (C2−1)

∑
k |Ak|2 with high probability using the large deviation

results on subGaussian variables. In the following, we denote XR and XI as the real and

imaginary component of X, respectively.

Lemma 9. Let SR = (S0,R, · · · , SC2−1,R) and SI = (S0,I , · · · , SC2−1,I) be the re-

al and imaginary components of S defined as (B.4), respectively. Then Sc,R are i.i.d.√∑
k

A2
k,R-subGaussian random variables with ESc,R = 0 and the subGaussian norm sat-

isfies ||Sc,R||φ2 ≤ 2
√∑

k

A2
k,R. Similarly, Sc,I are i.i.d.

√∑
k

A2
k,I-subGaussian random

variables with ESc,I = 0 and the subGaussian norm satisfies ||Sc,I ||φ2 ≤ 2
√∑

k

A2
k,I .

Proof. Since gck is Rademacher variable, it is 1-subGaussian with mean zero. Thus,

ESc,R = 0. Moreover, gck are independent across k. According to Lemma 10 and Lem-

ma 11, Sc,R =
∑

k Ak,Rġ
c
k is

√∑
k

A2
k,R-subGaussian. {Sc,R}C2−1

c=0 are independent, because

ġck are independent across c = 0, · · · , C2 − 1.

We know that E {exp(tSc,R)} ≤ exp

(∑
k

A2
k,Rt

2/2

)
. Let X = Sc,R/

√
2
∑
k

A2
k,R. Then

E {exp(tX)} ≤ exp(t2/4). According to Theorem 9, for all p ≥ 1, (E|X|p)1/p ≤ √2p,

which yields

(E|Sc,R|p)1/p ≤ 2

√∑
k

A2
k,Rp.(B.16)

The subGaussian norm of Sc,R is upper bounded as ||Sc,R||φ2 ≤ 2
√∑

k

A2
k,R. The statement

for the imaginary parts follow similarly. �
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In order to apply Theorem 10 to provide a concentration result on ||QS||, we need to

first derive the Frobenius norm and the operator norm of Q. The Frobenius norm of Q

is calculated as

||Q||2F = tr{QQ†}(B.17)

= tr{Q}(B.18)

= C2 − 1.(B.19)

where (B.18) follows by QQ† = Q, and (B.19) follows because the sum of the eigenvalues

of Q is C2 − 1.

Since the largest eigenvalue of Q is 1, the operator norm of Q is calculated as

||Q|| = max
x6=0

||Qx||2
||x||2

= 1.(B.20)

Conditioned on gk0
,

E
{
||QSR||22

∣∣gk0

}
= E

{
S†RQQ†SR

∣∣gk0

}
(B.21)

= E
{
S†RQSR

∣∣gk0

}
(B.22)

= E{S2
c,R}tr{Q}(B.23)

= (C2 − 1)
∑
k

A2
k,R,(B.24)

where (B.23) follows because {Sc,R}C2−1
c=0 are i.i.d. distributed. Similarly, E

{
||QSR||22

∣∣gk0

}
=

(C2 − 1)
∑

k A
2
k,I .
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Applying Theorem 10 with Z = SR, A = Q with ||Q|| = 1, ||Q||2F = C2 − 1 and

K = 2
√∑

k

A2
k,R yields

P

{∣∣∣∣||QSR||22 − (C2 − 1)
∑
k

A2
k,R

∣∣∣∣ > t

∣∣∣∣gk0

}
≤

2 exp

(
−cmin

(
t2

16(C2 − 1)(
∑

k A
2
k,R)2

,
t

4
∑

k A
2
k,R

))
.(B.25)

Letting t = (C2 − 1)
∑

k A
2
k,R/2, we have

P

{
||QSR||22 ≤

(C2 − 1)
∑

k A
2
k,R

2

∣∣∣∣gk0

}
≤ 2 exp

(
− c

64
(C2 − 1)

)
.(B.26)

Since (B.26) holds for all gk0
, we have

P

{
||QSR||22 ≤

(C2 − 1)
∑

k A
2
k,R

2

}
≤ 2 exp

(
− c

64
(C2 − 1)

)
.(B.27)

Similarly, we have

P

{
||QSI ||22 ≤

(C2 − 1)
∑

k A
2
k,I

2

}
≤ 2 exp

(
− c

64
(C2 − 1)

)
.(B.28)

Since Q is a real-valued matrix, ||QS||22 = ||QSR||22 + ||QSI ||22. Moreover,
∑

k |Ak|2 =∑
k A

2
k,R + A2

k,I . Combining (B.27) and (B.28), we have

P

{
||QS||22 ≤

(C2 − 1)
∑

k |Ak|2
2

}
≤ P

{
||QSR||22 ≤

(C2 − 1)
∑

k A
2
k,R

2

}
+ P

{
||QSI ||22 ≤

(C2 − 1)
∑

k A
2
k,I

2

}
(B.29)

≤ 4 exp
(
− c

64
(C2 − 1)

)
.(B.30)
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Combining (B.6), (B.13) and (B.30), there exists some large enough β1 such that C2 =

β1dlogNe and

P {Eb,1,2} ≤
1

N2
.(B.31)

B.2. Proof of Lemma 6

We focus on the delay estimation for device k. Without loss of generality, we assume

the delay is mk = 0. The device experiences the interference from the other K−1 devices

and noise. The received synchronization pilots can be written as

yi = aksk,i + zi,(B.32)

where the time-domain samples of the pilots sk,i ∼ CN (0, 1) and zi ∼ CN (0, 2σ2
z), where

the variance is bounded as

(K − 1)a2 + 2σ2 ≤ 2σ2
z ≤ (K − 1)ā2 + 2σ2.(B.33)

Let I be given by (3.17). The number of samples contained in I is |I| = BC3.

According to (3.18), The test metric is calculated as

T (m) =
∑
i∈I

aksi+ms
∗
i + zi+ms

∗
i .(B.34)

When the delay is correctly estimated, the test metric given by (3.18) is calculated as

T (0) = BC3ak +
∑
i∈I

zis
∗
i .(B.35)
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By the central limit theorem, T (0) is distributed according to CN (BC3ak, KBC3σ
2
0)

and T (m) is distributed according to CN (0, KBC3σ
2
m), where σ0 and σm are some bound-

ed constants independent of K.

We define a threshold T̄ = aBC3/2. If |T (0)| > T̄ and |T (m)| < T̄ for all m =

1, · · · ,M , the delay can be correctly estimated. Therefore, the error probability can be

upper bounded as

Pe ≤
M∑
m=1

P{|T (m)| ≥ T̄ }+ P{|T (0)| ≤ T̄ }.(B.36)

The first term can be upper bounded as

P{|T (m)| ≥ T̄ } ≤ P{|Re{T (m)}| ≥ T̄ /2}+ P{|Im{T (m)}| ≥ T̄ /2}(B.37)

≤ 4P

{
N
(

0,
KBC3σ

2
m

2

)
≤ aBC3

4

}
(B.38)

≤ 4e
− a2BC3

16σ2
mK .(B.39)

Let φ be the phase of ak. The second term in (B.36) can be upper bounded as

P{|T (0)| ≤ T̄ } = P{||ak|BC3 + e−jφ
∑
i∈I

zis
∗
i | ≤ T̄ }(B.40)

≤ P

{
N
(
|ak|BC3,

KBC3σ
2
0

2

)
≤ aBC3

2

}
(B.41)

≤ e
−a

2BC3
4σ2

0K .(B.42)

Combining (B.36), (B.39) and (B.42), given that B = β0K, there exists some β3 such

that C3 = β3dlog(K+M)e and the error probability of delay estimation is less than 1/K2.
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B.3. Auxiliary Results on Sub-Gaussian Variables

The following lemmas and theorem are established in [72].

Lemma 10. Suppose X is σ-subGaussian, then aX is aσ-subGaussian.

Lemma 11. Suppose X1 is σ1-subGaussian, X2 is σ2-subGaussian. Moreover, they

are independent. Then X1 +X2 is
√
σ2

1 + σ2
2-subGaussian.

Theorem 9 (Characterization of subGaussian variables). Let EX = 0. The following

are equivalent:

(1) E(etX) ≤ e
t2

4 .

(2) ∀t > 0, P{|X| > t} ≤ 2 exp(−t2).

(3) ∀p ≥ 1, (E|X|p)1/p ≤ √2p.

Proof. (1) ⇒ (2)

P{X > t} ≤ E exp(λX)

exp(λt)
(B.43)

≤ exp

(
λ2

4
− λt

)
(B.44)

≤ exp(−t2).(B.45)

Similarly, we have P{X < −t} ≤ exp(−t2).
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(2) ⇒ (3)

E|X|p = E

{∫ |X|
0

ptp−1dt

}
(B.46)

= E

{∫ ∞
0

ptp−11{|X| ≥ t}dt
}

(B.47)

=

∫ ∞
0

ptp−1P{|X| ≥ t}dt(B.48)

≤
∫ ∞

0

ptp−12 exp(−t2)dt(B.49)

=

∫ ∞
0

pup/2−1 exp(−u)du(B.50)

= pΓ(p/2)(B.51)

= 2Γ(p/2 + 1)(B.52)

≤ 2(p/2)p/2.(B.53)

Therefore, (E|X|p)1/p ≤ 21/p(p/2)1/2. Since p ≥ 1, (E|X|p)1/p ≤ √2p.

The proof of (3) ⇒ (1) is omitted. We only need the result of (1) ⇒ (3) in the

thesis. �

The following theorem is on the concentration of subGaussian random variables.

Theorem 10 (Hanson-Wright inequality [73]). Let Z = (Z1, · · · , Zn) ∈ Rn be a

random vector with independent components Zi which satisfy EZi = 0 and the subGaussian

norm ||Zi||φ2 ≤ K. Let A be an n× n matrix. Then, for every t ≥ 0,

P
{
|ZTAZ − E

{
ZTAZ

}
| > t

}
≤ 2 exp

[
−cmin

(
t2

K4||A||2F
,

t

K2||A||

)]
,
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where the operator norm of A is ||A|| = maxx6=0
||Ax||2
||x||2 and the Frobenius norm of A is

||A||F = (
∑

i,j |Ai,j|2)1/2.
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