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ABSTRACT

Numerical Modelling of Cyclic Degradation of Natural Clay

Zhenhao Shi

While infrequent, clay slope failures caused by earthquakes result in loss of life and

substantial property damage. In strong seismicity areas, it is sometimes assumed that the

stability of clay deposits can be evaluated through the residual undrained strength that is

applicable at large deformations. A crucial factor missing in this conservative assumption

is the understanding and quantification of the loss of natural clay shear strength during the

seismic shaking. Consequently, the above assumption can neither address the fundamental

issue of the mechanism of the slope failure initiation nor explicitly account for the specific

parameters of individual earthquakes (e.g., amplitude and duration). The goal of this

work is to study and quantify the strength degradation of natural clay subjected to cyclic

loading. The assumption at the core of this thesis is that the strength loss of natural

clay is related to the deterioration of its inherent structures (e.g., inter-particle bonds and

fabric) caused by plastic deformation that develops during cyclic loading. Furthermore,

such a strength reduction also results from the change of effective stress state as a result

of the accumulation of excess pore pressure.
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A particular case studied in this work is the destructive landslides caused by the 1964

Alaska earthquake, one of the largest earthquakes in history. The strength loss of the

Bootlegger Cove Formation (BCF) clay during cyclic loading has been recognized as a

critical factor in the initiation of these landslides. The largest slide during this event

was located at Turnagain Heights in Anchorage. Based on the in-situ tests at a site

adjacent to the scarp of this slide, this work evaluates the BCF’s in-situ sensitivity, an

index of natural clay’s susceptibility to structure degradation. Furthermore, based on the

undrained strength of BCF clay interpreted from in-situ tests, a series of stability analysis

are conducted, which back-calculates an upper bound on the strength reduction of BCF

clay needed to initiate the slope failure. It is found that the computed strength reduction

is compatible with the sensitivity of the BCF at the same elevation as the failure zone

within the BCF.

The back analysis can estimate the strength loss to initiate slope failure, but to quan-

tify the strength reduction as a function of a specific seismic event, a general and more

sophisticated method is needed. In this work, a bounding surface plasticity constitutive

model is developed that accounts for the degradation of clay inherent structure as well as

the change of effective stress state, i.e., the two major factors affecting material strength

degradation. The model is developed in two steps. A basic model is proposed to represent

the cyclic behavior of reconstituted clay, i.e., the intrinsic behavior. Compared with ex-

isting plasticity models for cyclic clay behavior, three major enhancements are proposed,

including the mixed plastic flow rule, a new form of plastic modulus to uniformly repro-

duce cyclic softening and shakedown, and the adoption of a small strain elasticity model.
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The verification of the basic model with experimental observations shows that the afore-

mentioned improvements ensure that the development of plastic deformation and excess

pore pressure during cyclic loading is reasonably represented.

To account for the effects of soil structure and its deterioration, the basic model is

extended to include a new internal variable Sb that represents the amount of soil structure

and a destructuration law that quantifies the monotonic decrease of Sb under irrecoverable

deformation. The proposed plastic potential surface in the extended model is a function

of fabric anisotropy and inter-particle bonds. The influences of these two aspects of soil

structure on material plastic flow are explored based on the stress-dilatancy relation which

is derived from the plastic potential surface. The appropriateness of this plastic potential

surface to describe natural clay behavior is validated with experimental evidence. The

validation of the extended model based on experimental data of seven natural clays shows

that the proposed model is capable of reproducing the mechanical behavior of natural clay

under monotonic and cyclic loading, and the strength degradation during cyclic loading

can be reasonably quantified by this model.
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CHAPTER 1

INTRODUCTION
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Clay slopes have failed spectacularly as a result of large earthquakes, one of the most

notable being the slope failures in Anchorage, Alaska as a result of the Prince William

Sound earthquake in 1964. One critical failure mechanism of these landslides has been

referred to natural clay’s strength loss during cyclic loading (Shannon & Wilson Inc.,

1964; Hansen, 1965; Mitchell et al., 1973; Updike and Olsen, 1988). These disastrous slope

failures had a significant impact on the design and seismic evaluation of slopes and earth

retaining structures in areas of strong seismicity. The residual undrained shear strength

(i.e., the undrained shear strength at large shear strains) is sometimes selected in the

post-earthquake stability analysis and the seismic design of slopes (e.g., WSDOT (2006)),

because it represents the lower bound of the available strength after the development of

large deformations due to the earthquake shakes or the slope sliding. However, a crucial

factoring missing in this approach is the strength loss of natural clay subjected to cyclic

loading, which prevents the approach addressing the fundamental issue of the initiation

mechanism of slope failure. Moreover, the residual strength is considerably lower than

the strength that corresponds to the failure initiation (Burland, 1990). Therefore, it is

evident that a design based on the peak strength may not be safe, but the one based

on the residual strength would be too conservative and results in excessively expensive

constructed facilities. A safe and economic slope design in areas susceptible to earthquakes

must consider the cyclic strength degradation of natural clay, as suggested by the LRFD

seismic analysis and design reference manual (Kavazanjian et al., 2011) . Specifically, the

quantification of strength loss as a function of earthquake parameters (e.g., magnitude

and duration) is needed. The goal of this work is to study the cyclic strength degradation

of natural clay and further quantify it.
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To quantify the cyclic strength degradation, one must study the mechanism behind

it. There is a distinction between natural and intrinsic properties of clay. The intrin-

sic properties are those applicable to normally consolidated, reconstituted clay where

shear resistance is developed from friction and electro-chemical forces, whereas natural

clay also derives strength from its soil structure (e.g., inter-particle bonding and fabric).

Monotonic loading tests has shown that structure in natural clay progressively degrades

when subjected to external disturbances and this deterioration of the structure leads to

a higher compressibility, brittle behavior and loss of strength. A common measure of loss

of structure is the sensitivity of a clay, St, defined by the ratio of undrained strength of

undisturbed samples over that of reconstituted samples. All natural clays are sensitive to

a degree, with St values from 2 to 4 for low sensitivity (Holtz et al., 2010), even though a

significant reduction in undrained strength occurs when such clay is fully remolded. Clay

can have St values greater than 16, and these are termed quick clay. Studies by Shannon

& Wilson Inc. (1964) showed that a portion of the clay of Bootlegger Cove Formation

(BCF) that composes the failed slopes at Anchorage can have a sensitivity greater than

40. As a core assumption in this work, it is hypothesized that, similar to monotonic load-

ing, the cyclic loading can cause a progressive degradation of the natural clay’s structure

and thus results in a loss of strength. Furthermore, such a deterioration of structure is

directly related to the development of plastic deformation and excess pore pressure in

natural clays.

In addition to the structure deterioration, the change in the effective stress state

also significantly affects material strength during cyclic loading, which results from the

accumulation of excess pore pressure. An effective stress based elastoplasticity modeling
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framework provides an ideal platform to consider the above two factors simultaneously.

In elastoplastic constitutive models, soil structure can be idealized as a set of internal

variables, whose evolution depends on plastic strains. On the other hand, continuous

monitoring in effective stress changes naturally occurs. Moreover, various cyclic loading

conditions (e.g., drainage, magnitude, wave shape) can be accounted in a general form.

In this work, to quantify the cyclic strength degradation of natural clay, an effective

stress based elastoplasticity constitutive model is developed, which is aimed at reasonably

reproducing the irrecoverable deformation and excess pore pressure in cyclically loaded

clay, while simultaneously tracking the deterioration of soil structure. The model is devel-

oped in two steps. A basic model is proposed to represent the intrinsic behavior of natural

clay during cyclic loading, which is of fundamental importance and significantly affects

the degradation of soil structure. Compared with existing plasticity models for cyclic clay

behavior, three major enhancements are proposed, including the mixed plastic flow rule,

a new form of plastic modulus to uniformly reproduce cyclic softening and shakedown,

and the adoption of a small strain elasticity model. Then, the basic model is extended to

account for the effects of soil structure and its deterioration.

1.1. Scope and Objectives

The scope and objectives of the present research include:

(1) Evaluate the strength and sensitivity of Bootlegger Cove Formation (BCF) clay

based on in-situ tests at a site adjacent to a landslide during the 1964 earthquake,

Turnagain Heights landslide;
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(2) Formulate a basic constitutive model to reproduce the intrinsic cyclic behavior

of clay;

(3) Extend the basic model to consider the effects of soil structure and its degradation

during cyclic loading;

(4) Verify both the basic and extended model with respect to experimental observa-

tions.

1.2. Contents of Thesis

Chapter 2 presents a literature review of various aspects related to the topic of this

thesis, including (a) major landslides caused by the 1964 earthquake; (b) previous research

about the BCF and its sensitivity; (c) experimental observations of structure effects on

natural clay behavior, clay responses during cyclic loading and post-cyclic shearing; (d)

constitutive modeling of cyclically loaded clay and structured soils.

Chapter 3 presents the back analysis of Turnagain Heights landslide. First, the soil

strength profile and stratigraphy at the Turnagain Heights area are provided, which is

generated based on the results of in-situ tests at a site adjacent to the scarp of the

slide. The in-situ sensitivity of BCF clay is presented, which is interpreted based on the

same field investigations. Additionally, this chapter discusses the correlation between the

interpreted sensitivity and soil index properties and pore fluid chemical compositions.

Lastly, Chapter 3 presents the results of the slope stability analysis of Turnagain Heights.

In particular, the stability condition before the 1964 earthquake is evaluated, and an

upper bound on the strength reduction of BCF clay needed to trigger the slope failure is

estimated.
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Chapter 4 presents the formulation of the basic model in triaxial space. The results

from a series of parametric studies are discussed, which elucidate the roles of the new

model components (i.e., the mixed flow rule, the new plastic modulus and the adopted

small strain elasticity model.) The steps required to calibrate model parameters and

estimate the initial values of the internal variables are presented. Finally, the basic model

is validated with respect to experimental observations of reconstituted Georgia kaolin and

relatively insensitive BCF clay, two relatively unstructured clays.

Chapter 5 presents the extension of the basic model presented in Chapter 4, to repro-

duce the effects of soil structure and its deterioration during cyclic loading. The influences

of fabric anisotropy and inter-particle bonds on material plastic flow are explored based

on the stress-dilatancy relation which is derived from the plastic potential of the extended

model. The appropriateness of this plastic potential to describe natural clay behavior is

validated with experimental evidence. Finally, this chapter shows the validation of the

extended model based on experimental data of seven natural clays.

Chapter 6 presents the generalization of the proposed model from triaxial space to

multiaxial space, followed by an introduction of the stress integration algorithm used in

the model implementation. Then, a triaxial space constitutive driver that can integrate

constitutive relations with elastoplastic modulus being dependent on strain rate, its for-

mulation, and implementation of the proposed model into the driver are presented. Lastly,

this chapter presents the implementation of the model into the finite element code Abaqus

via its user-defined material subroutine (UMAT).

Chapter 7 presents the summary and conclusions of this thesis.
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CHAPTER 2

TECHNICAL BACKGROUND AND LITERATURE REVIEW
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2.1. Introduction

Slope failures caused by the 1964 Alaska earthquakes resulted in loss of life and sub-

stantial property damage. These landslides were initiated by foundation soil strength loss

during cyclic loading and particularly the cyclic degradation of the soft, sensitive strata of

the Bootlegger Cove Formation (BCF). This chapter presents a review of major landslides

during the 1964 earthquake and relevant studies regarding the Bootlegger Cove Formation

and its sensitive strata.

Sensitive clay is characterized by structure, and the loss of strength of sensitive clay is

directly related to the deterioration of its structure. During cyclic loading, alterations of

soil structure are driven by the accumulation of permanent deformation and excess pore

pressure build-up. Accordingly, the experimental evidence regarding the effects of struc-

ture on the behavior of natural clay is reviewed, followed by a presentation of experimental

observations of clay behavior exposed to cyclic loading and post-cyclic shearing.

The goal of this work is to formulate a constitutive model to quantify the strength

degradation of natural clay during cyclic loading. Many constitutive models formulated

within the bounding surface plasticity framework have been able to reproduce important

characteristics of cyclically loaded clay. While not for cyclic loading, modeling strategies

have been developed which can successfully capture the behavior of structured soils during

monotonic loading. The review of several bounding surface models and well-proved mod-

eling strategies to incorporate structure effects during monotonic loading is also presented

in this chapter.



42

2.2. Landslides During the 1964 Alaska Earthquake and BCF Soil Failure

During Cyclic Loading

2.2.1. The 1964 Alaska Earthquake

Figure 2.1. Alaska earthquakes map (Haeussler and Plafker, 2004)

South Central Alaska is one of the world’s most active seismic regions. As shown in

the Figure 2.1, most earthquakes were produced when the Pacific plate and the North

American plate came into contact and slid past each other (Haeussler and Plafker, 2004).

On March 27, 1964, a powerful earthquake struck the Prince William Sound area, whose

unusual severity was characterized by its large magnitude (9.2 on the Richter scale), long

duration of the intense ground motions (more than 4 minutes) and extraordinary damage

area (50,000 mi2). This great earthquake and ensuing tsunamis took 131 lives and caused

about 2.3 billion dollars in property loss. Based on the damages to or displacements

of buildings or other structures and data from other earthquakes, the estimated peak

acceleration during the 1964 earthquake was 0.18g ( g is the gravity acceleration) and
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the duration in which the acceleration exceeded 0.02g was estimated to be 3 minutes

(Shannon & Wilson Inc., 1964).

2.2.2. Landslides During the 1964 Earthquake

The strong ground motion during the earthquake resulted in many landslides, among

which five massive and disastrous landslides took place in the city of Anchorage: Tur-

nagain Heights landslide, L Stress landslide, Four Avenue landslide, Government Hill

landslide and First Avenue landslide (Shannon & Wilson Inc., 1964).

Four of these landslides aforementioned are characterized by a translatory sliding

movement (Shannon & Wilson Inc., 1964), which means a relatively coherent soil wedge,

which was several hundreds of meters long and wide, several tens of meters thick, moved

horizontally in the direction of least resistance. Such a horizontal movement resulted in

numerous cracks on the ground surface, and a trough-shaped depression zone termed a

“Graben”, as shown in Figure 2.2. Since the ground surface within a graben could settle as

much as 3 to 4 m, the greatest damage to structures developed within and adjacent to the

grabens (Shannon & Wilson Inc., 1964). Figure 2.3 illustrates the formation mechanism

of a graben zone in a translatory landslide. When a prismatic soil block starts to move

horizontally, tension fractures form at the head of the slide. As the movement progresses,

the fractures widen, and consequently the soil mass between fractures loses support and

collapse along one or more antithetical fractures to form a graben (Hansen, 1965).

The Turnagain Heights landslide is the largest one during the 1964 earthquake, which

was characterized by soil movement over a length of more than 2000 m along the coastal

line and inland of 180 m at the east end and 360 m at the west end. Unlike the other
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Figure 2.2. Slide features and ground movement for the Fourth Avenue
landslide and L Street landslide: (a) Fourth Avenue landslide; (b) L Street
landslide (Shannon & Wilson Inc., 1964)

landslides marked by a soil wedge’s translatory sliding of several meters, the Turnagain

Heights landslide involved a progressive series of slides that retrogressed inland of hundreds

of meters. Figure 2.4 compares the aerial view of the Fourth Avenue landslide and the

Turnagain Heights landslide. It can be seen that the ground at the Turnagain Heights was
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Figure 2.3. Schematic diagram of the formation of a graben in a translatory
landslide (Hansen, 1965)

( a )

G r a b e n  z o n e l a n d s l i d e  s c a r p

( b )

Figure 2.4. Aerial views after the 1964 earthquake: (a) Fourth Avenue land-
slide; (b) Turnagain Heights landslide (Shannon & Wilson Inc., 1964)

broken up into a complex system of ridges and depressed blocks, producing an extremely

irregular and hummocky surface (Seed and Wilson, 1967).
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Figure 2.5. Failure mechanism observed in model tests (Seed and Wilson, 1967)

The examination of the ground configuration in the Turnagain Heights slide area

revealed that the large scale inland retrogression did not result from repeated slides in the

same direction, as trees and poles could be noted inclined in opposite directions (Seed and

Wilson, 1967). Another characteristic feature of the Turnagain Heights landslide is that

the vertical ridges within the sliding area did not change significantly from their original

elevations but experienced large lateral displacement (Shannon & Wilson Inc., 1964).

The model tests conducted at the University of California (Figure 2.5) illustrated that

the development of the above ridges needed a weak horizontal layer located relatively deep

within the slope. Moreover, these tests showed that the Turnagain Heights slide probably

started from several rotational slides that initiated from the weak layer at the base of the

bluff (Figure 2.5 (b), (c) and (d)). After several such slides, the weak layer was cut off by

the upper stronger clay that had rotated downwards and consequently similar rotational

slides developed could not continue. Beyond this point, the vertical prismatic ridge started
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to move horizontally probably as a result of the dynamic inertia force or the sloping base

(Figure 2.5 (e)). Following its horizontal movement, tension fractures developed behind it

and a graben-type depressed zone formed in which soil mass was broken into blocks (Figure

2.5 (f) and (g)). Continued sliding of the above graben zone enabled new rotational slides

behind it, following which the entire above process was repeated causing a retrogression

landslide. In addition to this mechanism, Seed and Wilson (1967) concluded that the

exceptional extent of inland penetration of the Turnagain Heights landslide was due to a

combination of the following factors: (a) presence of sloping shoreline silt deposits that

prevented the accumulation of debris to buttress the slide; (b) loss of strength in soil

behind bluff line which created the a significantly weak zone; (c) sensitivity of the soft

clay that resulted in a drastic loss of shear strength once the sliding was initiated and

facilitated lateral displacement; and (d) long duration of the earthquake.

2.2.3. Bootlegger Cove Formation and Its Failure During the 1964 Earthquake

The Bootlegger Cove Formation (BCF) is a major geologic formation underlying much of

metropolitan Anchorage and some adjacent areas. Moreover, it can be seen from Figure

2.6, the major landslides during the 1964 earthquake were located in the zone where the

BCF predominantly exists.

The depositional environment of the BCF is complex (Hansen, 1965; Updike and

Olsen, 1988). Previous studies showed that the BCF could be glaciolacustrine in origin

(Miller and Dobrovolny, 1959), partly marine or estuarine (Schmidt, 1963; Karlstrom,

1964; Schmoll et al., 1972) or of a fresh water origin in some layers (Updike and Olsen,

1988).
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Figure 2.6. Geologic-physiograhic units of the Anchorage lowland and ad-
jacent areas. Light-shaded area indicates cohesive facies of the Bootlegger
Cove Formation. Dark shade indicates the principal 1964 landslides (Updike
and Olsen, 1988)

The work by USGS (Updike, 1982; Updike and Ulery, 1986; Updike and Olsen, 1988)

distinguished individual geologic Facies that make up the BCF, based on both geologic

and engineering properties. The seven common facies in the Anchorage area are:

Facie I: clay, with minor silt and sand

Facie II: silty clay and (or) clayey silt

Facie III: silty clay and (or) clayey silt, sensitive

Facie IV: silty clay and (or) clayey silt, with thin silt and sand lenses

Facie V: silty clay and (or) clayey silt, with random pebbles, cobbles and boulders
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Facie VI: silty fine sand with silt and clay lenses

Facie VII: fine to medium sand with traces of silt and gravel

The post-earthquake investigations concluded that the major landslides at the An-

chorage resulted from a drastic loss of strength in the sediments of the BCF, which was

due to either the liquefaction of the silt/sand lenses or the disturbance of the sensitive

clay strata (i.e., BCF Facie III) (Shannon & Wilson Inc., 1964; Hansen, 1965; Seed and

Wilson, 1967). In particular, for the Turnagain Heights landslide, Seed and Wilson (1967)

suggested that the liquefaction of sand/silt lenses resulted in a thin extremely weak zone

that extended to a considerable distance behind the bluff line and further initiated the

landslide. Once the soil started to move, the high sensitivity of the clay would lead to a

further loss of strength caused by the remolding in the shear zone, which expedited the

long distance movement of the soil mass. Based on a field investigation at the Lynn Ary

Park that is adjacent to the Turnagain Heights landslide scarp, Updike and Olsen (1988)

found the sand/silt lenses at the elevations near the failure surface of the landslide was

denser and therefore less susceptible to liquefaction than that was recognized by Seed

and Wilson (1967). Consequently, Updike and Olsen (1988) suggested that the sensitive

strata was more critical in governing the earthquake-induced ground failure in the BCF.

2.2.4. Sensitivity of BCF Clay

The clay strength during cyclic loading and its quantification are central to the main thrust

of this dissertation. Presumably such a degradation is strongly related to the sensitive

nature of clay. Therefore, the measure and quantification of BCF clay sensitivity in

previous studies deserve a review.
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Throughout this thesis, the sensitivity, St is defined as the ratio of the undisturbed

strength over the remolded strength (Holtz et al., 2010):

St = Su/Sur (2.1)

where Su and Sur are the undrained shear strength measured from undisturbed and re-

molded clay, respectively.

Figure 2.7. Relation between sensitivity and liquidity index for BCF spec-
imens collected at Fourth Avenue and Turnagain Heights landslides (Shan-
non & Wilson Inc., 1964)

Figure 2.7 shows the relation between the sensitivity of BCF clay and the liquidity

index reported by Shannon & Wilson Inc. (1964). The sensitivity was measured by the
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laboratory torsional vane shear devices on undisturbed specimens collected from Fourth

Avenue and Turnagain Heights landslides areas. It is worth mentioning that only data

of specimens having a sensitivity greater than 8 were included in the figure. It can be

seen that the maximum sensitivity of BCF clay is greater than 40, and the majority of

tested samples has a sensitivity less than 20. Figure 2.7 also shows that the sensitivity

correlates relatively well with the liquidity index, which is typical of sensitive clay (e.g.,

the Norwegian clay (Bjerrum, 1954)). Complimentary to the above figure, Shannon &

Wilson Inc. (1964) reported that out of approximately 2100 tested specimens, about 14%

specimens showed a sensitivity greater than 10; about 6% specimens showed a sensitivity

greater than 20; about 1.9% specimens showed a sensitivity greater than 30 and 0.5%

specimens showed a sensitivity greater than 40. This fact indicates that the very sensitive

clay does not predominate the BCF.

In addition to the laboratory vane shear tests, field vane shear tests were performed

during the post-earthquake investigation (Shannon & Wilson Inc., 1964). Among nine

tested boring holes, the maximum sensitivity varied between 5 and 14. It can be noted

that the sensitivity measured in the field was considerably lower than that obtained in

the laboratory. Figure 2.8 shows the boring log of the borehole A121 drilled at the Fourth

Avenue landslide area (Shannon & Wilson Inc., 1964). It can be seen that for clay at

the same borehole, sensitivity measured by the laboratory vane (circle in Figure 2.8) is

considerably higher than that measured by the field vane (square in Figure 2.8). This

discrepancy may suggest that the sensitivity measured by the laboratory vane is less

representative of the conditions in the field, due to inevitable sampling disturbance and

stress release. On the other hand, this difference may result from the different remolding
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Figure 2.8. Comparison between the sensitivity measured by laboratory
vane and field vane(Shannon & Wilson Inc., 1964)

degree associated with the two methods. In other words, the laboratory vane may lead to

a more thoroughly remolded clay and consequently a lower remolded strength and higher

sensitivity.

Figure 2.9 shows the sensitivity contours for the BCF clay reported by Mitchell et al.

(1973). To determine the sensitivity, the undisturbed strength was measured by triaxial

tests performed on undisturbed specimens and the remolded strength was estimated based
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its correlation with the liquidity index. It can be seen that the sensitivity of tested samples

varied from 1 to 12 and most of the data falls within the range between 2 to 5. Moreover,

Figure 2.9 shows that in addition to the liquidity index, the sensitivity of BCF clay

depends on the effective confining stress as well, i.e., the sensitivity increases under an

increasing confining stress given that the liquidity index is constant.

Figure 2.9. Sensitivity contours for BCF clay determined by triaxial tests
(Mitchell et al., 1973)

By performing torsional vane shear tests in the laboratory, Updike and Olsen (1988)

found that the undisturbed BCF samples collected at the Lynn Ary Park showed a sen-

sitivity varying between 2 and 7. The above facts show that there is a relatively large

variation of the sensitivity of BCF clay.
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2.3. Experimental Evidence: Effects of Soil Structure on Mechanical

Behavior of Natural Clay

Compared with the behavior of reconstituted clay, natural clay exhibits remarkably

different compressibility and shear strength characteristics, e.g., higher strength, en-

larged elastic domain, the abruptness of yield, high post-yield compressibility and strain-

softening and so on. These differences primarily originate from soil structure (Burland,

1990; Leroueil and Vaughan, 1990). Leroueil and Vaughan (1990) suggested that in ad-

dition to the stress history and void ratio, the structure is also a fundamental property

that governs the mechanical behavior of natural soils. Following Mitchell (1993), the

main components of soil structure include fabric (arrangement of soil particles) and inter-

particle bonds. For natural clay, its structure can arise from various causes including

aging, cementation, and salt leaching.

For most of the previous studies on natural clay, its behavior was hypothesized as

a superposition of the effects of soil structure on the behavior of reconstituted clays,

about which comprehensive and consistent experimental evidence have been accumulated

and successful numerical modeling frameworks established (e.g., the family of Cam-Clay

models.) For example, Burland (1990) introduced the concept of ‘intrinsic properties’ to

describe the behavior of clay reconstituted at 1 to 1.5 times the liquid limit and used it as

a reference to interpret the corresponding characteristics of natural clay. Follow the same

logic, the experimental observations regarding compressibility and shearing characteristics

of natural clay will be presented in this section accompanied by responses of reconstituted

clays to highlight the influences of soil structure.
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2.3.1. Compression Characteristics

Figure 2.10 presents the results of oedometer tests conducted on undisturbed and recon-

stituted Shellhaven and Gosport clay specimens in the plane of void index Iv and vertical

effective stress σ
′
vc. Following Burland (1990), the void index Iv is defined as:

Iv =
e− e∗100

e∗100 − e∗1000

(2.2)

where e∗100 and e∗1000 are the void ratios corresponding to σ
′
vc = 100 kPa and σ

′
vc = 1000

kPa, respectively.

It can be seen that the compression curves of intact Shellhaven clay specimens lay

above those of the corresponding reconstituted samples defined as the intrinsic compres-

sion line (ICL) by Burland (1990). This fact implies that natural clay can sustain a

structure featuring higher void ratio than the corresponding reconstituted soil under the

same stress level. Leroueil and Vaughan (1990) suggested that the difference in void ratio

between natural and reconstituted clay under the same stress can be seen as an indica-

tion of the extent to which the natural soil is structured. Figure 2.10 also shows that the

undisturbed Shellhaven clay samples exhibit a greater post-yield compressibility than that

of the reconstituted samples, i.e., the slope of the compression curve is steeper, and this

compressibility decreases at higher vertical effective stress, which results in a progressive

flatting curve and its gradual convergence to the ICL.

In contrast, the compression curves of natural Gosport clay do not exhibit a high post-

yield compressibility and the curves more or less coincide with those of the reconstituted

clay, except the initial flatter portion due to the overconsolidated stress history.
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Figure 2.10. Oedometer compression curves for undisturbed and reconsti-
tuted Shellhaven and Gosport clay (Burland, 1990)

Burland (1990) suggested the above difference in compression behavior between the

two natural clays mainly arises from soil deposition conditions. Slow deposition in still

water can induce an open random fabric accompanied by inter-particle bonds, which can

create a soil structure characterized by a high void ratio, like the Shellhaven clay. For such

a material, sufficiently high external loading (e.g., incremental loads in the oedometer test)

can break the bonds between soil particles and alter the fabric, which consequently creates

a high post-yield compressibility and makes the soil structure progressively converge to

that of reconstituted clay. Following Leroueil et al. (1979), this disruption of soil structure

is termed as “destructuration” in this thesis.

In contrast, rapidly deposited clays within the water of a low stillness tends to have a

more oriented fabric with less inter-particle bonds, and thus a more compact soil structure

with a lower void, like the Gosport clay. For such a clay, soil structure cannot be changed
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significantly by external loads, since the in-situ soil fabric has already been oriented and

compact. Therefore, the compression curve of undisturbed samples is close to the ICL.

The natural clays characterized by soil structure similar to the Shellhaven clay tend

to exhibit brittle response and pronounced strain-softening when subjected to shearing

deformation (Burland, 1990; Leroueil and Vaughan, 1990; Smith et al., 1992). Conse-

quently, they are more vulnerable to strength loss during cyclic loading. This work has

been focused on this type of natural clay.

Figure 2.11 shows the results of oedometer tests on intact and destructured natural

Saint-Alban clays (Leroueil et al., 1979). To produce the destructuration, undisturbed

specimens were consolidated to vertical effective stresses that are 3 to 30 kPa higher than

the maximum past pressure resulting in 8% to 20% volumetric strain. It can be seen from

Figure 2.11 that the preceding destructuration makes the yield stress in compression tests

smaller and less well defined. Also, the pre-yield compressive stiffness of destructured

samples is noticeably lower than that of the intact samples. These facts indicate that the

existence of structure increases the yield stress and probably enlarges the whole elastic

domain in stress space. Moreover, the degradation of soil structure can lead to a smaller

pre-yield stiffness, i.e., a deterioration of soil elastic properties.

2.3.2. Shearing Characteristics

Figure 2.12 shows the results of CAU triaxial tests on clay specimens collected from Troll

field, which is located in the Norwegian sector of the northern North Sea (Burland, 1990).

Two consolidation strategies were employed in these tests: Recompression and SHANSEP.

In the recompression, specimens were directly recompressed to their estimated in situ
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Figure 2.11. Resutls of consolidation tests on intact and destructured Saint-
Alban clays (Leroueil et al., 1979)

effective stress state prior to undrained shearing, whereas in SHANSEP method, samples

were compressed anisotropically to well beyond their in situ stress state and then unloaded

a little to reproduce a lightly overconsolidated stress history.

Figure 2.13 shows the void changes associated with the above two consolidation tech-

niques. Tests 22C used the recompression technique and a small void change was observed
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Figure 2.12. Resutls of CAU triaxial tests on Troll field clay specimens: (a)
stress-strain response; (b) effective stress path (Burland, 1990)

when the in-situ stress was restored, which implies the soil structure is more or less intact.

The SHANSEP method was used in the test 10C, and remarkable volume decreases took

place during the consolidation indicating a considerable destructuration.

It can be seen from Figure 2.12(a) that the specimen in test 22C exhibits brittle

behavior and strong strain-softening. The corresponding effective stress path in Figure

2.12(b) shows that the peak strength and peak stress ratio (i.e., peak mobilized friction)

were reached simultaneously, after which the strain-softening and increases in excess pore

pressure led the stress path to migrate towards the origin of the stress space. On the other

hand, test 10C shows much less brittle stress-strain response and its effective stress path

did not rise all the way to the peak stress ratio but sharply migrated to the left before

reaching it, as a reconstituted soil would do (Gens, 1982; Sheahan, 1991). The above
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Figure 2.13. Consolidation paths of Troll field clay specimens (Burland, 1990)

distinctive behavior suggests that the existence of soil structure tends to increase material

brittleness during undrained shearing. Similar to the yield stress in oedometer tests, the

peak strength in undrained shearing is likely to mark the breakage of inter-particle bonds

and the initiation of the destructuration. The strain-softening after the peak strength

reflects the progressive loss of soil structure, as does the decreasing compressibility in

compression tests. Moreover, the comparison of effective stress paths indicates that the

peak mobilized friction of natural clay is governed by soil structure, as opposed to that

observed in reconstituted clay or destructured clay, which is mobilized by generating a

relatively large amount of strain and positive pore pressure (i.e., by mobilizing the soil’s

tendency to contract).
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Figure 2.14. Results of CIU triaxial tests on intact and destructured natural
clays (Leroueil et al., 1979)

In addition to the comparison shown in Figure 2.11, Leroueil et al. (1979) compared

the behavior of intact and destructured Saint-Alban clay samples in CIU triaxial tests

wherein both samples were consolidated to the same effective stress σ‘
v = 12 kPa prior

to shearing. It can be seen from Figure 2.14 that a higher amount of soil structure leads

to higher peak strength, more brittle response and greater positive excess pore pressure.

Additionally, the destructured clay reached its peak strength at a larger strain level, which

implies the preceding destructuration reduced soil shear stiffness.

To illustrate the congruent effects of structure in natural soils and weak rocks, Leroueil

and Vaughan (1990) compared the CID triaxial tests on Saint Vallier clays and a soft, high-

porosity rock (Figure 2.15). It can be seen that as the confining stress increases, the brittle

stress-strain curve becomes more ductile, which is typical of a cemented material (e.g.,

concrete). As shown in Figure 2.15 (a), the above distinctive behavior results from the
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Figure 2.15. Results of CID triaxial tests on structured materials (Leroueil
and Vaughan, 1990): (a) schematic stress paths; (b) stress-strain curves for
Saint Vallier clay (Lefebvre, 1970); (c) stress-strain curves for a soft, high
porosity, oolitic limestone (Elliott and Brown, 1985)

different locations where the stress path touched the yield envelope. When the stress path

reaches the dry size of the yield surface (i.e., test 1©), the material tends to dilate after

yielding, which combined with the destructuration leads to an abrupt strain-softening
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after the peak strength. When the yield stress lies on the wet side (i.e., test 3©), the

material tends to contract and thus the consequent hardening caused by density increase

compensates the destructuration-induced softening, and thereby producing a more ductile

behavior. The intermediate state between the above two cases, test 2© on Saint Vallier

clay, reached a plateau (i.e., axial strain steadily increases at a constant deviatoric stress)

followed by a considerable strain-hardening. Similar response was observed in Norrköping

clay (Westerberg, 1995) and a calcarenite (Lagioia and Nova, 1995). The plateau is likely

to reflect a balanced state between softening and hardening caused by destructuration

and density increase, respectively.

The existence of structure can also affect the stress-dilatancy relation, i.e., the plastic

flow of soil. Figure 2.16 presents CID triaxial tests on artificially bonded soils performed

by Maccarini (1987). The same brittle-ductile transition can be observed as the confining

stresses increase. The significant point made in this example is that for tests under

relative low confining stresses, the maximum rate of dilatancy does not occur at the peak

strength, which is contrary to the response of a dense sand or a heavily over-consolidated

reconstituted clay. Cecconi and Viggiani (2001) observed a similar delay of maximum

dilatancy rate with respect to peak strength in a weak pyroclastic rock. Leroueil and

Vaughan (1990) suggested that the above observation indicates that the peak strength of

structured soils is controlled by soil structure rather than its dilatancy. This conclusion is

compatible with the observation shown in Figure 2.12, in which the peak mobilized friction

of natural clay is also governed by the soil structure under the undrained condition.
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Figure 2.16. Results of CID triaxial tests on artificially bonded soil: (a)
stress-strain response; (b) volume change (Maccarini, 1987)

The influence of soil structure on the strength of natural clay can be further illustrated

by Figure 2.17, which shows the strength envelopes of undisturbed and reconstituted Val-

lericca clay, which were determined through CIU and CID triaxial tests (Rampello et al.,

1993). Note that the stress invariant data shown in this figure was after a dilatancy cor-

rection proposed by (Rowe, 1963) was applied; this correction subtracts the contribution

of soil dilatancy in the shear strength to underline the strength mechanism regarding
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Figure 2.17. Strength envelopes of Vallericca clay corrected for the dila-
tancy component

friction and cohesion. It can be seen that the corrected strength data of reconstituted

clays form a straight line without the intercept, which implies for reconstituted clays

shear strength is primarily derived from particle friction. On the other hand, the strength

envelope of natural clays is curved and has an intercept. This comparison shows that the

cohesion, which possibly results from inter-particle bonds, is an important component of

peak strength of natural clays. Figure 2.17 also shows that natural clays can mobilize

higher stress ratio (i.e., the ratio qR/p
′
R) and thus higher friction angle than that of re-

constituted clays, which confirms the previous conclusion that the peak mobilized friction

of natural clay is a function of soil structure.

The aforementioned effects of structure during undrained and drained shearing par-

tially reflect the effects of structure on the yield surface of natural clays. Figure 2.18

compares the yield envelope of intact and destructured natural clays. It can be seen that
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Figure 2.18. Yield curves for intact and destructured soft clays (Tavenas
and Leroueil, 1985): (a) Saint-Alban; (b) Cubzoc-les-Ponts; (c) Atchafalaya;
(d) Bäckebol

the existence of structure induces a homologous increase of the yield curves and the yield

surface of natural clay are more or less centered on the K0,NC line, as does the yield sur-

face of reconstituted clay that has experienced K0 consolidation (Parry and Nadarajah,

1973; Hight et al., 1985). These observations indicate that the plasticity anisotropy of

natural clay primarily results from the anisotropic consolidation history during the initial

deposition, and this anisotropy is retained when clay becomes structured, which mainly

enlarges the size of the yield surface. In other words, the plasticity anisotropy is an

intrinsic property of natural clay.
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2.4. Experimental Evidence: Clay Behavior During Undrained Cyclic

Loading and Post Cyclic Shearing

2.4.1. Cyclic Loading Characteristics

( b )

( a ) ( c )

( d )

Figure 2.19. Stress-strain curves for undrained cyclic tests of high and low
shear stresses (Sangrey et al., 1969)

Clay’s behavior regarding strain accumulation during undrained cyclic loading can

be illustrated by the “slow” cyclic triaxial tests on undisturbed Newfield clay in Figure

2.19. The term “slow” means that the tests were conducted sufficiently slow to ensure

pore pressure equilibrium within soil specimen and consequently reliable measurements

of pore pressure, as opposed to the more common seismic loading rates of 1Hz at which
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pore pressure measurements are unreliable for clay samples (Boulanger and Idriss, 2004).

For tests of the Newfield clay, an axial strain rate of about 0.0002%/min was employed.

Figure 2.19 exemplifies the different soil responses during cyclic loading characterized by

large and small cyclic shear stresses. It is worth mentioning that specimens in both tests

had been isotropically consolidated to the same stress before shearing. It can be seen that

with a large cyclic shear stress, irrecoverable axial strain kept increasing until failure was

observed (point “e” in Figure 2.19(a)) and the strain accumulation rate started to increase

in the last several cycles. This type of strain development is called cyclic softening.

Figure 2.19(b) shows that the majority of excess pore pressure was generated during the

first cycle. In the subsequent cycles, excess pore pressure decreased during loading and

increased during unloading, which prevented a further build-up of excess pore pressure.

In contrast, Figure 2.19(c) and (d) show soil can exhibit a very different behavior under

a small cyclic shear stress. It can be seen that after six cycles, an equilibrium state was

reached, after which additional cycles produced no further changes in either the excess

pore pressure or irrecoverable strains. This type of strain accumulation is termed as

cyclic shakedown, which is referred to the case when the generation of plastic deformation

decreases with increasing loading cycles until a purely elastic response is reached.

Figure 2.20 compares the effective stress paths of the above two tests, in which the most

noticeable difference is their positions relative to the failure line defined from monotonic

undrained tests. It can be seen from Figure 2.20(a) that the excess pore pressure generated

during the first two cycles was large enough to bring the stress state to the failure envelope,

which probably resulted in the subsequent continuous accumulation of strains and cyclic

failure. On the other hand, the stress path shown in Figure 2.20(b) is relatively far from
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( b )( a )

Figure 2.20. Effective stress paths for undrained cyclic tests of high and
low shear stresses (Sangrey et al., 1969)

the failure line and the continuous pore pressure accumulation led to a migration of the

stress state towards the origin of stress space until the equilibrium state characterized by

a closed loop (i.e., loop m-n).

This equilibrium state was termed “non-failure equilibrium” by Sangrey et al. (1969)

and he collected the stress points that correspond to the peak in the closed loop formed at

the non-failure equilibrium state (e.g., point “m” in Figure 2.20(b)), as shown in Figure

2.21(a). It can be noted that these stress points form a straight line in stress space passing

through the point representing the end of consolidation. This line was named equilibrium

line by Sangrey et al. (1969). This straight line implies a linear relation between the

maximum excess pore pressure and the corresponding applied cyclic shear stress, as shown

in Figure 2.21(b). Moreover, Sangrey et al. (1969) suggested that the cyclic shear stress

corresponding to the intercept between the failure line and the equilibrium line (i.e., point
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“P” in Figure 2.21(a)) defined an upper bound for the applied cyclic stress that can result

in a shakedown type of strain accumulation. In other words, any cyclic loading with

cyclic shear stress above the limit will eventually lead to a cyclic failure due to excessive

deformation.

( b )( a )

Figure 2.21. The equilibrium line and equilibrium excess pore pressure de-
fined from cyclic loading characterized by shakedown (Sangrey et al., 1969)

The clay’s cyclic shakedown and softening were also observed by Zergoun and Vaid

(1994), in a series of slow undrained triaxial cyclic tests on normally consolidated Cloverdale

clay. Figure 2.22 shows the observed typical stress-strain responses and effective stress

path during cyclic loading. It can be seen that the undrained cyclic loading resulted in

a progressive build-up of excess pore water pressure (i.e., migration of the effective stress

path to the left) to some limiting level. For this particular test, the ultimate excess pore

pressure ratio ru reached 80% indicating that the sample never attained an “initial lique-

faction”. Moreover, one can find the “butterfly” shape effective stress loop formed when
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( a ) ( b )

Figure 2.22. Experimental observations in an undrained cyclic loading on
NC Cloverdale clay: (a) effective stress path; (b) stress-strain response
(Zergoun and Vaid, 1994)

the effective stress path was close to the failure line defined from undrained monotonic

loading. In Figure 2.22(b), one can see that at some time the sample developed rapidly

increasing strains with each subsequent cycle and the corresponding stress-strain hystere-

sis loops were broader (i.e., more energy could be dissipated). This acceleration of strain

development indicates the sample would fail due to excessive deformation if more loading

cycles would be applied.

As shown in Figure 2.23, Zergoun and Vaid (1994) found that the rate of peak strain

increase per cycle (i.e., the difference between peak strains of current and previous cycles)

is directly related to the peak mobilized effective stress ratio (i.e., σ′1/σ
′
3). They also found

there is an effective stress ratio threshold, beyond which the development of peak strain

begins to accelerate.

Figure 2.24 shows the development of peak strain and stress ratio during cyclic loading

with various cyclic shear stresses, in which τcy/Suc is the ratio of applied cyclic shear stress
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Figure 2.23. Rate of peak strain development and effective stress stability
thresholds during undrained cyclic loading on isotropically consolidated NC
Cloverdale clay (Zergoun and Vaid, 1994)

Figure 2.24. Peak strain and effective stress ratio development with cycles
during undrained cyclic loading on isotropically consolidated NC Cloverdale
clay (Zergoun and Vaid, 1994)
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over the undrained strength defined in monotonic loading. The significant point made in

this figure is that Cloverdale clay exhibits cyclic softening and shakedown under large and

small cyclic stresses, respectively, as dose Newfield clay. Moreover, for tests characterized

by cyclic shakedown, the mobilized effective stress ratio tends to stabilize at relatively low

values, whereas for tests wherein cyclic softening was observed, the mobilized effective

stress ratio keeps increasing until failure.

In summary, the experimental evidence reported by Sangrey et al. (1969) and Zergoun

and Vaid (1994) supports the idea that the clay behavior during cyclic loading can be

interpreted from the corresponding effective stress states. Furthermore, the evidence

suggests that whether clay exhibits cyclic softening or shakedown is a function of effective

stress state and particularly the effective stress ratio.

2.4.2. Post-Cyclic Shearing Characteristics

In addition to the progressive accumulation of excess pore pressure and deformation,

cyclic loading may result in a degradation of the static strength of clay samples from

their initial values. Thiers and Seed (1968) reported the results of a series of cyclic

direct simple shear (DSS) tests on San Francisco Bay mud, in which they compared

the undrained shearing responses after 200 strain-controlled loading cycles to that before

cyclic loading. It is worth mentioning that no drainage was allowed between cyclic loading

and post-cyclic shearing. Figure 2.25 (a) and (b) show the undrained shear strength and

stiffness (expressed as the ratio of the original value before cyclic loading) after cyclic

loading with various strain amplitudes, respectively. It can be seen that after 200 cycles

of appreciable strain amplitudes, the tested samples exhibited a relatively small amount
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( a ) ( b )a f t e r  2 0 0  c y c l e s a f t e r  2 0 0  c y c l e s

Figure 2.25. Post-cyclic shear strength and stiffness of San Francisco Bay
mud after 200 strain-controlled loading cycles (Thiers and Seed, 1968)

of strength reduction. 200 cycles of 2% and 3% shear strain caused a strength reduction

of only about 10%, and cyclic strains less than 1.5% had almost no effect on the peak

material strength. Figure 2.25 (a) also shows the clay strength degradation is dependent

on the strain levels developed during cyclic loading. In contrast to the peak strength,

Figure 2.25(b) shows that cyclic loading could considerably reduce material stiffness. It

can be seen that 200 cycles of 2% to 3% cyclic strain caused a reduction of 40% to 50%

in the shear stiffness. Castro and Christian (1976) observed similar behavior as those

reported by Thiers and Seed (1968) in a laboratory testing program on undisturbed silty

clay. They found that the monotonic undrained strength after cyclic loading was close to

those observed in tests without cyclic loading. Moreover, the observed limited strength
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reduction is proportional to the strain levels during cyclic loading. They also found the

modulus of deformation can be greatly reduced by cyclic loading. It is noteworthy that

the above tested San Francisco Bay mud and silty clay have a sensitivity of 8 to 10

indicating they are not very sensitive or at least not quick clay. Castro and Christian

(1976) suggested more pronounced strength degradation during cyclic loading would be

observed on very sensitive clay, as the soil structure will be more susceptible to the cyclic

disturbance.

( a ) ( b )

Figure 2.26. Post-cyclic shear strength and stiffness of BCF clay (Mitchell
et al., 1973)

Figure 2.26 shows the post-cyclic strength and stiffness of BCF clay after subjected to

strain-controlled cyclic loading. The εf in the figure is the strain at failure defined from

monotonic tests. Note that BCF clay exhibits higher strength degradation than the San
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Francisco Bay mud under cyclic loading of the same strain level. Such a different resistance

to cyclic strength degradation presumably results from their different soil structure and

sensitivity. Moreover, it can be noted that the lower the failure strain in monotonic tests,

the greater is the degradation in shear strength and stiffness. As previously discussed,

the more structured clay develops more brittle stress-strain during shearing, and thus the

strain at failure is smaller. Therefore, the trend shown in Figure 2.26 implies that the

more structured and presumably more sensitive the soil is, the more significant the cyclic

strength degradation will be.

Andersen et al. (1980) reported the results of a series of cyclic DSS and cyclic triaxial

tests on undisturbed Drammen clay and post-cyclic undrained shearing tests. Figure 2.27

shows the change of monotonic shear strength after strain-controlled cyclic DSS wherein

the numbers indicate the number of loading cycles. It can be noted that in general shear

strength decreases during cyclic loading and the reduction amount tends to increase with

the increase in the applied cyclic strain levels. Moreover, the experimental data suggest

that the Drammen clay’s strength degradation during cyclic loading is not significant, i.e.,

the maximum reduction is 20% of the original value. Figure 2.28 shows the effective stress

path for monotonic triaxial tests with and without previous undrained cyclic loading. It

can be seen that with the increase in the residual excess pore pressure after cyclic loading,

the corresponding post-cyclic effective stress path becomes close to those from monotonic

tests on OC samples without cyclic loading. For instance, the upper diagram in Figure

2.28 shows that an NC sample after cyclic loading had a stress path very similar to that

of a monotonic test on a sample with OCR = 4. Andersen et al. (1980) suggested that the

cyclic pore pressure build-up and the consequent reduction of the effective stress create an
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Figure 2.27. Change in undrained fail-
ure shear stress due to previous
undrained strain-controlled cyclic load-
ing in simple shear tests (Andersen
et al., 1980)

Figure 2.28. Effective stress paths for
monotonic triaxial tests with and with-
out previous undrained cyclic loading
(Andersen et al., 1980)

apparent over-consolidated state, which is equivalent to that resulted from a mechanical

unloading. This apparent over-consolidation caused by undrained cyclic loading were

also observed in Boston blue clay (Azzouz et al., 1989) and reconstituted Ariake clay

(Yasuhara et al., 1992).

The observation in Figure 2.28 also implies that in addition to the strain levels de-

veloped during the cyclic loading, the post-cyclic strength is also related to the change
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Figure 2.29. The relation between cyclic strength degradation and excess
pore pressure accumulation during cyclic loading on NC clay (Yasuhara,
1994)

of soil effective stress states due to excess pore pressure build-up, which can be further

illustrated in Figure 2.29. In the figure, Sucy and SuNC are the post-cyclic strength and

strength defined from monotonic triaxial tests on NC samples. It is worth mentioning

that all the tested samples had been isotropically consolidated to NC state before the

cyclic loading and the variable pi denotes the consolidation stress. The data in Figure

2.29 show that the cyclic strength degradation increases with the accumulation of excess

pore pressure during the cyclic loading that starts from NC state.

Finno and Zapata-Medina (2013) evaluated the effects of construction-induced stress

changes on the dynamic properties of the BCF clay at the site of Port of Anchorage ex-

pansion projection. 3-D numerical simulations of the construction of an open-cell wharf
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structure were made to compute the stress changes at various locations in the BCF soils

which comprised its foundation. Laboratory procedures were developed to replicate the

construction-induced stresses on natural specimens of BCF, after which specimens were

subjected to 40 stress-controlled loading cycles with a cyclic stress ratio (CSR) equal

to 0.2. Immediately after the cyclic loading, undrained triaxial compression and ex-

tension loadings to failure were applied to the specimens to determined the post-cyclic

shear strength. As shown in Figure 2.30, Finno and Zapata-Medina (2013) compared the

post-cyclic strength with free-field in situ values (i.e., neither construction-induced stress

change nor cyclic loading). The peak strength was normalized by both the vertical effec-

tive stress in (a) and mean normal effective stress in (b). Both normalizations suggest

that the tested BCF clay exhibits negligible strength reduction after cyclic loading, which

is probably related to the relatively small amount of strain and pore pressure accumula-

tion during cyclic loading, and the fact that the tested samples are not from the sensitive

Facie III of the BCF (Finno and Zapata-Medina, 2013).

2.5. Bounding Surface Plasticity Models For Cyclically Loaded Clay

The experimental evidence presented above shows that the cyclic strength degrada-

tion of natural clay is related to the accumulation of strains and excess pore pressure

during cyclic loading. Therefore, to quantify such a cyclic strength reduction through

a constitutive model, it is fundamentally required that the model can provide a reliable

representation of the continuing build-up of pore pressure and deformation during cyclic

loading.
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Figure 2.30. Normalized undrained shear strength: (a) with respect to σ′v;
(b) with respect to p′ (Finno and Zapata-Medina, 2013)

The essential features of classical elastoplasticity models (e.g., Modified Cam-Clay

model) are that the yield surface encloses an elastic domain in stress space, and any effec-

tive stress path that lies entirely within this domain cannot mobilize plastic deformation.

It is clear that this type of models is deficient in modeling the cyclic behavior of clay. As

an illustration, Figure 2.31 presents the response of NC clay to undrained cyclic loading

according to the MCC model. It can be seen that except for the first loading branch

(AB), all subsequent loading and unloading are within the yield surface and consequently

neither deformation nor excess pore pressure accumulates with the increase of loading cy-

cles (i.e., stress-strain and strain-pore pressure response retrace the path CBC in Figure

2.31(b) and (c), respectively.)
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Figure 2.31. Response of NC clay to undrained cyclic loading according to
conventional critical state models: (a) effective stress path; (b) stress-strain
response; (c) strain-excess pore pressure response (Wood, 1990)

Motivated by the need to consider soil’s inelastic behavior when the stress state

is within the yield surface, the bounding surface plasticity framework was proposed

(Dafalias, 1979; Dafalias and Herrmann, 1982; Dafalias, 1986b). Many constitutive models

formulated within this framework have achieved encouraging success in terms of reproduc-

ing clay’s accumulation of strain and pore pressure during cyclic loading (Banerjee and

Yousif, 1986; Liang and Ma, 1992; Li and Meissner, 2002; Yu et al., 2007a; Seidalinov and

Taiebat, 2014). In this section, the basic concepts of the bounding surface plasticity are

briefly described, followed by a selective review of bounding surface constitutive models

for cyclically loaded clay.
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2.5.1. General Formulation of Elastoplasticity Models

To facilitate the understanding of the bounding surface plasticity, it is necessary to intro-

duce the general elastoplasticity formulation.

In an elastoplasticity model, the material state is defined in terms of stress σ (bold

symbol indicates tensor or vector) and a set of internal variables ρ, which are the macro-

scopic manifestation of the material microstructure (Dafalias, 1986b). One of the most

important assumptions is that strain rate can be decomposed additively into elastic and

plastic parts:

ε̇ = ε̇e + ε̇p (2.3)

where a superposed dot denotes the rate and the superscript e and p indicate the elastic

and plastic parts, respectively. The stress rate is related to the elastic strain rate via:

σ̇ = Eε̇e (2.4)

with elastic tangent stiffness moduli E being a fourth order tensor, which can be assumed

as a function of stress, and/or internal variables ρ if the elastoplastic coupling is considered

(Maier and Hueckel, 1979). If a hyperelastic law is used, E can be derived from an energy

density function (Wood, 2003).

Suppose L is the loading direction, R is plastic flow direction, and r is a vector

indicating the direction of ρ̇, then the plastic strain rate, the evolution of internal variables,

and the total strain rate-stress rate relation for an elastoplasticity model can be expressed
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as:

ε̇p = 〈Λ〉R

ρ̇ = 〈Λ〉r

σ̇ = Depε̇

Dep = E − h̄(Λ)B−1P ⊗Q

Q = EL; P = ER

B = Kp +LER

Λ = B−1Qε̇ = B−1Lσ̇trial

(2.5)

whereDep is the tangent elastoplastic stiffness tensor; symbol⊗ denotes the outer product

between two tensors, i.e., C = A ⊗ B leads to Cijkl = AijBkl; scalar Kp is the plastic

modulus; Λ is the plastic multiplier; σ̇trial is the trial stress rate, which is obtained

by freezing evolution of internal variables and assuming all strain rates are elastic (i.e.,

σ̇trial = Eε̇); Heaviside step function h̄(Λ) = 0 when Λ ≤ 0 and h̄(Λ) = 1 when Λ > 0;

and 〈〉 indicates the Macauley Brackets, defined as 〈Λ〉 = h̄(Λ)Λ.

In summary, to obtain a stress and strain relation within the elastoplasticity frame-

work, one needs to specify several key model components, including loading direction,

plastic flow direction, plastic modulus and elasticity model.

2.5.2. Basic Concepts of Bounding Surface Plasticity

The basic concept of the bounding surface plasticity is that for a stress state within or on

the bounding surface, a mapping rule uniquely relates an “image” stress on the bounding

surface, and a measure of the distance between the actual and image stresses is used to
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quantify the plastic modulus at the actual stress state as a function of a plastic modulus

defined at the “image” stress (Dafalias, 1986b). As illustrated in Figure 2.32, symbols σij

Figure 2.32. Schematic diagram of bounding surface and related concepts
(Dafalias, 1986b)

and σ̄ij denote the actual stress (or current stress) and the image stress, respectively. To

define the image stress on the bounding surface, a proper, noninvertible mapping rule is

needed, which must satisfy in a continuous way the identity condition, i.e., σ̄ij = σij when

the current stress lies on the bounding surface (Dafalias, 1986b). The radial mapping rule

proposed by Dafalias (1981) is most commonly used (Banerjee and Yousif, 1986; Liang

and Ma, 1992; Li and Meissner, 2002; Yu et al., 2007a; Seidalinov and Taiebat, 2014). As

shown in Figure 2.32, a projection center, αij is introduced to radially project the current

stress, σij onto the image stress, σ̄ij. Mathematically, σ̄ij is related to σij through:
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σ̄ij = b(σij − αij) + αij (2.6)

It is commonly assumed that the loading direction L at the current stress is defined

as the gradient of the bounding surface, F = 0 passing the image stress such as:

L =
∂F

∂σ̄
; Lij =

∂F

∂σ̄ij
(2.7)

Based on the Caratheodory’s theorem, Lubliner (1975) have shown that to mobilize

plasticity, the loading direction L must be along the gradient of a loading surface passing

the current stress, which is the surface f = 0 in Figure 2.32. Note that the assumption

in equation 2.7 ensures that the bounding surface and loading surface cannot intersect.

It is noteworthy that in classical elastoplasticity framework, the loading surface coincides

with the yield surface.

The radial mapping rule together with the assumption in equation 2.7 implies that

the loading surface is homologous to the bounding surface with the projection center as

the center of homology. The variable b in equation 2.6 can also be interpreted as the

similarity ratio of the bounding surface over the loading surface. Note that b ≥ 1 and

when σ̄ij equals σij, b equals 1, while when σij equals αij, b equals ∞.

The plastic modulus, Kp is related to the plastic modulus defined at the image stress,

K̄p and the distance between the image stress and current stress. Dafalias (1986b) sug-

gested that when the radial mapping rule is employed, the plastic modulus Kp can take

the general form:

Kp = K̄p + Ĥ

〈
b

b− 1
− s
〉−1

(2.8)
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which implies that as the current stress moves towards the bounding surface and conse-

quently the variable b decreases, the Kp will monotonically decrease, and Kp equals K̄p

when current stress lies on the bounding surface, i.e., b = 1. The modulus K̄p can be

derived by enforcing σ̄ij must remain on F = 0, i.e., the consistency condition of the

bounding surface. Ĥ is a positive shape hardening scalar function that defines the de-

pendence of Kp on stress and other state-dependent variables in addition to the distance

between the current stress and the image stress. The constant s indirectly defines an

“elastic nucleus” as shown in Figure 2.32, which is also homologous to the F = 0 in

reference to αij (Dafalias, 1986b). When σij is inside the above nucleus, Kp = ∞ since

the term inside the Macauley brackets (i.e., b/(b− 1)− s) is less than zero. Consequently,

a purely elastic response is computed. Note that the value of s is equal or greater than

1. When s equals 1, the elastic nucleus shrinks to the projection center (i.e., a vanishing

elastic range), and as s increases, the elastic range grows towards the bounding surface.

Note that the above form of plastic modulus provides a smooth transition from elastic to

elastoplastic behavior.

Similar to the loading direction Lij, the plastic flow direction Rij is commonly defined

at the image stress. Depending whether a separate plastic potential is assumed, Rij either

is the same as Lij (i.e., the associated flow) (Liang and Ma, 1992; Li and Meissner, 2002)

or is defined as the gradient of a plastic potential passing the image stress, as illustrated

in Figure 2.33. The above way to define plastic flow direction will be referred as image

stress flow rule in the rest of this thesis.

From the above definitions of the loading direction, plastic modulus and plastic flow

direction, one can see that the plastic deformation can occur within the bounding surface
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Figure 2.33. Definition of plastic flow at a plastic potential surface passing
the image stress (Seidalinov and Taiebat, 2014)

at a magnitude depending on the closeness of the current stress to the bounding surface.

Moreover, when the current stress reaches and remains on the bounding surface, the

computed responses is the same as those from a classical elastoplasticity model wherein

the yield surface takes the same form as the bounding surface. This feature is the key for

bounding surface models to reproduce cyclic soil behavior while maintaining advantages

of well-proved elastoplasticity models in terms of modeling soil responses in monotonic

loading.

2.5.3. Bounding Surface Plasticity Models for Cyclically Loaded Clay

In this section, several bounding surface constitutive models are reviewed. While these

models possess different assumptions regarding the shape and hardening of the bounding

surface, they share many key hypotheses, e.g. the loading direction. However, even if all
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these models define the plastic modulus as a function of the plastic modulus at the image

stress and the distance between the current and image stress, different interpolation rules

are employed, which may significantly impact the behavior produced by the model. In

the following review, particular attention is given to these specific forms of interpolation

rules.

Bounding surface model proposed by Zienkiewicz et al. (1985)

Zienkiewicz et al. (1985) assumed an elliptic shape MCC yield surface as the bounding

surface and the projection center was fixed at the origin of stress space. Similar to the

MCC model, the bounding surface is solely controlled by an isotropic hardening internal

variable. The loading direction was defined at the image stress and an associative flow

rule was employed. In this model, the plastic modulus at the current stress is defined as:

Kp = K̄pb
γ (2.9)

It can be seen that when the current stress moves towards the bounding surface, the

variable Kp monotonically decreases with a power law relation of the similarity ratio b,

and when the current stress reaches the bounding surface, Kp equals K̄p, because the b

equals 1. To reproduce the cyclic softening, a degradation damage was introduced into

the variable γ as:

γ = γ0exp(−Dε̄p) (2.10)

where γ0 and D are model parameters, and ε̄p is the accumulated plastic deviatoric strain

defined as

ε̄p =

∫
(
2

3
dε̄pijdε̄

p
ij)

1/2 (2.11)
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and

dε̄pij = dεpij − δijdεpv (2.12)

where ε̄pij and εpv are the plastic deviatoric and volumetric strains, respectively and δij

is the Kronecker delta. It can be seen that with the accumulation of plastic deviatoric

strains, the plastic modulus will decrease as a result of a decreasing γ. Therefore, the soil

stiffness will gradually reduce and the cyclic softening can be reproduced.

Figure 2.34. Comparison of model prediction with test of two-way, strain
controlled, undrained cyclic triaxial test on Kaolin (Zienkiewicz et al., 1985)

Figure 2.34 presents a comparison between experimentally observed stress-strain re-

sponses and the corresponding model simulation. It can be seen that the model success-

fully reproduces the general trend observed from the experiment. However, the simulated

stress-strain hysteresis loop is broader than that observed, and consequently, the energy

dissipated during each cycle is overestimated (i.e., over-damping). As shown in Figure



90

2.34, the above over-damping results from the difference between the observed and com-

puted stiffness degradation rate during unloading and reloading. In the experiment, the

shear stiffness started to decrease at a very early stage of the unloading/reloading, whereas

the simulated shear stiffness reduction occurred considerably later and was more abrupt.
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∂
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Figure 2.35. Schematic diagram of over-damping caused by the fixed pro-
jection center

As illustrated in Figure 2.35, the aforementioned discrepancy is caused by the em-

ployment of a fixed projection center. During the initial stage of the unloading, the

inner product between the trial stress rate and the loading direction is non-positive (i.e.,

Lijσ̇
trial
ij ≤ 0), which, by definition, only generates elastic deformation (i.e., the elastic

unloading in Figure 2.35(a)) until the above product regains a positive value. The same

situation will repeat in the reloading as well. Such a delay of generating plastic deforma-

tion leads to a slower stiffness deterioration and consequently the over-damping. Figure

2.36 shows the computed effective stress path corresponding to the simulation in Figure
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2.36, wherein one can find that during unloading and reloading, the effective stress path

is vertical until the stress state is close to the bounding surface indicating the computed

predominance of the elastic behavior during the unloading and reloading. It is worth

mentioning that the above over-damping is a common issue when the projection center is

either fixed at the origin of the stress space or the rotation axis of the bounding surface

with a constant ratio defining its position relative to the bounding surface (e.g., models

proposed by Liang and Ma (1992) and Jiang et al. (2012))

Figure 2.36. Computed effective stress path in a test of two-way, strain
controlled, undrained cyclic triaxial test on Kaolin (Zienkiewicz et al., 1985)
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Anisotropic bounding surface model proposed by Liang and Ma (1992)

Liang and Ma (1992) employed a bounding surface consisting of two ellipsoids and one

sinusoid segments, similar to the model proposed by Anandarajah and Dafalias (1986).

A rotation hardening law, a distortional hardening law and an isotropic hardening law

were introduced to govern the change of inclination, slenderness and size of the bounding

surface upon plastic loading, respectively. The projection center is fixed on the rotation

axis with a constant distance ratio. An associative flow rule was employed to define the

plastic flow direction. The plastic modulus Kp takes the following form:

Kp = K̄p + Ĥ[(b)µ − 1] (2.13)

where the power law variable µ is related to the accumulated plastic deviatoric strain

through a constant D:

µ = µ0exp(−DE) (2.14)

where

E =

∫
(ε̄pij ε̄

p
ij)

1/2 (2.15)

Similar to Zienkiewicz et al. (1985)’s model, as the accumulation of plastic deviatoric

strain, the cyclic softening is simulated.

Two surface model proposed by Li and Meissner (2002)

Li and Meissner (2002) proposed a two surface model to reproduce the cyclic behavior

of clay. As illustrated in Figure 2.37, the outer surface is the bounding surface, and the

inner surface is the loading surface that has the same shape as the bounding surface and

always passes through the current stress. Both the loading direction and the plastic flow
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Figure 2.37. Schematic diagram of the formation and movement of the
bounding surface and loading surface (Li and Meissner, 2002)

direction are defined as the gradient of the loading surface at the current stress. As a

novelty of this model, a memory center (e.g., point A and point B in the Figure 2.37

(c) and (d), respectively) is employed to remember the most recent stress history. It is

postulated that upon stress reversal, the current stress is defined as the memory center,

the old bounding surface and loading surface developed in the previous loading event are

erased, and the new bounding and loading surface are defined and are assumed to pass the

new memory center. Between two subsequent stress reversals, the current stress remains

on the loading surface, and the loading surface and the bounding surface are tangent to

each other at the memory center. By drawing an analogy to the aforementioned radial

mapping rule, it can be seen that the memory center serves as the projection center,
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and the loading and bounding surfaces are homologous to each other with the memory

center being the center of homology. Compared with the previously discussed models that

have a fixed projection center, the employment of such a memory center enables plastic

deformation to occur at the early stage of unloading and reloading and thus addresses the

over-damping issue.
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Figure 2.38. Schematic diagram of the issue associated with the relocation
of bounding surface upon stress reversal: (a) movement of bounding surface;
(b) stress-strain response

The aforementioned relocation of the bounding surface upon stress reversal may result

in unrealistically high material strength during irregular cyclic loadings. To illustrate this

point, assume that there is a clay sample that has been unloaded (AB path in Figure

2.38(b)) following a primary loading (path OA in Figure 2.38(b)) from an isotropic NC

state. If the above sample is reloaded in compression (i.e., the path BC in Figure 2.38
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(b)), a memory center forms at the second stress reversal point in Figure 2.38 (a) and

the bounding surface is relocated so that it passes the memory center, i.e., the surface

F1 in Figure 2.38 (a). Consequently, the reloading can achieve a considerably higher

strength than the primary loading. This response is in contrast to that typically observed

in experiments, in which the reloading strength is governed by the hardening and strength

in the primary loading. The above discrepancy is attributed to the fact only the most

recent stress history, which is the unloading in the above example, is memorized by the

model. To address this issue, one could formulate the model to record all the loading

history, like the nesting surface models (Mrŏz et al., 1981, 1978) or employ a bounding

surface that will not relocate upon stress reversal.

The plastic modulus in this model takes the form as:

Kp = K̄p + (Hm − K̄p)

(
1− 1

b

)γ
(2.16)

To capture the cyclic softening, the variable γ is assumed to increase hyperbolically

with the accumulated plastic deviatoric strains:

γ =
bγbεQL
γb + bεQL

(2.17)

where the parameters γb and b are the slope of the hyperbola at εQL = 0 and the as-

ymptotic value of γ, respectively. The accumulated plastic deviatoric strain is defined as

εQL =
∫
|dεpd|.

The variable Hm in equation 2.16 is the reference plastic modulus at the memory

center and takes different forms for loading, unloading and reloading (Li and Meissner,

2002). While such a division between different loading branches allows more freedom in
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controlling the plastic behavior during cyclic loading, it inevitably increases the model

complexity and the number of parameters. Moreover, the plastic modulus Hm are func-

tions of applied cyclic shear stress amplitude and undrained strength during monotonic

loading, which must be known before the simulation. This makes the model not suit-

able for simulation of soil responses during irregular or strain-controlled cyclic loading, in

which the applied cyclic stress is not constant or is a response rather than an input.

CASM-c model proposed by Yu et al. (2007a)

Based on the bounding surface framework, the unified critical state CASM model

proposed by Yu (1998) is extended to reproduce the cyclic behavior of sand and clay.

The radial mapping rule is employed with the projection center being fixed at the origin

of the stress space. The plastic flow direction is based on the stress-dilatancy relation

proposed by Rowe (1962) and thus a non-associative flow is used. The plastic modulus

takes different forms for loading, unloading, and reloading:

Kp =



K̄p + h
p
b(1− 1/b)m loading

Hu

(
b
b−1

)
unloading

K̄p +Hrb(1− 1/b)(1 + εpd)
k reloading

(2.18)

where Hu, Hr, h, m and k are model parameters. In particular, the parameter k is

introduced to reproduce the cyclic shakedown. With an increase of the plastic deviatoric

strain εpd, the plastic modulus during reloading gradually increases and thus the model

generates less plastic deformation. When the value of Kp during reloading is sufficiently

large, the plastic deformation occurred in each loading cycle is negligible, and the cyclic

shakedown is reproduced.
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SANICLAY-B model proposed by Seidalinov and Taiebat (2014)

As an extension of the SANICLAY model (Dafalias et al., 2006), Seidalinov and

Taiebat (2014) proposed a bounding surface model to simulate the clay response dur-

ing cyclic loading. As shown in Figure 2.33, the yield surface in the SANICLAY model

is adopted as the bounding surface, which is a rotated and distorted ellipse representing

the plastic anisotropy. An image stress flow rule is employed to define the plastic flow,

i.e., the plastic flow direction is defined as the gradient of the plastic potential at the

image stress. Since the plastic potential surface is different than the bounding surface, a

non-associative flow is yielded. A specific feature of this model is that a moving projection

center is employed, which will be relocated to the current stress upon stress reversal. As

a result, the over-damping caused by the fixed projection center is minimized.

However, As illustrated in Figure 2.39, the image stress flow rule together with the

discrete projection center leads to an undesired early stabilization of the effective stress

path in simulations of undrained cyclic loading, and thereby to a severe underestimation

of pore pressure build-up compared to experimental observations. The influence of this

discrepancy can be significant, as the very low confining stress that arises if large pore

pressure accumulates and the corresponding reduction in stiffness and strength are major

reasons for catastrophic failures of clay and large permanent deformations of geotechnical

facilities. In addition, the post-cyclic shearing response of clays, i.e., one of the central

topics of this study, is also a function of soil’s effective stress and thus the accumulation

of excess pore pressure during cyclic loading.
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Figure 2.39. Comparison between experimentally observed undrained effec-
tive stress path and simulations based on image stress flow rule (Seidalinov
and Taiebat, 2014) with experimental data from (Sheu, 1985)

The plastic modulus of SANCLAY-B model takes the form:

Kp = K̄p +
hp3

0

< b/(b− 1)− s >
(2.19)
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where p0 is the internal variable that controls the size of the bounding surface. To consider

cyclic softening, the shape factor h decreases with the accumulation of plastic deviatoric

strain εpd:

h =
h0

1 + d
and ḋ = ad|ε̇pd| (2.20)

where the parameters h0 and ad define the initial value of h and rate of the cyclic softening.

2.5.4. Comments about bounding surface models for cyclically loaded clay

Many constitutive models developed within the framework of bounding surface plasticity

can reproduce important features of clay behavior under cyclic loading, i.e., the accu-

mulation of deformation and excess pore pressure. The radial mapping rule is the most

common mapping rule employed by these models, and when the projection center is appro-

priately relocated upon stress reversal, the over-damping caused by the fixed projection

center can be minimized. The image stress flow rule is commonly used by these mod-

els and depending on whether a separate plastic potential is assumed, associative and

non-associative flow rule can be rendered. However, this image flow rule may underes-

timate the magnitude of cyclic pore pressure build-up during cyclic loading. Moreover,

cyclically loaded clay can exhibit a complex plastic behavior, which has been referred to

either cyclic softening or cyclic shakedown. Each behavior has been successfully captured

by different constitutive models through modifications of the plastic modulus formula-

tion. Nevertheless, to the author’s knowledge, no model currently can reproduce both the

cyclic shakedown and softening. Furthermore, the clay’s small strain stiffness responses

are usually ignored in the models. Even though, these model performs well for cyclic
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loading that is characterized by large plastic deformation, a soil’s nonlinearity and corre-

sponding stress-strain hysteresis may not be satisfactorily reproduced when elastic strain

is the dominant component during cyclic loading, as illustrated by Papadimitriou and

Bouckovalas (2002). Lastly, while various models have clearly shown the capacity of the

bounding surface framework in terms of reproducing cyclic soil behavior, most of them

does not consider the effects of soil structure and the coupling between destructuration,

permanent strain, and excess pore pressure. These factors are crucial if one wants to

quantify the cyclic degradation of natural clay.

2.6. Modelling strategy for capturing structure effects in natural soils

Two basic ideas for modeling the behavior of structured soil are: (1) the fundamental

role played by the yield phenomenon and (2) the need to consider the observed behavior of

the structured material in relation with that of equivalent structureless material (Leroueil

and Vaughan, 1990; Burland, 1990; Gens and Nova, 1993). For the former, the progres-

sive loss of structure is related to the generation of plastic strains. For the latter, the

constitutive models proposed for structureless soils are enhanced with additional internal

variables that are assumed to deteriorate monotonically with loading and deformation.

This assumption is consistent with the observation that the behavior of structured clay

converges to that of reconstituted clay as a result of destructuration (Burland, 1990).

The main features of these strategies are illustrated in Figure 2.40. The intrinsic sur-

face is the governing surface for the reconstituted clay and can take the form of any yield

surface proposed for the reconstituted clay, e.g., the MCC model (Wood, 1990) or SAN-

ICLAY model (Dafalias et al., 2006). Additional structure-associated internal variables
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Figure 2.40. Schematic diagram of structured surface and intrinsic surface

pm and pt enlarge the intrinsic surface to the structured surface (i.e. the yield surface for

structured clay), expanding the elasticity regime, postponing the onset of yielding and

increasing the material strength, as shown in the aforementioned experimental evidence.

The variable pt represents the true cohesion of the structured soil, and can be linearly

related to pm with a constant coefficient (Gens and Nova, 1993) or be assumed as an in-

dependent internal variable (Horpibulsuk et al., 2010; Suebsuk et al., 2011), or be ignored

(Liu and Carter, 2003; Yu et al., 2007b; Taiebat et al., 2010).

Regardless of the assumption of pt, it and pm will monotonically decrease when plastic

deformation is generated, which is the key for reproducing the high post-yield compress-

ibility and strain-softening in compression and shearing tests, respectively. The deteriora-

tion of these structure internal variables can be solely driven by plastic volumetric strain
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(Liu and Carter, 2003) or a combination of plastic volumetric and deviatoric strain (Gens

and Nova, 1993; Taiebat et al., 2010).

On the wet side of the yield surface, the post-yield behavior is governed by the compe-

tition between the volumetric hardening, encapsulated by the internal variable p0, similar

to the classical critical state models, and the destructuration softening, represented by

the deterioration of pm. Such competition can result in overall strain-hardening, strain-

softening or very complex response (e.g., the unstable plateau of deviatoric stress shown

in Figure 2.15). On the dry side of the yield surface, both dilation and destructuration

result in a shrinkage of the yield surface, which further create a severe post-yield softening

as also shown in Figure 2.15.

To cope with the plastic anisotropy of natural soils, the structured surface can be

assumed to be translated or rotated in stress space. Rouainia and Wood (2000) assumes

a translated structured surface that deviates from the hydrostatic axis. This anisotropy

is related to the amount of structure and evolves according to a kinematic hardening

that associated with the destructuration. This assumption implies that the anisotropy

only exists for the structured surface and not for the intrinsic surface. It also implies

that when all the structure has been removed, the plastic anisotropy will be completely

eliminated. In contrast, the experimental evidence presented in the section 2.3 shows that

similar anisotropy exists in both natural and reconstituted clay samples, given both have

experienced the same stress history. Being more compatible with the above experimental

observation, Belokas and Kavvadas (2010); Taiebat et al. (2010); Sivasithamparam and

Karstunen (2012) assumed that both the intrinsic and structured surfaces are rotated in
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stress space and are characterized by the same rotation hardening variable that evolves

according to the applied stress path.
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Figure 2.41. Schematic diagram of flow rule modifications in structured soil
models: (a) axial translation; (b) friction destructuration

Experimental work has shown that the existence of structure can alter soil’s stress-

dilatancy relation. For instance, Leroueil and Vaughan (1990) and Maccarini (1987)

reported that in CIU TXC tests on an artificial soil, the maximum rate of dilation does

not occur at peak strength, but at significantly larger strains. The work of Schnaid

et al. (2001) and Yu et al. (2007b) show that the dilation of artificially cemented sand

is inhibited by inter-particle bonds. Accordingly, the plastic flow rule in some structured

soil models is formulated to explicitly consider the effect of soil structure (Gens and Nova,

1993; Yu et al., 2007b; Taiebat et al., 2010; Belokas and Kavvadas, 2010). Gens and Nova

(1993) applied the axial translation technique to the plastic potential surface such that it

is shifted to the left with an amount of pt, as shown in Figure 2.41(a). In addition, the
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slope of critical state line (i.e., M value) is assumed to be independent of soil structure.

Considering the stress state A in Figure 2.41(a), which falls between the critical state lines

for reconstituted and structured soil. As indicated by the plastic flow direction vector,

at stress A the dilatant volumetric response would be predicted by the reconstituted soil

model changes to contractive behavior after the translation of the plastic potential surface,

thereby predicting the delay of dilation observed in experiments. Taiebat et al. (2010)

introduced the concept of friction destructuration, which assumed that the degradation of

structure results in a reduction in friction angle. As illustrated in Figure 2.41(b), the slope

of failure line for the structured soil (i.e., Ms) is higher than that for the reconstituted

soil (i.e., M0). The plastic flow vectors plotted at the stress point A indicate that the

delay of dilation also can be reproduced through this strategy.

In summary, the aforementioned modeling strategies have been proven successful in

reproducing essential characteristics of the structured soils, including the enlarged elastic

regime, higher post-yield compressibility, compression line converging to that of reconsti-

tuted soil, strain-softening and so on. However, most of the structured soil models focus

on the analysis of monotonic loading. And only very few models look at the case of cyclic

loading (Liu and Carter, 2003; Seidalinov and Taiebat, 2014). Moreover, based on the

author’s knowledge, none of these models has been evaluated regarding their capacity to

quantify the soil strength degradation during cyclic loading.
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2.7. Summary and Conclusions

This chapter presents a review of the major landslides caused by the 1964 earthquake

and the Bootlegger Cove Formation (BCF) that composes the failed slopes. Then obser-

vations from experimental tests on natural clays are summarized to illustrate the effects

of soil structure on the mechanical behavior of natural clays, followed by a review of clays

behavior during undrained cyclic loading and post-cyclic shearing to show the factors

that affect the strain accumulation during cyclic loading and post-cyclic shear strength.

Lastly, Chapter 2 presents a review of bounding surface models aimed at simulating cycli-

cally loaded clay and constitutive modeling strategies used to reproduce the effects of soil

structure. The following main conclusions can be drawn from this chapter:

(1) Different failure modes were observed in the landslides in Anchorage during the

1964 earthquake, among which the Turnagain Heights landslide is characterized

by a series of retrogression slope failures and others are characterized by a trans-

latory sliding of a soil block. Regardless of the failure mode, these landslides

were all caused by the strength loss of the BCF soil during cyclic loading, which

is more likely related to the cyclic structure degradation of the soft, sensitive

BCF clay, as the silt and sand lenses within the BCF is relatively dense and less

susceptible to a liquefaction.

(2) Regarding the sensitivity of the BCF clay, there is a relatively large variation

of it among different studies and different measurement methods. In particular,

the sensitivity measured by the laboratory vane tests is considerably higher than

those measured by the field vane tests. Moreover, the results of laboratory vane
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tests indicate that the very sensitive clay only occurs in Facies III of the BCF

and not all Facies III is very sensitive.

(3) The soil structure can significantly impact the compression and shearing charac-

teristics of natural clay. In compression tests, the existence of structure leads to

a larger and readily identified yield stress and a considerably higher post-yield

compressibility. As the soil structure progressively deteriorates, the compression

curve of natural clay gradually converges to that of the corresponding reconsti-

tuted clay.

During undrained shearing, more soil structure leads to a higher peak strength,

more brittle response and higher positive excess pore pressures. In drained shear-

ing, stress-strain behavior changes from brittle to ductile as the confining stress

increases. When a soil dilates during drained shearing, the maximum rate of

dilatancy is governed by the structure. The cohesion, which results from inter-

particle bonds, is an important component of peak strength of natural clays. In

both undrained and drained shearing, the existence of soil structure results in a

higher peak mobilized friction.

The plasticity anisotropy is an intrinsic property of natural clay, which pri-

marily results from the anisotropic consolidation history during the initial de-

position, and this anisotropy is retained when clay becomes structured, which

mainly enlarges the size of the yield surface.

(4) Clay exhibits two distinctive types of strain accumulation during undrained cyclic

loading: cyclic softening and cyclic shakedown. The former refers to the condition

for which the strain accumulation rate increases as more loading cycles are applied
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until the soil failure result, due to the excessive deformation, whereas the latter

refers to the condition for which the generation of plastic deformation decreases

with increasing loading cycles until a purely elastic response is reached. Moreover,

the above behavior can be interpreted from the corresponding effective stress

states during undrained cyclic loading and whether clay exhibits cyclic softening

or shakedown is a function of effective stress state, and particularly the effective

stress ratio.

(5) Clay cyclic strength degradation is proportional to the strain levels and excess

pore pressure developed during cyclic loading. Given the same cyclic strain level,

the lower the failure strain in monotonic tests, the greater is the degradation in

shear strength and stiffness during cyclic loading. The pore pressure build-up dur-

ing undrained cyclic loading of a NC clay creates an apparent over-consolidated

state and thus the post-cyclic shearing is similar to the monotonic test on clay

experienced a mechanical unloading.

(6) Constitutive models developed within the framework of bounding surface plas-

ticity can reasonably reproduce the accumulation of deformation and excess pore

pressure in a cyclically loaded clay. The radial mapping rule is the most com-

monly used by these models, and when the projection center is appropriately

relocated upon stress reversal, the over-damping caused by the fixed projection

center can be minimized. The image stress flow rule may underestimate the mag-

nitude of cyclic pore pressure build-up during cyclic loading. Moreover, cyclic

softening and shakedown have been successfully captured by different models.
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Nevertheless, none of them currently can reproduce both cyclic shakedown and

softening.

(7) Two strategies have been proven successful in modeling the behavior of structured

soil during monotonic loading: (a) the progressive loss of structure is related to

the generation of plastic strains; (b) the constitutive models proposed for struc-

tureless soils are enhanced with additional internal variables that are assumed to

deteriorate monotonically with loading and permanent deformation.
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CHAPTER 3

BACK ANALYSIS OF THE TURNAGAIN HEIGHTS

LANDSLIDE
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3.1. Introduction

During the 1964 Alaska earthquake, several major landslides occurred in the city of

Anchorage. The largest one was the Turnagain Heights landslide, which extended more

than 2400 m along the coastline (Shannon & Wilson Inc., 1964; Seed and Wilson, 1967).

Extensive subsurface investigations revealed that the Bootlegger Cove Formation (BCF)

is ubiquitous in the vicinity of Turnagain Heights. The Bootlegger Cove Formation is at

least 30 m thick and consists of a sequence of silty clays and clayey silts with interbedded

silt, silty fine sand, and fine to medium sand and with scattered pebbles and cobbles

(Shannon & Wilson Inc., 1964; Updike and Ulery, 1986; Updike and Olsen, 1988).

Regarding the initiation of the Turnagain Heights landslide, Seed and Wilson (1967)’s

study concluded that the slope failure was triggered by liquefaction of thin sand lenses

located within the BCF, which generated a severely weakened zone extending backward

from coastline to some considerable inland distance. However, in-situ cone penetration

tests (CPT) conducted by USGS (Updike and Olsen, 1988; Olsen, 1989) at a site adjacent

to the scarp of the Turnagain Heights landslide shown that the sandy strata closest to the

landslide slip surface were too dense to liquefy. Also, their work concluded that it was

more likely that the sensitive clay layer of BCF and its loss of strength during the 1964

earthquake were responsible for the landslide initiation.

To evaluate the role of sensitivity in the initiation of the Turnagain Heights landslide,

one must first evaluate the stability of the slope prior to the 1964 earthquake based on

the best estimation of the undrained shear strength within BCF at Turnagain Heights.

Presumably, the pre-earthquake conditions are stable. The cyclic strength of the BCF

must be determined and compared to the cyclic loading imposed by the 1964 event to
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evaluate if a failure would be initiated. Presumably, the cyclic loading will cause degra-

dation of the BCF so that the cyclic strength would be less than that determined based

on monotonic loadings. Quantifying this degradation is central to the main thrust of this

thesis. Once the cyclic strength is exceeded, and movements begin to develop along a

failure surface, then the sensitivity would define a lower bound on the post-peak shearing

resistance and have a significant impact on the deformations of the failure mass.

One can approach the cyclic strength degradation both experimentally and analyt-

ically. Experimentally, one can define monotonic, and cyclic strength of the BCF at

Turnagain Heights and the difference between monotonic and cyclic strength applicable

to the 1964 earthquake will define the amount of degradation that occurred to initiate

failure for that level of earthquake. Analytically, one can compute the stability of the

natural slope before the earthquake and then reduce the strength until the results of

stability analysis indicates that a failure would occur, i.e., the slope would have a factor

of safety (FS) equal to one. The strength reduction would correspond to the amount

of BCF degradation caused by the earthquake. The latter approach will be discussed

in the present chapter. The Turnagain Height slope failed during the earthquake, so

the dynamic effect (e.g., inertial actions) is an important factor affecting the stability.

Pseudo-static method and Newmark method have often been used to estimate the yield

acceleration and consequently permanent displacement of a slope subjected to dynamic

loading (Abramson et al., 2002; Jibson, 2011). Nevertheless, these methods cannot ac-

count for the soil’s stress-strain responses during cyclic loading and thereby yields less

realistic slope responses. Therefore, the stability analysis in this work only consider the
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static loads, which consequently provides an upper bound on the strength reduction of

BCF clay needed to initiate the slope failure.

The sensitive BCF clay has been shown to be quite variable (Shannon & Wilson Inc.,

1964; Mitchell et al., 1973). It is generally thought to be highest in Facies III (Updike and

Olsen, 1988). Work has been done regarding the interpretation of BCF clay sensitivity

(Mitchell et al., 1973; Olsen, 1989; Shannon & Wilson Inc., 1964; Updike and Olsen,

1988). However, as discussed in Chapter 2, a relatively large variation exists within

the results from different studies. Furthermore, most measurements in the above work

were conducted on cores in sampling tubes or trimmed samples (e.g., tube vane test and

torsional vane test), for which the inevitable sampling disturbance and stress release may

render results that are less representative of the conditions in the field.

Accordingly, the sensitivity of BCF clay has been evaluated herein based on in-situ

tests results obtained at Turnagain Heights, and by a correlation between the obtained

sensitivity with soil index properties and chemical composition of pore fluid. This work is

aimed at quantifying the in-situ sensitivity of BCF clay and studying the causes of such

sensitivity.

This chapter is organized in the following manner: the in-situ tests at Lynn Ary Park

and its interpretation are presented; then, the evaluation of the sensitivity of BCF clay

based on in-situ tests and the correlation between the sensitivity, index properties and

pore fluid chemical features are presented. Methods of analysis, model geometry, material

parameters as well as the assumptions used in the slope stability analysis are discussed;

the results of the analysis and its implications are shown at the end.
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3.2. In-Situ Tests at the Lyn Ary Park

The site investigation took place in 2015 at the Lyn Ary Park in Anchorage, Alaska,

which is located at the top of the scarp of the Turnagain Heights landslide, an area where

Shannon & Wilson Inc. (1964) and the USGS (Updike and Olsen, 1988) conducted field

investigations and performed laboratory tests on specimens of BCF soils (Figure 3.1).

Three, approximately 20 m deep boreholes were drilled by GeoTek Alaska (GTA) using

water filled-hollow stem augers. Two boreholes (NWU-1 and NWU-3 in Figure 3.1) were

used to collect 3-inch diameter, Shelby Tubes samples from 6 m below ground surface to

20 m below ground surface. In the third borehole (FV-1 in Figure 3.1), GTA conducted

a field vane shear test (FV) in the clays at 0.76 m (2.5 ft.) interval starting from 6 m

to 20 m below ground surface. As shown in Figure 3.1, USGS had drilled and sampled

two boreholes (B-3 and B-5) and conducted three CPT probes, in close proximity to the

three boreholes. These data were reported in their report USGS 1817 (Updike and Olsen,

1988).

3.2.1. In-Situ Tests Results and Interpretations

Figure 3.2(a) presents the undrained shear strength Su measured by several ways, includ-

ing FV, unconsolidated-undrained (UU) (Shannon & Wilson Inc., 1964) and USGS CPT

probes. To interpret undrained strength from CPT, the following correlation is used:

Su =
qt − σv
Nk

(3.1)

where σv is the vertical total stress; qt is the cone tip resistance and Nk is a cone factor

that varies from 10 to 20 (Robertson, 2009). In this work, Nk = 15 is used, which
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C P T ( U p d i k e  e t  a l . ,  1 9 8 8 )  

N W U - 3
N W U - 1

B - 3  a n d  B - 5  ( U p d i k e  e t  a l . ,  1 9 8 8 )  

F i e l d  V a n e  S h e a r  T e s t  ( T h i s  w o r k )

G e o t e c h n i c a l  B o r e h o l e s :

F V - 1

C - 4  a n d  C - 1 0 8  ( S h a n n o n  a n d  W i l s o n ,  1 9 6 4 )  
N W U - 1  a n d  N W U - 3  ( T h i s  w o r k )  

Figure 3.1. Locations of boreholes, CPTs and field vane, vicinity of Lynn
Ary Park (modified based on the work of Updike and Olsen (1988))

corresponds to a simple shear mode of shearing. Except the UU results and several FV

results collected between elevation 0 m to 3m, good agreement is seen between the two

field results. Moreover, it can be seen that the normalized undrained strength Su/σ
‘
v,

is about 0.25 below elevation 5 m. This strength data trend suggests that BCF soil

at the tested site is overconsolidated at the top of the layer, and gradually becomes

normally consolidated with depth. This interpretation is supported by the consolidation

tests conducted by Shannon & Wilson Inc. (1964), which concluded that the upper clay

is over-consolidated as a result of desiccation.

To facilitate the stability analysis discussed later, an idealized stratigraphy for Tur-

nagain Heights is suggested (Figure 3.2 (a)), in which the BCF clay is divided into four
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Figure 3.2. In-situ tests based soil strength properties and stratigraphy at
Turnagain Heights area: (a) undrained shear strength; (b) FV remolded
strength and CPT side friction; (c) correlated friction angle from CPT

sublayers based on its undrained shear strength variation. In the upper stiff clay layer,

the undrained strength decreases with depth, while the strength in the upper soft clay

layer is relatively constant. In both the lower soft clay and lower stiff clay layer, the

undrained strength increases with depth. Additionally, the dashed line in Figure 3.2 (a)

is the idealized strength profile used in stability analysis, and the corresponding values

are summarized in Table 3.1.

Also, Figure 3.2(a) shows that the in-situ water table at Turnagain Height is assumed

to be at the elevation of 17.5 m, which is suggested by the USGS report (Updike and

Olsen, 1988) and is confirmed by the borehole logs of the Northwestern field investigation.

By studying the strength of samples obtained in Turnagain Heights slide area, Seed and
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Wilson (1967) estimated that the position of the slide surface varied between 1.5 and 4.6

m in elevation (shaded band in Figure 3.2 (a)), which is consistent with the location of

the weakest material found at the Lynn Ary Park.

Table 3.1. Soil properties used in the stability analysis of Turnagain Heights slope

Layer/
Sublayer

Thickness
(m)

Drainage
condition

Unit
weight

(kN/m3)

Su

(kPa) a
Friction
angle (◦)

Perme-
ability
(cm/s)

Sand 6.1 Drained 19.5 - 43 1E-3
Upper stiff clay 6.1 Undrained 19.5 440.4 -31.5z - 1E-7
Upper soft clay 5.2 Undrained 19.5 55.8 - 1E-7
Lower soft clay 10.7 Undrained 19.5 18.5 +2.5z - 1E-7
Lower stiff clay 8.5 Undrained 19.5 -338.0 +15.0z - 1E-7

Lenses (1) 0.7 Drained 19.5 - 36 1E-3
Lenses (2) 1.2 Drained 19.5 - 36 1E-3

Note: a z is the depth below the ground surface

Figure 3.2 (b) compares the remolded undrained strengths from the FV and the side

friction fs from the cone probes. Given the large shear strains that occur during pene-

tration testing as the probe moves past at point, the fs values should reflect some sample

disturbance. The FV values tend to be near the lower bound of the CPT values, and are

closer to the CPT values when the shear strength is lower. The significant point made

in this figure is that the USGS reported that the BCF clay from 6.8 to 5.3 m and 3.8 to

2.3 m in elevation had zero remolded strength at this location, which is based on tests

made on the tube samples they recovered (Updike and Olsen, 1988). This clearly is not

the case based on the data in Figure 3.2 (b).
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Figure 3.2 (c) shows the profile of soil friction angle φ based on its correlation with

the CPT results (Kulhawy and Mayne, 1990):

φ = 17.6 + 11.0log[(qt/pa)(σ
′
v/pa)

0.5] (3.2)

where pa is the atmosphere pressure and σ′v is the vertical effective stress. It is found that

the friction angle for the top sand layer is around 43◦, which suggests the material is dense

to very dense. Furthermore, Figure 3.2 (c) identifies the location of two sand/silt lenses,

whose correlated friction angle is remarkably higher than its neighboring zones consisting

of cohesive BCF. These locations of the lenses are consistent with the visual interpreta-

tion of collected samples of USGS (Updike and Olsen, 1988) and the Northwestern field

investigation. In general, the friction angles for these lenses vary from 33◦ to 40◦.

3.3. The Sensitivity of BCF Clay

3.3.1. The Sensitivity Interpreted from In-situ Tests

Figure 3.3 presents normalized USGS CPT data in the soil classification chart proposed

by Robertson (1990), which categorizes soil based on their in-situ behavior instead of

their grain-size distribution and Atterberg limits. Two parameters are used: normalized

tip resistance Qt and normalized side friction Fr:

Qt =
qt − σv
σ′v

; Fr =
fs

qt − σv
× 100% (3.3)

In Figure 3.3, the CPT data measured at different sublayers are presented as different

symbols. Given the location of the slide surface, the lower stiff clay is not considered here
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Figure 3.3. Soil behavior classification based on the normalized CPT prop-
erties (classification chart adopted from Robertson (1990))

for the purpose of clarity. It can be seen that most of the data fall into the soil category 3

and 4, which are labeled as clay, silty clay or clayey silt. This result is consistent with the

visual classification of the collected samples from the same site as well as previous findings

(e.g., Shannon & Wilson Inc. (1964); Hansen (1965); Updike and Olsen (1988)). The data

points for the upper stiff clay mostly fall into the zone representing over-consolidated

soil. Also, data from soft clay layers (i.e., upper soft and lower soft layer) mostly fall

into the zone that represents the normally consolidated soil. This information of stress
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history matches the interpretation of strength mentioned above and consolidation tests

results (Shannon & Wilson Inc., 1964). The most significant finding from Figure 3.3

is the fact that most of the data points fall within the category representing soil with

small or negligible sensitivity, and none of the points falls in the zone of soil category 1,

which is denoted as sensitive, fine-grained soil. While both CPT measurement and the

generalization of the chart in Figure 3.3 involve some uncertainties, the observation above

provides a strong indication that BCF clay at this location may not be as sensitive as that

has been previously concluded by other research (Shannon & Wilson Inc., 1964; Seed and

Wilson, 1967; Mitchell et al., 1973). Besides, several data points lie in the zone 5, which

agrees with the existence of silt or sand lenses within BCF clays.

Results shown in Figure 3.3 qualitatively evaluates the sensitivity of BCF clay, while

the quantification of sensitivity based on FV and CPT tests is presented in Figure 3.4. It is

worth mentioning that the sensitivity from CPT is interpreted based on the assumption

that the remolded strength is equal to the side friction, which has been proved to be

reasonable by Lunne et al. (1997) and Farrar et al. (2008). Besides the in-situ tests at

the Lynn Ary Park, Figure 3.4 also includes FV results reported by Shannon & Wilson

Inc. (1964), obtained from a bore hole near Turnagain Heights and outside the zone of

the 1964 landslide, i.e., to avoid the influence of soil disturbance caused by the landslide.

FV results in Figure 3.4 shows that the sensitivity of BCF clay generally increases

with depth in the upper stiff and upper soft clay layers. Moreover, the BCF stratum

that has the lowest strength value (i.e., the upper soft clay), tends to have the highest

sensitivity, which was also reported by previous research (Hansen, 1965; Olsen, 1989).

Quantitatively, FV results suggest that the sensitivity of the upper stiff clay layer varies
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Figure 3.4. BCF clay sensitivity interpreted from in-situ tests at the Lynn
Ary Park

from 1.6 to 8.1 with the averaged value being 3.6, and for the upper soft clay, its sensitivity

ranges from 1.7 to 9.8, with averaged value being 5.0. Concerning the lower soft clay and

lower stiff clay layers, no decisive trend is seen due to the lack of data at deeper locations.

Nevertheless, available data indicate a trend of decreasing sensitivity with depth and this

tendency is consistent with the previous study which showed that the sensitivity of BCF

clay is lower at lower elevations (Shannon & Wilson Inc., 1964).
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Compared with the FV, the sensitivity interpreted from the CPT exhibits much larger

scattering, which prevents a general trend observed regarding the variation of sensitivity.

Nevertheless, similar to the FV tests, the CPT results indicate that the sensitivity of the

upper stiff and soft clay layers is higher than that of the two lower clay layers. Further-

more, it can be seen that FV and CPT give a similar range of sensitivity for the upper

stiff clay, but for the upper soft clay layer, the CPT interpretation is considerably lower.

This discrepancy may reflect the different degree of sample disturbance associated with

each test method. The above difference may also be attributed to the CPT’s inherent

loss of accuracy on side friction measurement when the CPT is used in clay with high

sensitivity (Robertson, 2009).

Most importantly, the interpretation of the in-situ tests shows that the maximum

sensitivity of BCF clays at the Lynn Ary Park is less than 10 and the majority of data

fall within the range from 2 to 6, which suggests the measured BCF clay is not very

sensitive.

3.3.2. Correlation Between Sensitivity and Index Properties

The sensitivity of clay is closely related to its index properties and in particular, a high

liquidity index is one of the characteristics of very sensitive clay (Bjerrum, 1954; Mitchell,

1993). Therefore, the above distribution of sensitivity is compared with the distribution

of index properties of the BCF soil specimens collected at Lynn Ary Park (Updike and

Olsen, 1988) and other Turnagain Heights areas (Shannon & Wilson Inc., 1964), as shown

in Figure 3.5. The selected index properties are natural water content and liquidity

index. Figure 3.5 shows that most of the tested specimens has a liquidity index that
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Figure 3.5. Correlation between BCF clay’s sensitivity with index proper-
ties: (a) sensitivity interpreted from in-situ tests; (b) natrual water content;
(c) liquidity index

is less than one. Given the high correlation between sensitivity and liquidity index,

this fact suggests that the proportion of BCF clay that has a high sensitivity is low,

which is also supported by the results of laboratory vane shear tests conducted during

the post-earthquake investigation (Shannon & Wilson Inc., 1964). In particular, except

three outliers, the tested specimens collected from Lynn Ary Park (both by USGS and

Northwestern) all have a liquidity index lower than one. This observation is consistent

with the fact that the sensitivity interpreted from the in-situ tests at the same site is

relatively low. Additionally, the variation of the liquidity index increases with depth

in the upper stiff and upper soft clay layers and decreases with depth in the two lower
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layers, as does the sensitivity. Since Figure 3.5 includes specimens collected from locations

other than Lynn Ary Park, it is reasonable to assume that the sensitivity variation trend

obtained from the in-situ tests at Lynn Ary Park can be applied to other locations of

Turnagain Heights. Regarding the natural water content, no clear and consistent trend

is observed.

3.3.3. Correlation Between Sensitivity and Pore Fluid Chemical Composition

The chemical composition of pore fluid contains important information regarding the

causes of sensitivity, as the differences between the composition that may develop at the

time of formation of clay deposit and the present is a major factor that contributes to the

sensitivity of natural clays (Mitchell, 1993). The results of pore fluid chemical analysis

of BCF clay conducted by the University of California, Berkeley (Mitchell et al., 1973)

and USGS (Updike and Olsen, 1988) are summarized in this work. The specimens used

in chemical analysis by USGS are from the same site as the Northwestern in-situ tests.

Accordingly, a direct comparison is made between the sensitivity distribution in section

3.3.1 and the chemical composition concentration profile at the same site, which is aimed

at providing more insights regarding the causes of the sensitive nature of BCF clays.

Physicochemical analyses conducted at the University of California, Berke-

ley

As part of the post-investigation of the 1964 Alaska earthquake, Mitchell et al. (1973)

conducted a series of chemical analysis on six BCF clay samples collected from the areas,

where the 1964 earthquake triggered landslides. The results of the analyses are sum-

marized in Table 3.2. Based on these results, Mitchell et al. (1973) suggested that the
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leaching of salt from the pore water and the introduction of dispersing agents were the

two major reasons for the high sensitivity of BCF clays.

Table 3.2. Chemical characteristics of six Bootlegger Cove Formation clay samples
(Mitchell et al., 1973)

Area
Depth
(m)

Consis-
tency

Water
content
(%)

Sensi-
tivity

pH
Pore water
salt content

g/liter

Cations in solution

Ci/ΣCi =%

Na+ Ca 2+ Mg2+

Fourth Avenue 23.8 Sensitive 35 14 10.2 5.8 29 66 5
Fourth Avenue 38.1 Stiff 29 low 10.2 2.8 36 61 3

L Street 7.3 Sensitive 38 >20 9.1 2.7 26 40 34
L Street 10.1 Stiff 29 11 8.3 4.2 29 67 4

Turnagain 22.4 Sensitive 36 16 10.3 3.3 30 45 25
Turnagain 35.7 Stiff 21 Low 9.9 2.8 31 58 11

Salt content and composition of pore fluid were seen as evidence to support that

considerable leaching of salt had taken place within BCF clays. Specifically, Table 3.2

shows that the salt content in BCF clays pore fluid ranged from 2.7 to 5.8 g/liter and

this value is remarkably lower than 36g/liter, the typical value of seawater (Sverdrup

et al., 1942). This evidence may indicate that extensive leaching has occurred within

BCF clay, if the BCF clay was initially deposited in a marine environment. Nevertheless,

the depositional environment of the BCF is in serious doubt, if not dispute (Hansen,

1965). The environment has been considered to be glaciolacustrine, marine or estuarine by

different research (Miller and Dobrovolny, 1959; Schmidt, 1963; Karlstrom, 1964; Smith,

1964; Schmoll et al., 1972). Moreover, composition analyses showed that calcium is the

most abundant cation, which is followed in order by sodium and magnesium. Groundwater

studies in the Anchorage area showed that the principal source of groundwater is an aquifer
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that contains calcium-magnesium bicarbonate. Considering the possible interconnection

between the above aquifer and sand/silt lenses within BCF clays, Mitchell et al. (1973)

suggested that calcium and magnesium have replaced the initially predominant sodium

in the pore fluid of BCF clay via groundwater leaching.

The abnormally high pH values (8.3 to10.2) was seen as an indication of the existence of

dispersing agents. The dispersing agents can create a favorable condition for clay particle

flocculation and thereby high sensitivity. Regarding the origin of this dispersing agent,

Mitchell et al. (1973) suggested that it was created by organic deposits and transferred

via groundwater within sand/silt lenses.

Another important observation from Table 3.2 is that no significant difference con-

cerning the salt content and the pH value was observed between those insensitive and

sensitive specimens. Since low sensitivity was observed in specimens that were recovered

from lower elevations, Mitchell et al. (1973) suggested that their low sensitivity can be

partially attributed to the low water content induced by high effective stress. However,

the significantly different sensitivity between specimens is not likely to be explained by

the variation of water content presented in Figure 3.5. Therefore, besides leaching of salt

and dispersing agents, there are probably other reasons that account for the sensitivity

of BCF clays.

Chemical analysis conducted by USGS

USGS conducted chemical analysis on the pore fluid obtained from samples from their

two borings at the Lynn Ary park. The chemical composition and pH values for pore

water reported by Updike and Olsen (1988) are summarized in Table 3.3.
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Table 3.3. Chemical composition and pH value of pore water extracted from
BCF clay samples collected at the Lynn Ary park (Updike and Olsen, 1988)

Elevation (m) pH
Concentration (mg/liter)

Na+ K+ Ca2+ Mg2+ Cl− SO42− HCO3− organic carbon

-9.82 7.99 726 20 16 27 23 240 1685 34
-5.82 8.11 741 22 16 24 20 60 1928 69
-1.21 7.91 647 16 15 16 14 546 1116 49
2.04 8.25 535 15 14 18 18 250 1052 54
5.32 8.19 510 13 10 15 25 456 723 20
5.63 8.16 496 13 12 15 14 596 630 0
6.08 8.18 496 12 14 18 10 456 694 0
6.84 8.21 546 19 15 22 12 116 1290 39
7.31 8.17 550 17 18 25 15 113 1291 69
8.84 8.11 493 18 31 26 21 216 1045 107
10.14 8.24 358 33 70 42 23 413 722 118
12.28 8.02 258 34 110 126 85 920 400 8

Table 3.4. Comparison between the composition of
seawater and the composition of the pore water of
BCF clay samples collected at the Lynn Ary park

Ion
Seawater ∗ Pore water Ratio seawater/

pore water
meq/L meq/L

Na 459 11 ∼ 32 14 ∼ 42
K 10 0.3 ∼ 0.9 11 ∼ 33

Mg 106 1.2 ∼ 10.3 10 ∼ 88
Ca 20 0.5 ∼ 5.5 4 ∼ 40
Cl 535 0.3 ∼ 2.4 223 ∼ 1911

SO4 55 1.2 ∼ 19.2 3 ∼ 46
HCO3 2.3 6.5 ∼ 31.6 0.07 ∼ 0.35

Note: * values taken from Sverdrup et al. (1942)

Table 3.4 compares the concentration of chemical composition in pore fluid of BCF

specimens collected at the Lynn Ary Park and the seawater. Except bicarbonate, the

concentration of all ions in pore fluid is significantly lower than the averaged level of
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seawater. Again, this fact may support the existence of previous salt leaching, but only

when the BCF clay at the Lynn Ary Park can be confirmed to deposit in marine or at

least estuarine. Two significant differences in chemical analysis results reported by USGS

and UC Berkely are the pH value and dominant cation of concentration. pH value of

BCF specimens collected at the Lynn Ary Park is noticeably lower than that reported by

Mitchell et al. (1973). Also, sodium’s predominance in pore fluid that is found by USGS

is in contrast with the analysis results of Mitchell et al. (1973), which shows calcium is

the most abundant cation. These differences may be attributed to the spatial variation,

or possible physiochemical reactions that happened between the above two investigations,

i.e., from the 1960s to 1980s.

To provide more insights regarding the cause of the BCF sensitivity, the variation of

the sensitivity interpreted from the above in-situ tests is compared with the concentration

profile of pore water chemical composition reported by USGS.

Figure 3.6 shows the sensitivity variation, the concentration profile of total cation

(i.e., CNa + CK + CCa + CMg ) and associated percent monovalent cations. Note that all

concentrations Ci are in the unit of milliequivalents per liter, as suggested by Mitchell

(1993). Following Mitchell (1993), the percent monovalent cations is defined as:

CNa + CK
CNa + CK + CCa + CMg

× 100% (3.4)

It can be seen that the total cation centration in the upper stiff clay and upper soft

clay layer is relatively small, and this concentration begins to increase with depth in the

lower soft clay and lower stiff clay layers. Such a profile correlates well with the variation

of BCF sensitivity that is interpreted from the in-situ tests at the Lynn Ary Park, in
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Figure 3.6. Correlation between BCF clay’s sensitivity with chemical com-
ponents concentration: (a) sensitivity interpreted from in-situ tests; (b)
total cation concentration; (c) monovalent cation concentration percent

which clays in the upper stiff clay and upper soft clay layer has a higher sensitivity,

while the sensitivity of the lower soft clay and lower stiff layer is lower and tends to

decrease with depth. Moreover, in Figure 3.6 (b), one can observe two local minimum

concentrations of total cation at the elevation around 10 m and 5 m. These two elevations

correlate well with the elevations where the interpreted sensitivity is higher than that at

the adjacent elevations. The correlation in Figure 3.6 suggests that the sensitivity of BCF

clay is partially caused by the loss of cations in pore fluid, which accordingly increases the
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interparticle repulsion. The stronger interparticle repulsion can lead to deflocculation of

clay on mechanical remolding and thereby the reduction of remolded strength (Mitchell,

1993; Lessard and Mitchell, 1985). Figure 3.6(c) shows that the increasing sensitivity with

depth in the upper stiff and soft clay layers is also correlated well with a gradual increase

of percent monovalent cation with depth. This correlation suggests that in addition to the

lower cation concentration, the sensitivity of BCF clay is also likely to be caused by the

selective removal of divalent cations (e.g., Mg 2+ and Ca 2+) from pore fluid, which can

increase the repulsion force between clay particles (Moum et al., 1971; Mitchell, 1993). It

is worth mentioning that the percent monovalent cation remains relatively high within the

relatively insensitive layers (i.e., the lower soft clay and lower stiff clay layers). This fact

suggests that the relative amount of monovalent and divalent cations may significantly

affect the sensitivity of clay only when the pore fluid cation concentration is relatively

small. This explanation is supported by the fact that good correlation between sensitivity

and the percent of monovalent cations was found for clay with low salinity pore fluid

(Moum et al., 1971; Lessard and Mitchell, 1985).

In summary, the interpretation of in-situ tests and index properties shows that the

BCF clay at the Lynn Ary Park is not very sensitive, i.e., the maximum sensitivity is 10

and majority of data fall between 2 and 6.

3.4. Stability Analysis of the Turnagain Heights Slope

3.4.1. Analysis Model, Method, and Soil Parameters

The stability analysis is conducted by slice methods in a 2D stability analysis software,

i.e., Slide (Rocscience Inc., 2015). The geometric model is based on a typical profile at



130

the east section (the same as Lynn Ary Park) of the Turnagain Heights slope before the

1964 earthquake (Figure 3.7 (a)), which was reconstructed by Seed and Wilson (1967).

In this profile, the slope of the upper part of the clay layer is steeper than that of the

lower part, which confirms the higher strength of the top BCF clay shown in Figure 3.2.

Figure 3.7 (b) shows the geometric model used in the analysis, in which the BCF clays

have been further partitioned based on the idealized stratigraphy shown in Figure 3.2.

Different slopings are assigned to different portions of the slope to reproduce Turnagain

Heights as realistically as possible. Also, the effects of interbedded sand/silt lenses on the

slope stability are studied in this work. Given the fact that the lenses found at Turnagain

Heights are not continuous throughout the BCF clay deposit (Shannon & Wilson Inc.,

1964; Updike and Olsen, 1988), two extreme scenarios are modeled, i.e., no lenses and

continuous lenses. The real situations shall fall between the above two limits. Figure 3.7

(b) depicts the locations and thickness of lenses in the analysis model, which is based on

the interpretation shown in Figure 3.2 (b). The silt layer (i.e., mud) shown in Figure 3.7

(a) is relatively thin and has a low strength due to low confinement (i.e., submerged under

the water). As a result, its effect on the stability of the Turnagain Heights is expected to

be minor. Moreover, a reliable measurement of its properties is not available. Therefore,

this silt layer is not modeled in the analysis. The phreatic surface (i.e., groundwater

table) and pore pressure distribution used in calculating factor of safety are obtained by

the seepage analyses in Slide. A fixed total head condition is assigned to the left model

boundary, which is equivalent to the water table shown in Figure 3.2, i.e., elevation 17.5

m. Meanwhile, boundary a-b-c shown in Figure 3.7 (b) is also assigned a fixed total head,

which is based on the water table of the pond in the model, i.e., elevation 3 m. The values
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of permeability used for various soils layers are summarized in Table 3.1. An example

of computed phreatic surface and pore pressure distribution is given in Figure 3.7 (c), in

which pore pressure contours range between 50 kPa and 350 kPa with the interval being

50 kPa.
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Figure 3.7. Slope stability analysis model: (a) Turnagain Heights slope
profile before the 1964 earthquake (adopted from Seed and Wilson (1967));
(b) analysis model geometry; (c) phreatic surface and pore pressure contours
based on seepage analysis
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Figure 3.8. Slip surface search methods: (a) circular slip with auto grid
search; (b) non-circular slip with block search

Spencer’s method and Morgenstern-Price (M-P) method are used in the stability anal-

ysis to account the effects of interslice shear force. For M-P method, the interslice force

function is assumed to be half sine. An extensive review of both methods, their as-

sumptions and limitations are given by Abramson et al. (2002). Both circular slip and

non-circular slip surface are checked in this work, as no decisive evidence is present regard-

ing the shape of the very beginning slope failure in the regression landslide at Turnagain

Heights. As shown in Figure 3.8, grid search and block search are used to find the global
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minimum factor of safety (FS) for circular and non-circular slip surfaces, respectively. In

the block search, line search objects are assigned to the elevations where the failure surface

will be most likely to occur. Regarding the applying loads, only static one is considered

in the current analysis. In other words, no inertial effects induced by the 1964 earthquake

is taken into account, whose implications will be discussed later.

As Turnagain Heights slope failed within a relatively short period (Shannon & Wil-

son Inc., 1964), BCF clay layers are assumed to be undrained in the analysis while sand

layer and lenses are assumed to be drained due to their permeability. The corresponding

undrained shear strength and effective friction angle are given in Table 3.1. These param-

eters are considered to represent the in-situ soil strengths before the 1964 earthquake.

After evaluating the stability of the Turnagain Heights slope before the 1964 earth-

quake, the strength of BCF clay is progressively reduced in the analysis. The strength

reduction needed to initiate the slide is obtained when the computed FS equals to one or

is close enough to one. Considering the estimated location of slip surface in Figure 3.2,

the strength reduction is only conducted in the upper stiff clay and upper soft clay layer.

Three cases regarding BCF strength reduction are analyzed: (a) strength reduction in the

upper stiff clay layer; (b) strength reduction in the upper soft clay layer; (c) simultaneous

strength reduction in the upper stiff and soft clay layers. It is noteworthy that for the

last case, the reduction amount in both layers is the same.

3.4.2. Slope Stability Before The 1964 Earthquake

Figure 3.9 presents the stability analysis results of the Turnagain Heights slope without

any strength reduction, which provides an assessment of the slope stability condition
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Figure 3.9. Stability FS of Turnagain Heights slope before the 1964 earth-
quake: (a) circular slip surface (no lenses); (b) circular slip surface (with
lenses); (c) non-circular slip surface (no lenses); (d) non-circular slip surface
(with lenses)

before the 1964 earthquake. Since Spencer’s and M-P methods give very close results

(i.e., the maximum difference in FS is 0.02), only the results based on Spencer’s method

is presented. Note that both the presence of lenses and the non-circular slip surface

assumption tend to increases the slope stability. However, the resulted difference in

stability FS is not significant, i.e., the computed FS varies from 1.30 to 1.38. The relatively

safe condition implied by such FS is confirmed by the fact that the slope did not fail



135

during three major earthquakes from 1943 to 1954, whose magnitude is from 6.3 to 7.3

and epicentral distance varies 35 to 60 miles (U.S. Coast and Geodetic Survey, 1964).

Additionally, the slope survived through the first two minutes of the 1964 earthquake.

Most recently, in 2016 an earthquake with a magnitude of 7.1 and epicentral distance of

162 miles hit Anchorage and no failure was reported around the Turnagain Heights area.

3.4.3. Required Strength Reduction in BCF Clays for Landslide Initiation

Figure 3.10 presents varying FS obtained from stability analyses when the strength is

gradually reduced in the upper stiff clay and upper soft clay layers. The required strength

reduction for slope failure initiation is also labeled in the figure. It can be seen that two

different slice methods give very close FS, and the required amount of strength reduction

is slightly different under different assumptions regarding the presence of lenses and slip

surface shape. Quantitatively, to independently trigger the landslide, the needed strength

deterioration for the upper stiff clay is 68% to 76%, depending on the slip surface shape

and whether lenses are present. On the other hand, a higher amount of strength reduction

in upper soft clay layer (i.e., 80% to 88%) is required to initiate the slope failure.

Also included in Figure 3.10 is the range of the sensitivity interpreted from in-situ

tests as mentioned above (gray band) for the upper stiff clay and upper soft clay layers.

It is clear that the required strength reduction is compatible with the measured sensitivity

at the corresponding layer, which implies the degradation of clay during earthquake and

consequent strength loss is sufficient to lead to the landslide at Turnagain Heights, even

if other actions (e.g., inertia force during earthquake) are not considered. Concerning the

effects of slip surface shape and lenses, the presence of lenses tends to increase the required
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Figure 3.10. Required strength reduction for slope failure initiation: (a)
reduction in upper stiff clay (no lenses); (b) reduction in upper stiff clay
(with lenses); (c) reduction in upper soft clay (no lenses); (d) reduction in
upper soft clay (with lenses)

strength reduction, while among the four cases considered, there is not a dominant failure

slip surface mode. In other words, whether one slip surface shape is more critical than the

other depends on whether lenses are present and in which layer the strength deterioration

occurs.
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Figure 3.11. Required strength reduction for slope failure initiation: (a)
simultaneous reduction in upper stiff clay and upper soft clay (no lenses);
(b) simultaneous reduction in upper stiff clay and upper soft clay (with
lenses)

Figure 3.11 shows the needed strength reduction to initiate slope failure when strength

in both the upper stiff and soft clay layers is reduced simultaneously. It is worth mention-

ing that the figure only shows the results based on the Spencer method, as both methods

give very close results. It can be seen that 37% to 43% strength degradation is required

to initiate the slope failure, which is lower than that when the reduction is conducted in

an individual layer, as one would expect. Also, this required strength loss is compatible

with the sensitivity of BCF clay.

3.4.4. Effects of Earthquake Induced Excess Pore Pressure in Lenses

Seed and Wilson (1967) attributed the initiation of Turnagain Heights landslide to the

liquefaction of lenses within BCF clays. This conclusion motivates a study regarding the

effects of excess pore pressure in lenses on the stability of Turnagain Heights. In the SLIDE
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Figure 3.12. Required strength reduction for slope failure initiation with
and without earthquake-induced excess pore pressure in sand/silt lenses:
(a) reduction in upper stiff clay; (b) reduction in upper soft clay

software, excess pore pressure cannot be assigned manually, but is indirectly controlled by

the B-bar method (Rocscience Inc., 2015). In this analysis, B-bar value of 1.7 and 2.0 are

assigned to upper and lower lenses, respectively, which leads to an excess pore pressure

ratio Ru of around 1.0. Such excess pore pressure is high enough to create a zero strength

(i.e., liquefaction) in both lenses. Figure 3.12 compares the required strength reduction

for landslide initiation under the two conditions: (1) only pore pressure determined by

seepage analysis is considered (i.e., static Ue in Figure 3.12); (2) the above pore pressure

is superposed with earthquake-induced excess pore pressure (i.e., EQ Ue in Figure 3.12).

In such a comparison, only non-circular slip surface is considered, since failure surface

that concentrates in a thin, weak layer is the most critical failure mode if the landslide is

triggered by the liquefaction of lenses. Besides, only FS computed by Spencer’s method

is presented.
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Figure 3.12 shows that the initial stability FS has decreased when the excess pore

pressure above is considered, which is a result of the loss of resistance in lenses. However,

the presence of excess pore pressure does not significantly alter the required amount of

strength degradation in BCF clay for the sake of failure initiation, i.e., the maximum

change is 3%. This result suggests that the liquefaction of lenses may not be the primary

reason that triggered the Turnagain Heights landslide, since even when the lenses have

lost all their resistance, the Turnagain Heights landslide could not have happened with-

out significant reduction of the strength of BCF clay. It is worth mentioning that this

conclusion is made under the particular material strength and lenses locations interpreted

from the in-situ tests at the Lynn Ary Park.

3.4.5. Slip Surface at Failure

The computed slip surface at failure induced by strength degradation are presented in

Figure 3.13 (circular slip surface) and Figure 3.14 (non-circular slip surface). For the

purpose of comparison, the estimated location of slip surface (Seed and Wilson, 1967)

is shown as the hatched zone. It is found that when strength reduction only occurs

within the upper stiff clay layer, the computed circular and non-circular failure surface

are restrained in the top sand layer and upper stiff clay layer. This depth of failure surface

is inconsistent with the estimated location of sliding surface by Seed and Wilson (1967),

which implies that the failure of Turnagain Heights is not likely to be solely caused by

the strength reduction in the upper stiff clay layer. Moreover, in the experiments on BCF

clay that belongs to the same geological Facies (i.e., Facies IV) as the upper stiff clay,

negligible strength reduction was observed during post-cyclic shearing, after soil specimens
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Figure 3.13. Circular slip surface at failure: (a) reduction in upper stiff clay
(no lenses); (b) reduction in upper stiff clay (with lenses); (c) reduction in
upper soft clay (no lenses); (d) reduction in upper soft clay (with lenses);
(e) simultaneous reduction in both layers (no lenses); (f) simultaneous re-
duction in both layers (with lenses)
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Figure 3.14. Non-circular slip surface at failure: (a) reduction in upper
stiff clay (no lenses); (b) reduction in upper stiff clay (with lenses); (c)
reduction in upper soft clay (no lenses); (d) reduction in upper soft clay
(with lenses); (e) simultaneous reduction in both layers (no lenses); (f)
simultaneous reduction in both layers (with lenses)
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had experienced 40 loading cycles of CSR = 0.2 (Zapata-Medina, 2012). This evidence

also supports the above implication. On the other hand, the failure surface induced

by gradually decreasing strength in the upper soft clay layer or simultaneous strength

reduction in both layers is in good agreement with the estimated sliding surface in the

field, regardless of the assumptions of slip surface shape and lenses. The above findings

imply that to form a sliding surface that extends to the reasonable depth determined by

the field investigation, the strength reduction in the upper soft clay layer is necessary. It

is worth mentioning that the above slip surface are computed under the condition that

inertia forces during earthquake is not considered. It is likely that the location of slope

failure surface is also affected by this inertia actions.

3.4.6. Implications Regarding Degradation During the Earthquake and Limi-

tations of the Analysis

The above stability analysis provides an estimation of the strength reduction of the BCF

clay layers needed to initiate the Turnagain Heights landslide. The results are obtained

under the assumption of static failure, as the inertial actions induced by the earthquake

have not been considered. This simplification implies less reduction than the estimation

in this work may be sufficient to trigger slope failure during the earthquake. Accordingly,

the analyses results (i.e., 68% to 76% reduction for the upper stiff clay, 80% to 88%

reduction for the upper soft clay, and 37% to 43% uniform reduction for both layers) are

the upper bound on the BCF clay strength degradation during the 1964 earthquake.

For the purpose of simplicity, the present analysis is based on the assumption that

the strength of clay is homogeneously reduced throughout a single layer. Accordingly, the
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required strength reduction obtained in the analysis represents an averaged value for the

whole layer. Nevertheless, non-uniform strength deterioration within a layer is possible.

In other words, a portion of clay may exhibit higher strength reduction than that at other

parts of the same layer. This possibility implies that, to trigger the landslide, strength

reduction that is higher than the averaged value presented in this work, may be required

at some local locations of a layer.

The strength degradation during cyclic loading is a function of cyclic loading param-

eters (e.g., amplitude and number of cycles) and stress-strain behavior of natural clay.

Therefore, to study the above non-uniform strength degradation, future work can be con-

ducted in three steps: first, one need to conduct a wave propagation analysis to obtain

the time history of cyclic shear stress, particularly the number of significant cycles and

an equivalent shear stress, at representative locations of a slope, based on the ground

motion at the bedrock. Then, a constitutive model can be used to quantify the strength

degradation of natural clay at different locations of the slope in accordance to particular

cyclic loading. Finally, the computed available strength after cyclic loading can be input

into the slope stability analysis to estimate the stability condition of the slope.

Additionally, given the stress-strain behavior of sensitive clays are characterized by

strain-softening, the Turnagain Heights landslide may result from a progressive failure

(Bjerrum, 1967; Peck, 1967). In other words, local soil element failure leads to a growth

of strains of the neighboring soils, which consequently induces their strength degradation

and failure. Similar to a chain reaction, the propagation of the collapse zone eventually

causes the failure of the total slope. Such progressive failure can not be modeled by

the analysis method (i.e., slice method) in this work, as stability condition (i.e., FS) is
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constant along the slip surface. A suitable method to model progressive slope failure will

be the finite element method, for instance, the work of Eberhardt et al. (2004). Also,

the finite element method can more reasonably reproduce soil behavior during dynamic

loading (e.g., earthquake). In general, a reasonably accurate finite element analysis of a

geotechnical problem heavily relies on the constitutive model that reproduces the stress-

strain behavior of soil. In this specific case, the basic requirements for the model is

to reasonably reproduce the cyclic behavior of clay and consequently quantify the clay

strength loss during cyclic loading.

It is clear that at the core of both the study of uniform strength degradation in

BCF clay layer and the finite element simulation of the progressive slope failure during

dynamic events is a constitutive model that can quantify the cyclic strength degradation

of natural clay during cyclic loading. The development and validation of such a model

will be presented in Chapter 4 and Chapter 5.

3.5. Summary and Conclusions

This chapter presents a back analysis of an upper bound on the strength degradation

of BCF clay needed to initiate failure of the Tunagain Height landslide during the 1964

earthquake. In-situ tests were conducted at the Lynn Ary Park, Anchorage, which is

adjacent to the Turnagain Heights landslide scarp. This chapter presents the soil strength

profile and stratigraphy at the Turnagain Heights area, which is generated based on the in-

situ tests. The sensitivity of BCF clay is evaluated based on the same field investigations.

This chapter also discusses the correlation between the interpreted sensitivity and soil

index properties and pore fluid chemical compositions. Lastly, this chapter presents the
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slope stability analysis of Turnagain Heights based on the strength parameters obtained

from the in-situ tests, in which the stability condition before the 1964 earthquake and an

upper bound on strength reduction of BCF clay to trigger the slope failure are presented.

The following main conclusions can be drawn from this chapter:

(1) The strength profile interpreted from FV and CPT tests suggests that BCF soil at

the tested site (i.e., Lynn Ary Park) is overconsolidated at the top of the layer,

and gradually becomes normally consolidated with depth. Also, this trend of

stress history is supported by the classification of soil behavior type based on the

normalized CPT data. BCF clay at this site can be divided into four sublayers

based on their undrained strength variation: upper stiff clay, upper soft clay,

lower soft clay and lower stiff clay.

(2) The sensitivity of BCF clay interpreted from the in-situ tests at the Lynn Ary

Park ranges from 2 to 10, with the majority of data falls between 2 and 6. This

sensitivity, together with the liquidity index indicates that the BCF clay at the

Lynn Ary Park is not very sensitive. Moreover, the sensitivity of the upper stiff

clay and upper soft clay layers is noticeably larger than that of the lower soft

clay and lower stiff clay layers.

(3) A comparison between the pore fluid chemical composition concentration profile

at the Lynn Ary Park and the variation of sensitivity suggests that the high

sensitivity of the upper stiff clay and upper soft clay layers may be caused by the

low concentration of total cation and the low percentage of the divalent cations.

(4) The stability analysis based on the strength parameters interpreted from the in-

situ tests shows that the Turnagain Heights slope was at a relatively safe condition
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before the 1964 earthquake (i.e., FS=1.30 - 1.38). Furthermore, stability analysis

which decreases the strength of BCF clay reveals that 68% to 76% strength

reduction for the upper stiff clay is needed to trigger slope failure under static

condition, while a higher strength reduction is required for the upper soft clay

layer (80% to 88%). If a strength degradation uniformly occurs in both the above

layers, a relatively lower reduction (37% to 43%) is sufficient to initiate the slope

failure. These strength reductions represent an upper bound on the amount of

degradation required to initiate failure during cyclic loading, and these results are

compatible with the sensitivity interpreted from the in-situ tests implying that

the degradation of BCF clays during the earthquake individually was sufficient

to result in the landslide at Turnagain Heights.

(5) The consideration of interbedded sand/silt lenses in the analysis tends to strengthen

the stability of the slope slightly. And the study shows without significant re-

duction of the BCF clay strength, the liquefaction of such lenses during the

earthquake is not able to trigger the landslide.

(6) The current stability analyses provide an upper bound of the required strength

reduction of BCF clay to initiate the landslide. Given that other unfavorable

conditions (e.g., inertial forces in an earthquake) are not considered in this work,

the actual strength loss is expected to be lower than the computed values. Fur-

thermore, the above upper bound is obtained based on the assumption that the

1964 earthquake uniformly reduced the strength of clay throughout individual

BCF layers. If inhomogeneous strength reduction occurred, the greater strength

reduction than the analyses results might be required at local locations.
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CHAPTER 4

FORMULATION OF A CONSTITUTIVE MODEL FOR

CYCLICALLY LOADED RECONSTITUTED CLAY
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4.1. Introduction

The strength loss of natural clay during cyclic loading is the key phenomenon that

is investigated in this thesis. As discussed in Chapter 2, such a degradation of mate-

rial strength is related to the deterioration of soil structure and the changes of effective

stress states caused by the excess pore pressures generated during undrained cyclic load-

ing. Constitutive models that reasonably represents mechanical behaviors of natural clay

during monotonic loading share an important assumption that the degradation of soil

structure is driven by plastic deformations. Therefore, successful modeling of natural

clay degradation during cyclic loading relies on accurate simulation of plastic deformation

and pore pressure build-up during cyclic loading, as well as formulating an appropriate

relation between accumulated plastic strain and resulting structure degradation.

To meet the above requirements, a constitutive model is developed in two steps. A

basic model is developed within the bounding surface framework to capture the intrinsic

behavior of natural clay under cyclic loading, for which the effects of structure are negli-

gible. This model is applicable to reconstituted clays or insensitive natural clays. Then,

the basic model is extended to consider structure effects typical of natural clays and the

structural deterioration during cyclic loading. The present chapter has been focused on

the formulation and validation of the basic model. The extended model will be discussed

in Chapter 5.

As discussed in Chapter 2, a number of constitutive models developed within the

framework of bounding surface plasticity can reproduce important features of clay behav-

ior under cyclic loading. However, the image stress flow rule commonly used by these

models may underestimate the magnitude of cyclic pore pressure build-up and possibly
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lead to an incorrect prediction of whether the pore pressure increases of decreases dur-

ing cyclic loading (shown later in this chapter.) Moreover, to the author’s knowledge,

no model is currently available that can reproduce both cyclic shakedown and soften-

ing. Furthermore, the clay’s small strain stiffness responses are usually ignored in cyclic

loading models, which may cause an underestimation of soil’s non-linearity and energy

dissipation when the cyclic loading is characterized by relatively small shear strains. Cor-

respondingly, in the proposed basic model, the above issues are addressed explicitly in

certain model components. A new plastic flow rule is proposed to improve the simulation

of pore pressure accumulation in the bounding surface framework. Second, a new form

of plastic modulus is employed which can reproduce cyclic shakedown and softening phe-

nomenon in a unified manner. Lastly, a non-linear elasticity model is adopted which can

reproduce the nonlinearity of soil when the magnitude of cyclic strains is relatively small.

This chapter is organized as follow: the formulation of the basic model in triaxial space

is presented, which is followed by the demonstration of the calibration of model parameters

and internal variables. Then, a series of parametric studies are presented to illustrate the

roles of new model components. Lastly, the capacity of the basic model to replicate

intrinsic clay behavior during cyclic loading is validated with respect to experimental

evidence of reconstituted Georgia clay and insensitive Bootlegger Cove Formation (BCF)

clays.
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4.2. Formulation of the Basic Model

In this section, the key components of the basic model are presented, including the

bounding surface, plastic flow rule, plastic modulus, discrete projection center, and elas-

ticity model.

To clarify key features of the model, the formulation is presented in triaxial space,

for which stress quantities p = (σa + 2σr)/3, q = (σa − σr) and strain quantities εv =

εa + 2εr, εd = 2(εa − εr)/3 are used. The subscripts a and r denote the axial and

radial direction of a triaxial sample, and the subscript v and d denote the volumetric

and deviatoric components, respectively. All the stress variables are considered effective

stresses. In addition, both stress and strain, as usual in geomechanics, are assumed

positive in compression.

4.2.1. Bounding Surface, Radial Mapping and Loading Surface

Experimentally defined yield envelopes of natural clay are more or less centered on the

K0,NC line (Tavenas and Leroueil, 1977; Leroueil and Vaughan, 1990), as does the yield

surface of reconstituted clay that has experienced the K0 consolidation (Gens, 1982; Parry

and Nadarajah, 1973). These observations indicate that the plasticity anisotropy of nat-

ural clay primarily results from the anisotropic consolidation history during the initial

deposition and can be assumed an intrinsic property. To reproduce such an anisotropy,

the yield surface proposed by Dafalias et al. (2006) has been adopted as the bounding

surface in this work. In triaxial stress space, the bounding surface is expressed as:

F = (q̄ − p̄α)2 − (N2 − α2)p̄(p0 − p̄) (4.1)
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A schematic diagram of the bounding surface is shown in Figure 4.1, which is a rotated
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Figure 4.1. Schematic illustrations of important surfaces in the basic model
in triaxial stress space: bounding surface and loading surface

and distorted ellipse. The degree of rotation and distortion is determined by the value of

α, which is an internal variable representing the clay fabric anisotropy. Another internal

variable, p0 governs the size of the bounding surface, and grows or shrinks according to

void ratio change in the same way as the Modified Cam-Clay model (Wood, 1990). The

model constant N denotes the stress ratio (i.e., η = q/p in triaxial space) at the peak of

the bounding surface. Similar to the model proposed by Taiebat et al. (2010), the value

of N is different in compression and extension loading:

N =


Nc if q̄ >= p̄α

Ne if q̄ < p̄α

(4.2)
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where Nc and Ne are model parameters. The need for this flexibility has been confirmed

by the work of Jiang and Ling (2010), in which the equation 4.1 was used as the yield

surface to fit the yield stresses of 17 types of natural clays.

The variables p̄ and q̄ in Equation 4.1 denote the pair of image stress, i.e., the open

circle in Figure 4.1. In this work, such an image stress is defined by the radial mapping

rule proposed by Dafalias (1986b). As shown in Figure 4.1, a projection center, (pc, qc)

always inside the bounding surface is used to radially project the current stress, (p, q) to

(p̄, q̄) on the bounding surface. The relation between the projection center, current stress

and image stress can be expressed as:

p̄ = pc + b(p− pc); q̄ = qc + b(q − qc) (4.3)

where the variable b quantifies the ratio of the distance from the image stress to the

projection center over the distance between the current stress and the projection center.

The value of b can be obtained by substituting equation 4.3 into equation 4.1, with the

current stress (p, q) being known.

Similar to other bounding surface models, the loading direction at the current stress is

assumed to be the gradient of the bounding surface at the image stress (i.e., L in Figure

4.1) :

L = ∂F/∂σ̄ (4.4)
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Substituting equation 4.1 into equation 4.4, the loading direction in triaxial space is

expressed as:

L =

(
∂F

∂p̄
,
∂F

∂q̄

)
(4.5)

∂F

∂p̄
= p̄(N2 − η̄2);

∂F

∂q̄
= 2p̄(η̄ − α) (4.6)

where η̄ is the image stress ratio defined as q̄/p̄.

Such assumption combined with the radial mapping rule, implicitly defines a loading

surface (i.e., the dash line surface in Figure 4.1) passing through the current stress and

being homologous to the bounding surface and with the projection center being the center

of homology (Dafalias, 1986b). Consequently, the variable b in equation 4.3 can also be

interpreted as the similarity ratio between the bounding surface and loading surface.

Based on equation 4.3, one can prove that b decreases monotonically when the current

stress moves toward the bounding surface and b = 1 when the current stress point is on

the bounding surface (i.e., it coincides with the image stress).

4.2.2. Proposed Mixed Plastic Flow Rule and Plastic Potential Surface

As discussed in section 2.5.2, the image stress flow rule is extensively employed by models

developed within the bounding surface plasticity framework. In other words, the plastic

flow direction is the gradient of a plastic potential passing the image stress (i.e., Ri in

Figure 4.2). If the plastic potential is assumed to be the same as the bounding surface,

then an associative flow rule is generated.
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Figure 4.2. Schematic illustration of plastic flow direction defined at image
stress and current stress

The proposed mixed flow rule is inspired by experimental observations of cyclic load-

ing on BCF clays (Zapata-Medina, 2012). Based on the concept of critical state (Schofield

and Wroth, 1968), the critical state line in triaxial stress space divides the stress space

into two zones: plastic contraction and plastic dilation. When the current stress state is

inside the contraction zone, monotonic shearing that mobilizes plasticity will induce pos-

itive excess pore pressure under undrained conditions, and when the current stress state

is inside the zone of plastic dilation, negative excess pore pressure will be generated. In

the experiments of BCF clay, the effective stress paths of tests characterized by positive

excessive pore pressure build-up mostly fall into the zone of plastic contraction. This ob-

servation indicates the need to explicitly consider the role of the current stress state in the
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determination of the plastic flow direction, especially the state of plastic contraction or

dilation. Therefore, the proposed flow rule incorporates characteristics of plastic volume

change defined at the current stress into the existing image stress flow rule. This propo-

sition is also consistent with other experimental evidence, which shows the dependence of

soil plastic flow direction on the current stress state (Taylor, 1948; Schofield and Wroth,

1968; Graham et al., 1983).

The plastic flow direction in triaxial space is composed of volumetric and deviatoric

components:

R = (Rv, Rd) (4.7)

In the mixed flow rule, the volumetric component is a combination of gradient of plastic

potential defined at the image stress and current stress, while the deviatoric component

is solely determined by the image stress:

Rv = Ri
vgi +Rc

v(1− gi); Rd = Ri
d (4.8)

where superscripts i and c denote the gradient of plastic potential defined at the image

stress and current stress, respectively, as shown in Figure 4.2. The distribution variable

gi is postulated as:

gi =

(
1

b

)w
(4.9)

where b is the similarity ratio introduced in equation 4.3. As one will see in the

section 4.2.3, the variable b obtains a value that tends to be infinite after stress reversal

(i.e., unloading or reloading) and then gradually decreases as the current stress moves
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towards the bounding surface. Therefore, equation 4.8 and 4.9 together imply that the

current stress state plays a prevailing role in the determination of plastic flow direction

after stress reversal, and the image stress plays an increasingly important role when the

current stress is moving towards the image stress. Moreover, when a stress point is

on the bounding surface (i.e., b = 1 ), the plastic flow rule, based on equation 4.8, is

exclusively determined by the image stress. Therefore, equation 4.9 guarantees a smooth

transition in plastic flow direction between the stress states inside and on the bounding

surface. The material constant w is introduced to control the relative contribution of

the aforementioned two flow directions. A larger value of w will put more weight on the

plastic flow direction determined at the current stress. It is noteworthy that image stress

flow rule can be recovered as a special case (i.e., w = 0 ) of the proposed flow rule.

The proposed mixed flow rule is general and can be applied to various forms of plastic

potential. The plastic potential surface originally proposed by Dafalias (1986a), which

can consider the influence of fabric anisotropy, is adopted in this work, as shown in Figure

4.2:

g = (q − αp)2 − (M2 − α2)pa(pa − p) (4.10)

The variable pa in equation 4.10 is a dummy variable and varies so that the plastic

potential surface can pass through either the image stress or current stress. M is the

stress ratio at critical state. It is assumed the value of M depends on the location of

image stress in the same way as the parameter N :

M =


Mc if η̄ >= α

Me if η̄ < α

(4.11)
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where Mc and Me denote the critical state stress ratio in triaxial compression and ex-

tension, respectively. Since the condition of η̄ >= α indicates compression loading while

extension loading corresponds to η̄ < α, equation 4.11 is able to capture the varying fail-

ure stress ratio as a function of mode of shearing. By comparing equation 4.10 and 4.1,

one can find the rotation and distortion of the plastic potential surface is characterized

by the same variable α as the bounding surface. This assumption is made to simplify the

model. A similar assumption has been employed in both classical elastoplaticity models

(e.g., Wheeler et al. (2003) and Jiang and Ling (2010)) and bounding surface models

(e.g., Liang and Ma (1992) and Seidalinov and Taiebat (2014)). When an upper bound

of rotation variable α is enforced, which is lower than current stress ratio η (e.g., the

models proposed by Wheeler et al. (2003) or Dafalias et al. (2006)), the above simplifica-

tion in classical elastoplaticity models may lead to undesired consequences, e.g., a higher

positive excess pore pressure and an excessive elastic zone computed in the initial stage

of CK0TXC and CK0TXE on NC clay, respectively (Taiebat et al., 2010). Nevertheless,

based on the comparison of model simulations made with the above simplification and

one made with the assumption that the rotation variable of a yield surface and plastic po-

tential are different, Taiebat et al. (2010) concluded that such a simplification can provide

an acceptable level of accuracy.

Based on the adopted plastic potential, the volumetric and deviatoric components of

the flow direction defined at the image stress can be expressed as

Ri
v =

∂g

∂p̄
= p̄(M2 − η̄2); Ri

d =
∂g

∂q̄
= 2p̄(η̄ − α) (4.12)



158

Correspondingly, the volumetric component of flow direction at the current stress is

given by:

Rc
v = p(M2 − slη2) (4.13)

Note that the variable sl is introduced to reproduce plastic contraction after stress reversal

and a subsequently monotonic decrease of plastic contraction, as observed in experiments

on clay and gravel (Sheu, 1985; Kong et al., 2016). A similar strategy has been employed

by Dafalias and Manzari (2004) to model the cyclic behavior of sand. The value of sl

depends on the loading direction and current stress ratio:

sl =


1 if (η̄ − α)η ≥ 0

−1 if (η̄ − α)η < 0

(4.14)
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Figure 4.3. Schematic illustration of normalized Rc
v evolution during cyclic

loading: (a) sl varies based on equation 4.14; (b) sl = 1

The concept behind variable sl is seen in Figure 4.3(a), in which the evolution of

normalized Rc
v with respect to p during a loading cycle is illustrated. The positive and

negative value of variable Rc
v/p denote plastic contraction and dilation, respectively. The



159

stress path starts from η = 0 and follows a compression loading path (i.e., dη > 0 and

η̄ > α). Such a loading path, during which η reaches 1.5, is followed by a unloading path

(i.e., dη < 0 and η̄ < α) to η = −1.5. After this, stress reversal occurs again and brings the

stress ratio, η back to zero. Figure 4.3 also includes the evolution of Rc
v/p in monotonic

compression and extension loading, which will be predicted by classical elastoplaticity

models based on the same plastic potential shown in equation 4.10 (e.g., SANICLAY

model by Dafalias et al. (2006)). From Figure 4.3(a), one can see that the normalized Rc
v

during the first loading branch of the cyclic loading is the same as monotonic compression

and material behavior changes from plastic contraction to plastic dilation as the increase

of stress ratio. The stress ratio corresponding to the above phase transition is the same as

the critical state. Upon unloading, soil jumps to plastic contraction even if the state before

unloading is plastic dilation. This is consistency with the experimental observations in

undrained cyclic loading, which show positive pore pressure is generated during unloading

even if clay samples have the tendency to dilate before unloading (Sheu, 1985; Zergoun and

Vaid, 1994). During continuous unloading, material’s tendency to contract progressively

reduces. After the stress ratio passes zero, predicted evolution of Rc
v follows the same path

as monotonic extension tests until the occurrence of the next stress reversal, after which

plastic contraction will be predicted again. Kong et al. (2016) conducted cyclic triaxial

tests on gravel and extracted the stress-dilation relation in both loading and unloading.

They found during unloading that follows a monotonic compression loading, soil exhibits

strong plastic contraction even if it is close to critical state before unloading. If this

unloading continues, they found, degree of plastic contraction decreases and the stress-

diltancy curve will gradually converge to the one corresponding to monotonic extension
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loading. The same trend is also observed in tests that begin with monotonic extension

loading. Such an experimental observation provides additional justification to the relation

shown in Figure 4.3(a). In Figure 4.3(b), the above analysis is repeated with sl = 1. It can

be seen that upon unloading/reloading, soil will remain plastic dilation if this state has

been reached before the stress reversal. Furthermore, during monotonic loading which

follows stress reversal, the degree of plastic contraction first gradually increases then

decreases, which is inconsistent with experimental observations.

To provide more insight about the proposed flow rule, plastic flow directions com-

puted based on various flow rule assumptions in a simulation of undrained cyclic tests

on an isotropically consolidated NC clay are presented in Figure 4.4. The black arrows

in the figure indicates the plastic flow directions and the solid curve represents the cor-

responding effective stress path. It can be seen from Figure 4.4(a) that the plastic flow

directions computed based on the image stress flow rule point approximately along the

vertical direction during the second cycle indicating small plastic volumetric strain rates.

Consequently, the computed effective stress stops migrating towards the origin of stress

space. Figure 4.4(a) also shows that the aforementioned small plastic volumetric strain

rate results from that the image stress is close to the critical state line. Figure 4.4(b)

presents the same simulation based on the proposed mixed flow rule, in which as the

current stress approaches the critical state line, plastic flow changes from contraction to

dilation (i.e., the plastic flow arrow points to the right first, then changes to the left).

The computed phase transition between contraction and dilation happens at stress ratio

lower than that of the critical state, as observed in experiments (Sangrey et al., 1969;

Zergoun, 1991). This observation heights the need to mix the flow direction defined at
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Figure 4.4. Plastic flow direction in a undrained cyclic loading tests under
different assumptions of plastic flow rules: (a) image stress flow rule; (b)
proposed flow rule; (c) proposed flow rule with sl = 1; (d) mixed flow rule
with deviatoric component

the current stress with that defined at the image stress, because, otherwise, the stress

ratio for the phase transition will be the same as the critical state, as shown in Figure 4.3.
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Figure 4.4(b) also shows that after stress reversal, the plastic flow features plastic con-

traction, which also applies to the case that soil tends to dilate before the stress reversal.

From a modeling point of view, such a plastic contraction after stress reversal is the key

to capturing the pore pressure build-up in cyclic loading (Dafalias and Manzari, 2004).

Moreover, the degree of the above plastic contraction progressively decreases until the

occurrence of the phase transition, which is reflected by the increasing inclination of flow

direction arrow with respect to the p axis. As a result of the above features, the typical

butterfly shape stress path is reproduced by the simulation based on the mixed flow rule.

Figure 4.4(c) presents the simulation when sl = 1 is fixed in the proposed flow rule. After

stress reversal, the inclination of plastic flow direction first decreases then increases. This

phenomenon reflects, as expected, the degree of plastic contraction after stress reversal

unrealistically first increases then decreases.

In fact, one may find that in the proposed flow rule, the current stress only plays a role

in the determination of the volumetric component of plastic flow direction. The reason

can be seen in Figure 4.4(d), which presents the simulation results under the condition

that the deviatoric component of flow direction is a similar combination as the volumetric

component i.e.,:

Rd = Ri
dgi +Rc

d(1− gi) (4.15)

with

Rc
d =

∂g

∂q
= 2p(η − α) (4.16)

Take the first unloading as an example, the plastic flow direction gradually changes from

pointing upwards to a downward direction, which implies the deviatoric component of the
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plastic flow direction, Rd, changes its sign. The reason is that the value of Rc
d changes

its sign when the stress path passes the rotation axis, i.e., η = α. Note that before a

stress reversal the deviatoric component of loading direction, Ld, remains the same sign.

Therefore, the deviatoric components of the plastic flow direction and loading direction

will point to the opposite directions during certain stages, which may induce artifical

material instability that has no physical meanings (compared with the instatbility that

corresponds to static liquefaction of loose granular material (Buscarnera and Whittle,

2013)). Furthermore, this will create a non-smooth stress-strain curve that only preserves

the continuity of a C0 class.

Finally, it is worthy noting that when a stress point reaches the bounding surface and

stays on the bounding surface (i.e., a monotonic loading path), the well-verified plastic

flow rule proposed by Dafalias (1986a) is recovered by the proposed flow rule, irrespective

of the value of parameter w. This is the key to allowing the proposed model to capture

complex soil cyclic behavior, while maintaining advantages of the earlier constitutive

models in terms of modeling soil responses in monotonic loading.

4.2.3. Discrete Projection Center and Its Evolution Law

Being a key element, the choice of projection center can significantly impact the plastic

behavior of soil predicted by a bounding surface model. As discussed in Chapter 2, a fixed

projection center will lead to over-damping in simulations of cyclic loading. Therefore,

a discrete projection center is employed in the proposed model. The concept of discrete

projection center is illustrated in Figure 4.5, in which the projection center will be updated

to the current stress once a stress reversal is detected. In this work, stress reversal is
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triggered when:

Lσ̇trial < 0 (4.17)

The same criteria has been sucessfully used in vairous models (Pastor et al., 1990; Wang

et al., 1990; Andrianopoulos et al., 2010; Seidalinov and Taiebat, 2014).
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Figure 4.5. Schematic illustration of projection center update at stress re-
versal : (a) the detection of stress reversal at current step (step i); (b)
forming of new loading surface at next step (step i+ 1)

One can find, by referring to equation 4.3, the image stress loses its definition and

b value is infinity after the projection center is updated to the current stress, i.e., the

projection center coincides with the current stress. As a result, a singularity will happen

if the current step is still treated as a normal elastoplaticity computation. To overcome

it, the step (e.g., step i), whose trial stress rate σ̇trial triggers the stress reversal and

update of the projection center, is assumed to involve only the elastic update of stress,

i.e., σ̇ = σ̇trial and internal variables are frozen. Such an elastic update will separate the
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current stress from the projection center so that normal elastoplaticity computation can

continue from the next step (i.e., step i+1). Comparison of the loading surfaces in Figure

4.5(a) and (b) reveals that the similarity ratio b is significantly enlarged after the update

of the projection center. Consequently, the magnitude of plastic modulus increases, which

predicts stiffer response than what would be predicted if a material is being monoton-

ically loaded. Subsequently, as the current stress moves towards the bounding surface,

the b value decreases, the plastic modulus decreases and softer stress strain response is

reproduced. As a result, the discrete projection center can realistically reproduce soil’s

non-linearity during unloading and reloading and correspondingly stress-strain hysteresis

observed in cyclic loading tests, when the cyclic shear stress is relative large and plastic

deformation is the dominant component of total deformation. When cyclic shear stress

is relative small and elastic strain dominates, soil’s non-linearity and hysteresis loop are

mainly reproduced by non-linear elasticity model that will be introduced later.
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Figure 4.6. Influence of computation step size on computed stress-strain
response after the stress reversal



166

While the proposed strategy can successfully overcome the singularity after the stress

reversal, it inevitably makes the computed stress-strain response after a stress reversal

dependent on the step size in a computation. Figure 4.6 evaluates the influences of the

step size on the computed stress-strain response of a undrained extension test. As the

projection center is initially assigned at the origin of stress space, the stress reversal will

be triggered at the beginning of the simulation. Note that in this particular case the

computed results are relatively insensitive to the selected step size. Moreover, as the step

number increases, the computed response converges to a unique one, which suggests once

the step size in a computation is small enough, the corresponding stress-strain response

obtained from the model is not step-size dependent anymore.

For the sake of the uniqueness of the image stress, the projection center is required

to be inside or on the bounding surface, despite of changes in size, shape and inclination

of the bounding surface. To achieve this, an evolution rule is proposed that governs the

change of the projection center between consequent stress reversals. First, two variables

Xp and Xd are introduced to define the position of the projection center relative to the

bounding surface, as shown in Figure 4.7:

Xp =
pc
p0

; Xd =
qc − qa
qb − qa

(4.18)

where qb is the deviatoric stress at the intersection between the bounding surface and

the vertical line passing the projection center, i.e., p = pc. It is noteworthy that the

intersection considered is the one above the bounding surface rotation axis, q = pα. The

variable qa is the intersection between the rotation axis and the vertical line p = pc.

It is clear that Xp and Xd define the relative position of the projection center along
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Figure 4.7. Schematic illustration of projection center location relative to
the bounding surface

the hydrostatic axis (i.e., p axis) and along the deviatoric plane, respectively. Through

differentiating equation 4.18 and assuming Xp and Xd are constant, the rate form of

projection center evolution rule is obtained as a function of changes of internal variables

p0 and α:

ṗc =
pc
p0

ṗ0; q̇c =
qc
p0

ṗ0 +
N2
c pc − αqc
N2
c − α2

α̇ (4.19)

It is observed that the change of pc is only related to the size change of the bounding sur-

face, while the evolution of qc is a result of the combination of changes in size, inclination

and distortion of the bounding surface. It is worth mentioning that the SANICLAY-B

model employed a similar evolution law for the projection center (Seidalinov and Taiebat,

2014). Compared with it, the law in equation 4.19 can guarantee that the projection
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center remains the same location relative to the bounding surface even when the size and

inclination of the bounding surface change simultaneously.

4.2.4. Internal Variables Hardening Laws and Plastic Modulus

Isotropic hardening : The evolution of internal variable p0 is governed by the same isotropic

hardening law as the Modified Cam Clay (Wood, 1990):

ṗ0 =

(
1 + e

λ− κ

)
p0ε̇

p
v = 〈Λ〉p̄0; p̄0 =

(
1 + e

λ− κ

)
p0Rv (4.20)

where λ and κ are model constants, which represent the slope of isotropic virgin com-

pression line and rebound line in e − lnp plane, respectively. e is the current void ratio

indicating the logarithm strain is used. The variable p̄0 is a components of vector r in

equation 2.5, which guides the direction for p0 evolution.

Rotation hardening : The change of anisotropy of both the bounding surface and plastic

potential surface is governed by the rotation hardening law proposed by Dafalias et al.

(2006):

α̇ =

(
1 + e

λ− κ

)
C

(
p̄

p0

)2

|ε̇pv| |η̄ − χα| (αb − α) = 〈Λ〉ᾱ

ᾱ =

(
1 + e

λ− κ

)
C

(
p̄

p0

)2

|Rv| |η̄ − χα| (αb − α)

(4.21)

Similar to the SANICLAY-B model (Seidalinov and Taiebat, 2014), in equation 4.21, the

originally used current stress quantities has been replaced by the corresponding image

stress quantities. This is done with the intention to ensure that the plastic modulus

at the image stress, K̄p, can be directly derived from the consistency condition of the

bounding surface. Also, this modification implies the evolution of α is determined by
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the image stress instead of the current stress. While all unintended effects are unclear

now, it is believed that such a modification will not significantly change basic responses

assocaiated with equation 4.21, originally designed for monotonic loading, as the plastic

strain is relatively small when the stress is inside the bounding surface and the image

stress coincides with the current stress when the stress point is on the bounding surface,

at which time major plastic strain develops. The model parameter C in equation 4.21

quantifies the rate of rotation. The parameter χ governs the upper bound of α during

constant stress ratio loading. In other words, the evolution of α will stop (α̇ = 0) when

its value reaches η̄/χ. Since except (αb − α), all terms in equation 4.21 are positive, α

will evolves towards the variable αb. Besides, variable αb serves as an upper bound of α,

which is required for equation 4.1 and 4.10 to have real-value roots. In triaxial space, αb

is determined by:

αb =


min(Mc, Nc) if η̄/χ >= α

max(−Me,−Ne) if η̄/χ < α

(4.22)

Since p0 and α are the only two internal variables for the basic model, the vector r in

equation 2.5 is correspondingly constructed as:

r = [p̄0, ᾱ] (4.23)

Plastic Modulus : A specific feature of bounding surface models is that the plastic

modulus, Kp is related to the plastic modulus at image stress, K̄p through a function of

the distance between the current stress and image stress. When the radial mapping rule
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is employed, Kp can be generally expressed as:

Kp = K̄p + f(b) (4.24)

where K̄p is obtained by enforcing that the image stress remains on the bounding surface

(i.e., the consistency condition of the bounding surface):

K̄p = −
(
∂F

∂p0

p̄0 +
∂F

∂α
ᾱ

)
(4.25)

variables p̄0 and ᾱ are given by equation 4.20 and 4.21, respectively. And:

∂F

∂p0

= −p̄(N2 − α2);
∂F

∂α
= −2p̄(q̄ − p0α) (4.26)

The term f(b) in equation 4.24 quantifies the higher plastic modulus when stress

point is inside the bounding surface, and essentially governs the soil stiffness during cyclic

loading. The f(b) needs to satisfy two requirements. First, f(b) = 0 when b = 1 (i.e.,

current stress is on the bounding surface) implying once the current stress reaches and

stays on the bounding surface, plastic modulus Kp equals to K̄p. Second, f(b) should

be a monotonic function of the variable b. In this way, when the current stress moves

towards the bounding surface and consequently the b value decreases, f(b) provides a

smooth stiffness degradation from higher stiffness corresponding to stress state inside the

bounding surface to the value determined by the consistency condition of the bounding

surface.
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In this work, the function f(b) takes the following form:

f(b) = h(1 + e)p3
0(b− 1)ms

ms =
1

1 + d
; ḋ = cd|ε̇pd|(1 + 〈−cd/|cd|〉d)

(4.27)

The term (1+e) is in accordance with the same term appearing in equation 4.20 and 4.21

and renders the hardening of internal variables a function of plastic void ratio change,

independent of the strain measure used (Dafalias and Herrmann, 1986). The term p3
0

introduces proper unit to the function f(b), i.e., the same unit as K̄p. The variable

h is a shape-hardening factor that provides additional freedom in adjustment of plastic

modulus magnitude, and it is proposed to be dependent on shear modes (i.e., compression

or extension) in a similar way as the model parameter N :

h =


hc if η̄ >= α

he if η̄ < α

(4.28)

with hc and he being two model constants. This feature is desirable in terms of capturing

anisotropic cyclic stiffness of clays.

The novelty of the proposed function f(b) comes from the variable ms, which is in-

troduced to model cyclic shakedown and softening in a unified manner. When the model

parameter cd > 0, the evolution of d is based on the form ḋ = cd|ε̇pd|. Under this con-

dition, driven by the accumulation of plastic deviatoric strain, plastic modulus Kp will

be gradually diminished as d increases. As a result, cyclic stiffness degradation is repro-

duced, which eventually will lead to a softening form of failure. It is worth mentioning

that similar form of plastic modulus has been employed by Seidalinov and Taiebat (2014)
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to reproduce cyclic softening. On the other hand, when cd < 0, the evolution form of d

changes to ḋ = cd|ε̇pd|(1 + d). This implies that as plastic deviatoric strain accumulates,

the value of d will asymptotically decrease to its bound, which is -1. As a consequence,

ms will progressively grow to infinity, which increases the plastic modulus and thereby

decelerates the development of plastic deformation. Finally, when the plastic modulus is

large enough, the purely elastic responses during cyclic loading can be recovered, i.e., the

cyclic shakedown.

As suggested by experimental evidence (Sangrey et al., 1969; Lefebvre et al., 1989;

Zergoun and Vaid, 1994), there exists a threshold of applied cyclic shear stress, below

which cyclically loaded clay will reach the cyclic shakedown while above the threshold

clays will fail eventually due to cyclic softening. This fact clarifies the advantage of

modeling cyclic shakedown and softening in a unified manner. Based on equation 4.27,

a further proposition of cd as a function of stress state or other variables is expected to

capture the observed transition between aforementioned two responses when cyclic shear

stress varies.

4.2.5. Evolution Law of Similarity Ratio b

After the update of the current stress, internal variables and the projection center in

each elasoplasticity computation step, appropriate update of the value of b is needed.

Otherwise, the image stress calculated based on equation 4.3 will not be on the bounding

surface (i.e., violation of the consistency condition of the bounding surface).
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For each elastoplaticity computation step, the consistency condition for both the load-

ing surface (f = 0) and bounding surface (F = 0) should be satisfied simultaneously:

ḟ =
∂f

∂p
ṗ+

∂f

∂q
q̇ − 〈Λ〉Kp = 0 (4.29a)

Ḟ =
∂F

∂p̄
˙̄p+

∂F

∂q̄
˙̄q − 〈Λ〉K̄p = 0 (4.29b)

By equaling the Λ in equation 4.29(a) and (b), and considering the assumption of

loading direction (i.e., equation 4.4), one can obtain:

1

Kp

(
∂F

∂p̄
ṗ+

∂F

∂q̄
q̇

)
=

1

K̄p

(
∂F

∂p̄
˙̄p+

∂F

∂q̄
˙̄q

)
(4.30)

where ˙̄p and ˙̄q can be obtained by differentiating equation 4.3:

˙̄p = ṗc + b(ṗ− ṗc) + (p− pc)ḃ; ˙̄q = q̇c + b(q̇ − q̇c) + (q − qc)ḃ (4.31)

By substituting equation 4.31 into equation 4.30, the rate form of b value evolution can

be expressed as a function of the rate of stress and projection center:

ḃ =
C1

C2

(4.32)

where:

C1 = −
(
∂F

∂p̄
(ṗc + b(ṗ− ṗc)) +

∂F

∂q̄
(q̇c + b(q̇ − q̇c))

)
+
K̄p

Kp

(
∂F

∂p̄
ṗ+

∂F

∂q̄
q̇

)
;

C2 =
∂F

∂p̄
(p− pc) +

∂F

∂q̄
(q − qc)

(4.33)
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4.2.6. Nonlinear Small Strain Elasticity Model

It needs to be emphasized that the vast majority of elastoplaticity models aiming at mod-

eling clay’s cyclic responses in the literature rely on the plastic strain to reproduce soil’s

nonlinear and cyclic hysteresis, and usually use elasticity models that do not consider

small strain stiffness of soil. This approach works seemingly well for models developed

to capture soil behavior at larger cyclic strain, for which elastic component is only a

small portion of the total strain. Nevertheless, if such models are used to reproduce the

soil response that involves small cyclic strain (say smaller than 0.1%), one finds that ex-

perimentally observed non-linear behaviors will be underestimated (Papadimitriou and

Bouckovalas, 2002). On the other hand, Masing’s study about material behavior dur-

ing cyclic loading (Masing, 1926) and experimental work on clays (Vucetic and Dobry,

1991; Vucetic, 1994; Finno and Zapata-Medina, 2013) suggest that at a stress reversal,

the shear modulus assumes a value equal to shear modulus that represents shear stiffness

at very small strain level, which is denoted as G0. As discussed in the section 4.2.3, plas-

tic deformation predicted by the proposed model is generally negligible right after stress

reversal due to the update of the projection center, and consequently elastic deformation

is dominant. Therefore, to reproduce soil behavior in accordance with the Masing’s rules,

an elasticity model that can recover shear modulus G0 at stress reversal is needed. Based

on above considerations, the small-strain overlay model proposed by Benz et al. (2009)

is incorporated into the proposed model. This relatively simple model is able to repro-

duce the recovery of G0 at each stress reversal and non-linear stiffness variation at small

strains. After such an integration, the non-linear behavior of full cyclic strain levels can

be captured by the proposed model. In other words, at small to medium strain levels (e.g.,
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1e−5 to 1e−2), soil’s nonlinear stress-strain response and hysteresis during cyclic loading is

governed by the elasticity model, while at medium to large strain levels (e.g., greater than

1e−2) is primarily controlled by the bounding surface plasticity. For the sake of briefness,

only major aspects of the adopted model and modifications will be described in the this

section. For more details, readers are referred to the Ph.D. thesis of Benz (2007).

Modified Hardin-Drnevich function is used to quantify the degradation of elastic shear

modulus driven by shear strain history:

Gsec =
G0

1 + 0.385γhist/γ0.7

(4.34)

As illustrated in Figure 4.8, the elastic secant shear modulus gradually decrease from its

maximum value G0 with the increase of shear strain history, γhist. In triaxial space, shear

strain γ is defined as εa − εr.
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Figure 4.8. Modified Hardin-Drnevich elastic shear stiffness degradation
curve and definition of the parameter γ0.7
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By definition, the non-negative variable γhist equals |γ̄hist|, whose value is updated

through:

γ̄i+1
hist =


γ̄ihist + ∆γi+1 if γ̄ihist∆γ

i+1 >= 0

∆γi+1 if γ̄ihist∆γ
i+1 < 0

(4.35)

where i and i + 1 denote the quantities corresponding to the previous and current com-

putation steps and ∆γ is the shear strain increment. Equation 4.35 implies that γhist will

progressively increase during monotonic loading and be reset to zero upon strain rever-

sal. As a result, the elastic shear stiffness given by equation 4.34 will keep decreasing

along monotonic loading and regain its maximum value, G0, upon unloading or reloading.

This is consistent with the original suggestion by Hardin and Drnevich (1972) that the

non-linearity of soil is most appropriately described in terms of its strain history. Similar

reversal triggering criteria have been sucessfully used by the family of MIT models to

reproduce elastic hysteresis (Whittle and Kavvadas, 1994; Pestana and Whittle, 1999), in

which volumetric strain reversal and shear strain reversal are used to trigger the recovery

of stiffness at very small strain level in drained and undrained loading, respectively. It

is noteworthy that in the proposed model, the bounding surface plasticity and elasticity

model employ stress and strain reversal criteria, respectively. Nevertheless, these two

conditions will generally be triggered at the same time. In the three-dimensional version

of the adopted elasticity model, shear strain hisotry is memorized as the form of tensor

and the strain history is mapped to the principal direction of current strain increment so

that the stiffness variation in accordance to angular change in loading path (i.e., stress

path rotation angle) (Finno and Cho, 2010; Finno and Kim, 2012) can be reproduced

(Benz, 2007).
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In the original work of Benz et al. (2009), the shear modulus G0 is only related to

the mean effective stress, p through a power law. However, experimental work has shown

that, in addition to the confining pressure, the value of G0 is also closely related to the

void ratio (Finno and Cho, 2010; Finno and Kim, 2012; Zapata-Medina et al., 2014).

Therefore, the following empirical relation suggested by Zapata-Medina (2012) is selected

in this work:

G0 = Ag
(eg − e0)2

1 + e0

(
p

pa
)ngpa (4.36)

where Ag, eg, and ng are model constants. pa is the atmosphere pressure and e0 is the

initial void ratio at the beginning of consolidation.

The model parameter γ0.7 in equation 4.34 defines the shear strain threshold at which

the elastic secant shear modulus reduces to 0.7G0 in primary loading. Consequently, γ0.7

controls the deterioration rate of elastic stiffness.

The degradation relation for the secant shear modulus presented in Equation 4.34

needs to be converted to that for tangent modulus, which could be used in elastoplasticity

constitutive models:

Gtan = G0

(
γ0.7

γ0.7 + 0.385γhist

)2

(4.37)

Additionally, a constant Poissons ratio ν is assumed to obtain the corresponding bulk

modulus K from Gtan :

K =
2(1 + ν)

3(1− 2ν)
Gtan (4.38)

To avoid an excessive reduction of elastic stiffness caused by large plastic shear strain,

a cut-off value of shear modulus, Gmin is introduced. Tangent shear modulus will stop

degrading once Gtan equals Gmin. In this work, Gmin is proposed to be given by the
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Cam-Clay elasticity model:

Gmin =
3(1− 2ν)

2(1 + ν)
Kmin; Kmin =

1 + e

κ
p (4.39)

Such an employment of Gmin not only prevents unrealistically low elastic stiffness, but

also provides a transition of elastic stiffness from small strain range to large strain range,

during which soil elasticity behavior is governed by the well-defined Cam-Clay elasticity

model.

Finally, the stress rate can be rated to the elastic strain rate through:

ṗ = Kε̇ev; q̇ = 3Gε̇ed; (4.40)

Note that equation 4.40 implies that there is no cross-coupling between volumetric and

deviatoric components in this elasticity model.

As demonstrated by Zytynski et al. (1978), the currently employed hypo-elasticity

model, which has a stress-dependent shear modulus linked to bulk modulus via a con-

stant Poisson’s ratio, is not energy-conservative. Nevertheless, a hyper-elasticity model

(i.e., conservative in energy) with desired stiffness degradation will inevitably increase the

model complexity and number of parameters. In addition, as shown later in this chapter,

the proposed model is able to provide satisfactory simulations of clays cyclic behavior.

Furthermore, several constitutive models that implement hypo-elasticity model achieved

encouraging successes in modeling cyclic soil behavior (Li and Meissner, 2002; Seidali-

nov and Taiebat, 2014; Gao and Zhao, 2015). Therefore, this adopted elasticity model is

considered appropriate and a simple energy-conservative elasticity model equipped with

non-linear stiffness degradation will be one of the areas for future research.
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Table 4.1. Parameters in the basic model and their roles

Designation Description of Its Role

Elasticity (small strain) eg/Ag/ng Interpolation parameters for shear
modulus at very small strain, G0

γ0.7 Degradation rate of elastic stiffness
with respect to shear strain

Elasticity (large strain) κ Slope of rebound line in e− ln(p) plane
ν Poisson’s ratio

Critical State Mc/Me Stress ratio at critical state
Isotropic Hardening λ Slope of virgin compression line in e−

ln(p) plane
Rotation Hardening C Rate of surface rotation

χ Upper bound of rotation during con-
stant stress ratio loading

Bounding surface shape Nc/Ne Shape of bounding surface
Cyclic loading hc/he Cyclic stiffness

w Pore pressure build-up in cyclic loading
cd Cyclic shakedown/softening

Table 4.2. Initial conditions in the basic model

Designation Description of Its Role

p0 Size of the bounding surface
α Inclination and distortion of the bound-

ing surface
e0 Initial void ratio

4.2.7. Summary of Model Parameters and Initial Conditions

All the parameters and the required initial condition for the basic model are summarized

in Table 4.1 and Table 4.2, respectively.

4.3. Parametric Analyses of the Primary Constitutive Hypotheses

This section presents qualitative evaluations of the basic model, which is conducted

via a series of parametric studies. The purpose of this work is to emphasize the roles of the
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primary constitutive hypotheses and their associated model parameters. One important

contribution in this work is the newly proposed mixed plastic flow rule. Its advantage as

well as the role played by the parameter w is elucidated in this section. Moreover, the

influence of parameter cd on accelerating or decelerating deformation development during

cyclic loading is demonstrated, and illustrate the model’s capacity to reproduce cyclic

shakedown and softening in a unified manner. The importance of considering small strain

stiffness in simulating clay cyclic behavior is illustrated as well.

The model parameters used in the three evaluations above are summarized in set-1,

set-2 and set-3 of Table 4.3, respectively. The initial conditions (i.e., stress and internal

variables) is summarized in Table 4.4. It is noteworthy that all simulations in the present

chapter and next chapter are based on the implementation of the constitutive model in

a triaxial space constitutive driver that can integrate stress-strain response under mixed-

control conditions. The details of model implementation, stress integration method, and

the constitutive driver will be presented in Chapter 6.

4.3.1. The Role of Mixed Plastic Flow Rule

Figure 4.9 compares the simulated effective stress paths during undrained cyclic loading

on isotropically consolidated NC clay with different values of w. The corresponding pore

pressure build-up versus number of loading cycles is presented in Figure 4.10. In all cases,

gradual accumulation of positive pore pressures and the consequent decrease of mean

effective stress p are simulated. In addition, as one expects, the rate of pore pressure

build-up decreases with increasing number of loading cycles. What parameter w affects

are the speed of pore pressure accumulation and its final upper bound. To be specific, a
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Table 4.3. Model parameters in the qualitative
evaluations

Set-1 Set-2 Set-3

Elasticity (small strain) eg 2.64 2.64 2.64
Ag 160 160 160
ng 0.635 0.635 0.635
γ0.7 1.6E-04 1.6E-04 1.6E-04

Elasticity (large strain) κ 0.018 0.018 0.018
ν 0.2 0.2 0.2

Critical State Mc 1.2 1.2 1.2
Me 0.9 0.9 0.9

Isotropic Hardening λ 0.12 0.12 0.12
Rotation Hardening C 16 16 16

x 1.75 1.75 1.75
Bounding Surface Shape Nc 1 1 1

Ne 1 1 1
Cyclic Loading hc 20 20 20

he 20 20 20
w varies 5 5
cd 0 varies 0

Table 4.4. Initial conditions in the
qualitative evaluations

p0 (kPa) α Sb p (kPa) q (kPa) e0

300 0.00 0 300 0 0.75

larger value of w leads to a faster pore pressure accumulation as well as to an increase in

the magnitude of excess pore pressure at the end of the simulation. In terms of model

calibration, this observation suggests that parameter w can be defined by fitting the pore

pressure build-up in cyclic loading tests. The use of w = 0 (i.e., image stress flow rule)

leads to an early stabilization of the effective stress path and the smallest excess pore

pressures. As a higher value of w indicates more weight is placed on the flow direction
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Figure 4.9. Simulated effective stress paths during CIU CYC-TX test: (a)
w=0 ; (b) w=1; (c) w=5; (d) w=10

defined at the current stress state, the higher pore pressure build-up is attributed to the

explicit consideration of the current stress in determination of plastic flow direction. In

simulations with w = 5 and w = 10, the effective stress path reaches the critical state line

and even exceeds it. Similar behavior have also been seen in experiments (Sheu, 1985;

Zergoun, 1991). By comparing the results observed in the simulations with w = 5 and
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Figure 4.10. Simulated pore pressure build-up during CIU CYC-TX test
with different values of parameter w

w = 10, one is able to find that there exists a upper bound in terms of simulated pore

pressure build-up, which seems to be independent of the value w. In other words, even if

w keeps increasing, the simulated pore pressure accumulation cannot grow further. The

reason is that under high value of w, plastic contraction or dilation is determined primarily

by the current stress. Once the stress path in cyclic loading is close to the critical state

line, soil tends to dilate at the later stages of loading (i.e., after stress path passes the

critical state line) while tends to contract during unloading. This leads to the oscillation

of effective stress path and prevents further accumulation of pore pressure.
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4.3.2. The Role of Shakedown/Softening Parameter cd

As discussed before, the model parameter cd affects the amount of accumulated defor-

mation during cyclic loading. Furthermore, a change of cd value is able to switch soil

response from cyclic shakedown to softening. Figure 4.11 demonstrates these influences,

in which the peak strains of each loading cycle in simulations of a undrained cyclic loading

on isotropically normally consolidated clay are presented. The compression and extension

peak strain are depicted separately for the sake of clarity. In addition, the accumulated

strain (i.e., residual strain at the end of each loading cycle) in the simulations is also

provided (Figure 4.11(b)). In general, higher values of cd induce a more rapid develop-

ment of deformation in cyclic loading, which are reflected in both peak strain and residual

strain at the end of each cycle. When a negative value of cd is assigned (i.e., cd = −30),

the increase of residual strain within 10 cycles is very small and its growth rate is very

low after 10 loading cycles as well. Meanwhile, the development of peak strain in both

compression and extension tends to stabilize with the increasing number of cycles. All

these features indicate the phenomenon of cyclic shakedown. On the other hand, in the

simulations under positive values of cd (i.e., cd = 5 and cd = 15), both residual strain and

peak strain keep growing with the loading cycle number. Moreover, such a deformation

development is unstable after certain loading cycles, which is characterized by the accel-

erating growth of residual strain and peak strain. Under such a cyclic softening condition,

one can expect that the soil would fail once more loading cycles are applied.
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Figure 4.11. Simulated peak and residual strains during CIU CYC-TX test
with different values of cd: (a) peak compression and extension strains in
each cycle; (b) residual strain at the end of each cycle

4.3.3. The Role of Small Strain Stiffness

To consider the small strain stiffness of soil, this work incorporates a non-linear small

strain elasticity model (Benz, 2007), whose key features include the recovery of shear

modulus G0 after stress reversal and subsequent stiffness degradation with increasing

magnitude of deformation. In this section, efforts are made to clarify the effects of soil’s

small strain stiffness during cyclic loading and probably more importantly, under what

condition these effects can be ignored without introducing significant errors. Figure 4.12

and 4.13 present simulation results of undrained cyclic loading with large (qcyc = 180kPa)

and small (qcyc = 15kPa) cyclic stress amplitudes, respectively. For each of the above cyclic

stresses, simulations are repeated for two scenarios, i.e., considering and ignoring small
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Figure 4.12. Simulated cyclic stress-strain and effective stress paths during
CIU CYC-TX test with large cyclic stress amplitude: (a)-(b) consider small
strain elasticity; (c)-(d) ignore small strain elasticity

strain elasticity. when small strain elasticity is not considered, the Cam-Clay elasticity

model with parameters κ and ν is used to determine material’s elastic behavior.

The mobilization of large plastic deformations expedites the degradation of elastic

stiffness while has the elastic strain component a small fraction of the total strains. As

a result, soil’s nonlinearity, stress-strain hysterisis loop and pore pressure generation are

dominantly governed by plasticity. Therefore, as shown in Figure 4.12, ignoring small
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Figure 4.13. Simulated cyclic stress-strain and effective stress paths during
CIU CYC-TX test with small cyclic stress amplitude: (a)-(b) consider small
strain elasticity; (c)-(d) ignore small strain elasticity

strain stiffness does not introduce a significant difference in terms of stress-strain and pore

pressure responses during cyclic loading. However, when the cyclic stress is relatively small

(like the case shown in Figure 4.13) or the material yield stress is relatively high, plastic

deformation that develops during cyclic loading will be small. As a result, the elastic

component of deformation is more pronounced and sometimes even dominant. Figure

4.13 shows, under this condition, small strain elasticity model helps to reproduce the soil’s
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non-linearity and thus to simulate a better stress-strain hysteresis loop than the simplified

model. From an energy point of view, the above hysteresis hoop can significantly affect the

amount of energy dissipation and thereby changes kinematic energy that is converted to

soil particle velocity, especially if the number of cycle is large. While in this specific case,

both models predict similar growth of peak strain, noticeable differences exist in terms of

residual strain and this difference is expected to growth with increasing number of cycles.

The comparison of the two effective stress paths shown in Figure 4.13(b) and (d) indicates

that the simulation that considers small strain stiffness predicts a higher amount of pore

pressure accumulation and consequently a higher reduction in effective stress. This is

likely due to the coupling between pore pressure generation and material elastic stiffness

under undrained condition. Since effective stress can significantly affect strength and

stiffness of soil, ignoring small strain elasticity may make predictions unconservative (i.e.,

reduction in stiffness and strength may be overlooked by the simulation) under a loading

condition of low stress amplitude but high cycle numbers (e.g., wave action).

In terms of usage of the model, it is suggested that when the anticipated plastic strain

in cyclic loading is the dominant component of the total strain, simulations with simple

large strain elasticity model (e.g., Cam-Clay elasticity) are acceptable and the impact of

this simplification are expected to be minor.

4.4. Calibration of Model Parameters and Initial Conditions

4.4.1. Calibration of Model Parameters

As the basic model is formulated to reproduce intrinsic clay behavior, the calibration of

relevant parameters should be based on experimental observations on reconstituted clay,
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insensitive clay or sensitive clay that has been consolidated to sufficiently high stress levels

(i.e., inter-particle bonds have been completely eliminated). The procedure to calibrate

model parameters is demonstrated as follow, on the basis of experimental data for tests

on relatively insensitive BCF clay (Zapata-Medina, 2012).

• Parameters λ and κ

The parameter λ represents the slope of virgin compression line in e− ln(p) plane and

can be calibrated from either an isotropic compression test or a 1D compression test. In

1D compression tests, if the measurement of lateral effective stress is absent, which is the

case for BCF clays, λ can be estimated from compression index Cc (Figure 4.14(a)). This

estimation is based on the assumption that the K0 value is constant for NC clay. Under

this condition, mean effective stress, p is proportional to axial effective stress σ
′
a with a

constant, i.e., p = (1 + 2K0,NC)σ
′
a/3. Further, λ is related to Cc via:

λ =
e1 − e2

lnp2 − lnp1

=
e1 − e2

lnσ
′
a,2 − lnσ

′
a,1

= Cc/ln(10) (4.41)

where 1 and 2 in subscript denote two points in the virgin compression line.

The parameter κ is the slope of rebound line in e− ln(p) plane and it can be estimated

in a way similar to λ via recompression index Cr, i.e., κ = Cr/ln(10). Nevertheless, the κ

estimated with this method is less reliable due to the variation of the K0 values during 1D

unloading (Dafalias et al., 2006). Zapata-Medina (2012) conducted reconsolidation tests

on BCF clay samples in the triaxial cell, in which samples were 1D consolidated (i.e.,

no lateral deformation) to its maximum past pressure then unloaded under conditions of

zero lateral strain to its in-situ stress, as shown in Figure 4.14(b). Since both axial and
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Figure 4.14. Calibration of parameters λ and κ

radial effective stresses were measured in the reconsolidation, the relation between e and

p during unloading is used to calibrate κ.

• Parameter ν

As suggested by Dafalias et al. (2006), The Poisson ratio ν is calibrated from the

effective stress path of 1D unloading, as shown in Figure 4.15. The material response

during the initial stage of 1D unloading is assumed to be elastic. As a result, the slope ξ

of the initial portion of the effective stress path is related to ν through: ν = (3−ξ)/(ξ+6).

• Parameters Ag, ng, eg and γ0.7

This set of parameters controls small strain stiffness responses simulated by the model.

With the initial void ratio being known, Ag, ng and eg can be calibrated by fitting equa-

tion 4.36 to the measured G0 values at different mean effective stress levels. For BCF clay,

bender element tests were used to measure G0 during reconsolidation (Zapata-Medina,

2012). This set of data is used to calibrate the above three parameters, as shown in Figure



191

0 1 0 0 2 0 0 3 0 0 4 0 00

1 0 0

2 0 0

3 0 0

4 0 0

ν=(3−ξ)/(ξ+ 6 )=0.24

B C F  s p e c i m e n  B 4 7 - S 9 - 1
        ( Z a p a t a - M e d i n a ,  2 0 1 2 )

q (
kP

a)

p  ( k P a )

ξ

ξ=1.27

1
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4.16 (a). The parameter γ0.7 controls the degradation rate of the elastic stiffness and its

value can be calibrated by fitting the stiffness degradation curve during unloading stage

in a cyclic loading test. The data in unloading is preferred, as plastic deformations are

relatively small, and the decrease of material stiffness is primarily caused by the elastic

stiffness degradation. Figure 4.16 (b) presents the measured secant shear modulus of the

first unloading of a cyclic loading test on BCF clay and model simulations with different

values of γ0.7. It is clear that the adopted elasticity model captures the soil stiffness recov-

ery to G0 at the instance of stress reversal. Moreover, Note that the value of γ0.7 mainly

affects the rate of stiffness degradation while does not significantly affect the stiffness at

large strains. The value γ0.7 = 7e−4 is chosen for BCF clay, as it can satisfactorily re-

produce the observed stiffness evolution, particularly for the axial strain range from 0.1%

to 1%, which is more important for the simulations of strains accumulation under cyclic

loading. For comparison, Figure 4.16(b) includes the simulation under the condition that
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small strain stiffness is ignored, which significantly underestimates soil stiffness during

unloading. It is noted that the shape of the degradation curve computed by the model is

different from the experimental data. Nevertheless, given the simplicity of this elasticity

model, its performance is still considered satisfactory.
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Figure 4.16. Calibration of small strain stiffness parameters: (a) Ag, ng and
eg; (b) γ0.7

• Parameters Mc and Me

Mc and Me denote the stress ratio at critical state in triaxial compression and exten-

sion, respectively. For BCF clay, the effective stress path during a CK0TXC and TXE

tests (Figure 4.17) are used to calibrate Mc and Me, respectively. If only compression

test data are available, it is suggested that Me can be estimated via critical state friction

angle, which is related to Mc:

φcs = arcsin

(
3Mc

6 +Mc

)
; Me =

6 sinφcs
3 + sinφcs

(4.42)
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Figure 4.17. Calibration of parameters Mc and Me

• Parameters Nc and Ne

The parameters Nc and Ne control the shape of the bounding surface. Dafalias et al.

(2006) proposed an analytical solution to calibrate Nc (in their work, Nc and Ne are

assumed to be the same) based on data of a CK0U TXC test on NC clay:

pf
pk0

=

(
N2 − η2

k0

N2 − 2ηk0Mc +M2
c

)1−(κ/λ)

(4.43)

where pf and pk0 is the mean effective stress at critical state and at the end of K0 consol-

idation, respectively. The variable ηk0 is the stress ratio at the end of K0 consolidation.

Also, Nc can be calibrated by fitting the bounding surface with the effective stress path

of CK0 TXC on NC clay (Taiebat et al., 2010). Regarding Ne, it can be calibrated by

matching peak undrained strength in extension through a trial-and-error procedure. Un-

fortunately, data of CK0 TXC or TXE test on NC BCF clays is not available. Therefore,

Nc and Ne were initially assumed to be equal to Mc and Me, respectively, i.e., Nc = 1.27
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and Ne = 0.92. Further adjustments were made to match post-cyclic undrained shear

strength in compression (test B47-S9-1) and extension (test B48-S6-2), and eventually

Nc = 1.22 and Ne = 0.8.

• Parameter χ

The parameter χ governs the upper bound of the internal variable α during constant

stress ratio loading. This value can be calibrated by an analytical solution proposed by

Dafalias et al. (2006):

χ =
2ηk0ε(1− κ/λ)

Bεη3
k0 + η2

k0 + 2[(1− κ/λ)−BM2
c ]εηk0 −M2

c

(4.44)

where:

B = − 2(1 + ν)κ

9(1− 2ν)λ
(4.45)

ηk0 is the stress ratio during K0 consolidation on NC clay and can be related to the K0,NC

value through ηk0 = 3(1 − K0,NC)/(1 + 2K0,NC). The reported K0 values for NC BCF

clays are between 0.45 and 0.53 (Zapata-Medina, 2012) and the averaged value 0.49 has

been chosen, which corresponds to ηk0 = 0.77. The term ε in the above equation is the

ratio between volumetric strain rate and deviatoric strain rate during 1D compression,

i.e., ε = ε̇v/ε̇d = 3/2. Finally, χ = 1.98 is determined for BCF clays.

• Parameters hc and he

The parameters hc and he control the amount of plastic strain developed when the

stress point is inside the bounding surface, and consequently govern the material stiffness

during cyclic loading. Therefore, these two parameters can be calibrated by fitting the

stress-strain curves of the first several cycles during a cyclic loading (Figure 4.18), which
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are less impacted by the the cyclic shakedown/softening parameter cd. Currently, this

fitting procedure is conduced through a trial-and-error procedure. However, to efficiently

and more objectively calibrate these two parameters, it is recommended to employ the

parameter optimization technique (e.g., Finno and Calvello (2005) and Calvello and Finno

(2004)).
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Figure 4.18. Calibration of parameters hc and he

• Parameter C

The parameter C determines the rate of rotation and distortion of both the bounding

surface and the plastic potential surface. Hence, as suggested by Dafalias et al. (2006),

the most appropriate test for its calibration is CK0U TXE on NC clay. This test can

induce significant surface rotation, as the initial stress ratio ηin is far from the final stress

ratio ηf . Due to the absence of suitable experimental data for BCF clays, the CK0U

TXE on OC clay has been used to estimate C. As is shown in Figure 4.19, simulations

with different values of C all stop at the same stress ratio, which is determined by Me.
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However, the undrained shear strength is sensitive to the selection of parameter C. Note

that C = 8 is chosen for BCF clays, as the corresponding simulation reproduces the

undrained shear strength. Compared with experimental data, the soil’s plastic deforma-

tion and corresponding negative excess pore pressure are underestimated by the model.

This difference is caused by the relatively high he value, which is calibrated based on

stress-strain responses during cyclic loading as discussed earlier. The above discrepancy

may be attributed to the natural variation in different samples or the fact that the soil

can exhibit higher stiffness in cyclic loading, in which the loading rate of 1Hz is consid-

erably higher than 0.5% per hour used for the monotonic tests on BCF clay, i.e., clay’s

time-dependent effects.
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Figure 4.19. Calibration of parameter C

• Parameter cd

The parameter cd controls the strain development in cyclic loading, so one should cal-

ibrate cd by fitting strain accumulation data of cyclic loading tests. Figure 4.20 presents

the accumulation of axial strain in a cyclic loading test on BCF clay. Note that while

the axial strain was keeping increasing, the rate of strain accumulation was decreasing,
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Figure 4.20. Calibration of parameter cd

implying cyclic shakedown. Among the three simulations, it is found that the simulation

using cd = −38 can best reproduce the cyclic shakedown in the experiment. Additionally,

in the last several cycles, the experimentally observed rate of strain development (i.e., the

increasing amount of permanent strains within each cycle) is well captured by the simula-

tion with cd = −38. This match suggests that the model will capture strain development

even if more cycles are applied.

• Parameter w

The parameter w controls the amount of pore pressure build-up during undrained

cyclic loading. As a result, pore pressure accumulation in a cyclic test on BCF clay

(Figure 4.21) is used to calibrate w. Note that after 40 cycles, a small amount of positive

excess pore pressure builds up in the experiment. In contrast, the image stress flow rule

(i.e., w = 0) leads to a considerable negative pore pressure build-up. The employment of

the mixed flow rule (i.e., a non-zero value of w) improves model simulation and decreases
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Figure 4.21. Calibration of parameter w: (a) pore pressure build up; (b)
experimental data under magnified scale

the amount of accumulated negative pore pressure. As discussed by Andersen et al.

(1980), stress concentration due to end restraints in triaxial tests can lead to a non-

uniform pore pressure distribution within a sample. Due to the clays low permeability,

the time for pore pressure to equalize within a sample is relatively long. This fact suggests

that the pore pressure distribution within a high-frequency cyclically loaded clay sample

( for BCF clays, the frequency is 1Hz) is more close to being uniform during the later

cycles. Accordingly, during the later cycles, the pore pressure measured at the bottom

of a specimen is more liable to reflect material responses at a stress point. Based on this

consideration, more weight is put on fitting the pore pressure build-up in later cycles and

w = 10 is selected for BCF clays. Moreover, Figure 4.21(b) zooms the same experimental

observation to a magnified scale, in which one can observe a trend that positive pore

pressure gradually increases to its peak then starts to decrease. This trend is correctly

reproduced by the simulation with w = 10.
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4.4.2. Calibration of Initial Internal Variables

In the basic model, there are two internal variables p0 and α. The determination of their

initial values that correspond to the in-situ conditions is discussed in this section.

• Internal variable α

In general, one can find a series of yield points in stress space by performing stress-

probe tests with different stress ratio. The value of α is obtained by fitting the bounding

surface to the yielding points. Unfortunately, such information is not always available

in the practice. To address this issue, an analytical solution is proposed to estimate the

in-situ value of α based on conventional soil properties that can be readily determined:

K0,NC value or the stress ratio at critical state Mc.

To derive the analytical solution, the following two assumptions are made: (1) clay

during its deposition (1D consolidation) experiences a loading path that has a constant

stress ratio ηk0; (2) at the end of sedimentation, α has reached its upper limit αlim, which

is determined by the rotation hardening rule in equation 4.21, i.e., αlim = η/χ. If these

two assumptions are valid, then the in-situ α value is given by:

α = αlim = ηk0/χ; ηk0 = 3(1−K0,NC)/(1 + 2K0,NC) (4.46)

If K0,NC is not measured in experiments, one can use the stress ratio at critical state

Mc to estimate ηk0. Based on the Jacky’s equation, K0,NC is related to friction angle at

critical state through the following expression:

K0,NC = 1− sin(φcs) (4.47)
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Furthermore, considering the relation between critical state friction angle φcs and stress

ratio at critical state Mc:

Mc =
6 sin(φcs)

3− sin(φcs)
(4.48)

one is able to derive the following expression of ηk0:

ηk0 =
3Mc

6−Mc

(4.49)

Correspondingly, a saturated α value in the field is related to Mc by:

α = αlim =
ηk0

χ
=

3Mc

χ(6−Mc)
(4.50)

Equation 4.46 or 4.50 provides an estimation of scalar-valued α in triaxial space. To

generalize the scalar α to the tensor α in multiaxial space, first one observes that given

the asymmetric condition in the field, α obeys the following form:

α =


α1, 0, 0

0, α2, 0

0, 0, α3

 (4.51)

This form implies the principal direction of α is coincident with the Cartesian co-

ordinate axises. If axis-1 is along the vertical direction in the field, then under the the

asymmetrical condition, α2 = α3. Due to its nature of deviatoric stress ratio, the trace

of α is zero, i.e., α1 + α2 + α3 = 0. Additionally, in triaxial space, the scalar α is related

to the components of α via α = α1 − α3. Based on the above relations and after some
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algebra, the components of α is uniquely obtained:

α1 =
2

3
αlim; α2 = α3 = −1

3
αlim (4.52)

• Internal variable p0

Similar to the internal variable α, the most reliable way to estimate in-situ p0 value

is to fit the bounding surface to the experimentally defined yield points in the stress

space. Considering the usual absence of the above information, an analytical solution is

proposed to estimate initial value of p0 based on maximum past pressure σ′p found in the

1D compression test and K0,NC value.

First, the pair of (p, q) stresses that correspond to σ′p is obtained by:

pp = (σa + 2σr)/3 = (1 + 2K0,NC)σ′p/3; qp = σa − σr = (1−K0,NC)σ′p (4.53)

As the above stress pair lies on the bounding surface, the value p0 can be obtained by

substituting (pp, qq) and previously determined α and Nc value into the bounding surface

expression (i.e., equation 4.1). Nc is used as the aforementioned stress point is expected to

be lie on the compression side of the bounding surface. After some algebra, the following

expression of p0 is obtained:

p0 = pp +
(qp − ppα)2

(N2
c − α2)pp

(4.54)

4.5. Validation of The Basic Model

This section discusses the validation of the basic model with experimental observations

of reconstituted Georgia kaolin (Sheu, 1985) and relatively insensitive BCF clay (Zapata-

Medina, 2012), for which the effects of soil structure are relatively small.
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4.5.1. Reconstituted Georgia Kaolin Clay

Sheu (1985) conducted a series of undrained cyclic loading tests on reconstituted clay

specimens, which were created by mixing Georgia kaolin with salty water. For more

details about the process of sample preparation and testing, readers are referred to the

thesis of Sheu (1985). In the following validation, four undrained cyclic loading tests were

simulated, which have different amplitudes of cyclic shear stress, i.e., qcyc = 121.4 kPa,

qcyc = 136 kPa, qcyc = 140.7 kPa and qcyc = 165.5 kPa.

Model Parameters and Initial Conditions

Table 4.5 summaries model parameters for the reconstituted Georgia kaolin. The

parameters hc = 50 and he = 50 are obtained by fitting the stress-strain curves of the

first three loading cycles in the undrained cyclic loading test with qcyc = 140.7 kPa. The

parameter cd = 25 and w = 5 are chosen to match the observed strain development and

pore pressure build-up in the above test, respectively. Other parameters shown in Table

are obtained from Seidalinov (2012), who calibrated a bounding surface model based

on isotropic consolidation tests and monotonic undrained shearing tests on the same

reconstituted Georgia kaolin. In experiments, reconstituted specimens were isotropically

consolidated to p = 340 kPa before cyclic loading. Therefore, internal variable p0 = 340

kPa and α = 0 is selected. It is worth mentioning that as no accurate measurement of

small strain behavior is available, and observed strain is relatively large, the small strain

elasticity model is switched off, and isotropic elasticity is used instead.

Model Simulation and Performance

Figure 4.22 show experimental observations in the test qcyc = 140.7kPa and those

computed with the proposed model. To highlight advantages of the proposed plastic flow
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Table 4.5. Model parameters for reconstituted Georgia kaolin

Adopted from Seidalinov (2012) This work

λ κ ν Mc Me Nc Ne C χ hc he cd w

0.121 0.037 0.2 0.87 0.86 0.8 0.8 3 1.69 50 50 25(13∗) 5

Note: ∗ cd = 13 value is used when image stress flow rule is employed

- 1 5 - 1 0 - 5 0 5 1 0- 2 0 0

- 1 0 0

0

1 0 0

2 0 0

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0- 2 0 0

- 1 0 0

0

1 0 0

2 0 0

- 1 5 - 1 0 - 5 0 5 1 0- 2 0 0

- 1 0 0

0

1 0 0

2 0 0

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0- 2 0 0

- 1 0 0

0

1 0 0

2 0 0

 M i x e d  f l o w  r u l e ( c )

εa ( % ) εa ( % )

 M i x e d  f l o w  r u l e( b ) ( d )

( a )

C S L

 I m a g e  s t r e s s  f l o w  r u l e ( e )

εa ( % ) εa ( % )

p  ( k P a ) p  ( k P a )p  ( k P a )

 I m a g e  s t r e s s  f l o w  r u l e ( f )
C S L

Figure 4.22. Comparison between experimental observations and model
simulations in a undrained cyclic loading with qcyc = 140.7kPa: (a)-(b)
experimental observations; (c)-(d): simulations of the proposed model; (e)-
(f): simulations under image stress flow rule

rule, the model simulations based on image stress flow rule (i.e., w = 0) is also included.

It is worth mentioning that to achieve similar strain development in cyclic loading, the

parameter cd = 13 is used when image stress flow rule is employed. It can be seen that

the proposed model can reasonably reproduce the deformation development during cyclic

loading. The computed stress-strain loop gradually rotate clockwise indicating the cyclic

softening, as observed in the experiment. Moreover, the experimental data show that
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Figure 4.23. Comparison between experimental observations and model
simulations in a undrained cyclic loading with qcyc = 121.4kPa: (a)-(b)
experimental observations; (c)-(d): simulations of the proposed model; (e)-
(f): simulations under image stress flow rule

when the effect stress is lower enough due to pore-pressure build-up, the soil exhibited a

sudden drop of stiffness whenever the stress path passes p-axis. In the model simulation,

similar stiffness degradation is reproduced, but it develops more smoothly than observed

in the experiment. This difference implies that the plastic modulus interpolation function

(i.e., equation 4.27) may need some modifications, and particularly the experimental

data suggest the need to explicitly incorporate the effective stress into the interpolation

function. Figure 4.22 (b) and (d) show that pore pressure build-up is also reasonably

represented by the proposed model. Like the experimental observations, the computed

effective stress paths continuously shift towards the origin of the stress space and form a

“butterfly” shape loop when the effective stress paths are close to the critical state line.
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Moreover, the proposed mixed flow rule successfully solves the undesired early stabilization

of pore pressure build-up observed in the simulations by the image stress flow rule.

To evaluate the predictability of the model, Figures 4.23 through 4.25 compare the

model simulations and experimental observations in other three tests, which were not

used in the parameters calibration. It can be seen that with the same parameters, the

proposed model can reasonably predict the deformation development and pore pressure

build-up in the other three cyclic loading tests. Note that the computed strains at the

peak of the applied cyclic shear stress in tests qcyc = 136kPa and qcyc = 165.5kPa is lower

than that observed in experiments, because the aforementioned abrupt drop of stiffness

is not reproduced by the model.
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Figure 4.24. Comparison between experimental observations and model
simulations in a undrained cyclic loading with qcyc = 136kPa: (a)-(b) exper-
imental observations; (c)-(d): simulations of the proposed model; (e)-(f):
simulations under image stress flow rule
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Figure 4.25. Comparison between experimental observations and model
simulations in a undrained cyclic loading with qcyc = 165.5kPa: (a)-(b)
experimental observations; (c)-(d): simulations of the proposed model; (e)-
(f): simulations under image stress flow rule

Figure 4.23 shows that an asymmetrical strain development was observed in the qcyc =

121.4kPa test, in which strain accumulated in the extension direction (i.e., decreasing

axial strain). In contrast, symmetrical strains accumulate in the simulation with the

proposed model. Figure 4.24 to 4.25 show symmetric strain development was observed in

all other three tests and these symmetrical strain growths are successfully reproduced by

the proposed model. Therefore, the above discrepancy is likely to be caused by specimen

variation.

Figure 4.26 quantitatively evaluates the model’s capacity to capture pore pressure

build-up for the above four tests. It can be seen that the proposed model can satisfactorily

reproduce the gradual accumulation of pore pressure observed in experiments, except for
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Figure 4.26. Comparison between experimental observations and model
simulations of pore pressure build-up in cyclic loading: (a) pore pressure
accumulation in tests qcyc = 121.4kPa and qcyc = 136kPa; (b) pore pressure
accumulation in tests qcyc = 140.7kPa and qcyc = 165.5kPa

the test qcyc = 121.4kPa, in which computed pore pressure accumulation is higher than

the observed value. Despite this undesirable discrepancy, the proposed model, with its

mixed flow rule, significantly improves the simulation of cyclic pore pressure build-up,

compared with image stress flow rule (dotted line shown in Figure 4.26).

Figure 4.27 illustrates the proposed model’s capacity to capture cyclic softening, in

which experimentally observed peak axial strains in each cycle are compared with the

model simulations. The tests qcyc = 136kPa and qcyc = 140.7kPa are shown, because the

numbers of cycles in these tests are relatively large, and presents a clear trend. It can

be seen that the proposed model can both qualitatively and quantitatively reproduce the

strains development with increasing number of cycles, and clearly characterize a softening

mode of failure.
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Figure 4.27. Comparison between experimental observations and model
simulations of strains development in cyclic loading: (a) peak strains de-
velopment in tests qcyc = 136kPa; (b) peak strains development in tests
qcyc = 140.7kPa

4.5.2. Insensitive BCF clay

A series of triaxial cyclic loading tests, as well as post-cyclic shearing tests were conducted

at Northwestern on undisturbed BCF clay specimens (Zapata-Medina, 2012), which were

identified as the Facie IV of BCF (Updike and Olsen, 1988) and characterized as insensi-

tive structured clays. The experimental data provide a unique opportunity to evaluate the

proposed model in two aspects. First, the model is examined regarding its capacity to rea-

sonably represent the cyclic behavior of both lightly and more heavily overconsolidated

clay, which are created by different construction stress paths. This feature is required

when one attempts to evaluate the stability of structures that impose significant loads

on soils. Zapata-Medina (2012) simulated the construction of an open-cell wharf struc-

ture located at the Port of Anchorage in the Plaxis3D. He identified construction-induced
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stress changes of stiff OC BCF clays at various locations relative to the wharf structure

(i.e., landward, cell toe and seaward in Figure 4.28). The soil beneath the structure (e.g.,

landward) becomes lightly overconsolidated after construction-induced excess pore wa-

ter pressures have dissipated. When an earthquake then impacts such a structure, the

foundation soil beneath the structure will have a much different response than that imme-

diately adjacent to the structure, which remained little affected by the construction of the

retaining structure (e.g., seaward in Figure 4.28). Second, the experimental observations

in post-cyclic shearing enable an evaluation of the model’s capacity to adequately predict

post-cyclic shear strength, which is an important property for engineering applications

but has received little attentions in other constitutive modeling efforts.

In the experiments, the stress changes shown in Figure 4.28 were reproduced on

clay samples via drained stress-controlled loading, after samples had been reconsolidated

to their in-situ stress conditions. The free field condition (i.e., no construction activ-

ity) is characterized by sample B47-S7-2. After applying the construction stress paths,

stress-controlled undrained cyclic loading equivalent to the Contingency Level Earthquake

(CLE) at the project was applied to specimens. This loading corresponded to a cyclic

stress ratio (CSR) of 0.2, and 40 cycles of a frequency of 1Hz. After cyclic loading, the

samples were immediately subjected to strain-controlled undrained monotonic shearing

until failure. More details about the experimental procedures and experimental equipment

can be found in the thesis of Zapata-Medina (2012).

Model Parameters and Initial Conditions

Table 4.6 summarizes model parameters for the relatively insensitive BCF clay, whose

calibration has been explained in the section 4.4. The parameter λ were calibrated from
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Figure 4.28. Simulated construction-induced stress changes for different
samples and their relative positions to the wharf structure

Table 4.6. Model parameters for insensitive BCF clay

λ κ Mc Me Nc Ne C χ hc he cd w Ag eg ng γ0.7

0.08 0.022 1.27 0.92 1.22 0.8 8 1.98 400 300 -38 10 250 2.64 0.635 7.00E-04

a 1D compression test on the specimen that has similar compression and recompression

indexes as the one in test B47-S9-1. The parameters Mc, Me and C are calibrated from

two monotonic tests, and the parameter Ne is calibrated by matching the post-cyclic

undrained strength in the test B48-S6-2. All other parameters were calibrated from the

test B47-S9-1.
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The initial values of internal variables p0 and α that corresponds soil in-situ condi-

tions were estimated by the following way. The stress pair (p, q) that correponds to the

maximum stress experienced by the soil was estimated based on σ
′
p found in oedometer

tests and the K0,NC values found in reconsolidation. The relevant relations are shown

in equation 4.53. Then, these stress points were plotted in stress space, and a bounding

surface based on the predefined parameters Nc and Ne was constructed to fit these points,

as shown in Figure 4.29. However, it was found under this bounding surface configura-

tion, the cyclic loading could not be completed in some simulations. In other words, after

several loading cycles, undrained shear strength predicted from the model is less than the

peak shear stress applied during cyclic loading. This discrepancy suggests that the size

of the bounding surface (i.e., p0 value) may have been underestimated, which may occur

as a result of the underestimation of σ′p in oedometer tests due to the sample disturbance

(Holtz et al., 2010) or variations in σ′p of the BCF. On the other hand, the K0,NC value that

was obtained during reconsolidation tests in the triaxial cell is more consistent. Therefore,

the stress states shown in Figure 4.29 provide a more reliable estimation of stress ratio at

maximum past stress states, and thus the inclination of the bounding surface, but a less

accurate estimation of the bounding surface size. Based on these observations, α = 0.3

was fixed and p0 = 550 kPa was calibrated by the model performance in B47-S9-1 cyclic

loading test. Table 4.7 summarizes the initial internal variables for each tests. It is worth

mentioning that for the B46-12-1, a higher p0 value is required, with which cyclic load-

ing same as the experiment can be completed in the simulation. Such difference may be

attributed to the natural variation between samples, which were obtained from different

elevations and boreholes.
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Figure 4.29. Estimation of initial value of internal value α from maximum
past pressure

Table 4.7. Initial values of internal variables
for insensitive BCF clay

Sample Elevation (m) p0 (kPa) α

B47-S9-1 -23.8 550 0.3
B47-S7-2 -20.7 550 0.3
B48-S6-2 -21 550 0.3
B46-S12-1 -28.3 850 0.3

The above p0 values are decided by mainly considering model performance during

cyclic loading. To check whether such values are reasonable, simulations of reconsolidation

tests were conducted based on the model parameters in Table 4.6 and the internal variables

in Table 4.7. Figure 4.30 presents the relevant comparisons. It can be seen that with

the selected initial p0 and α, the model can satisfactorily reproduce the BCF clay’s 1D
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compression and unloading behavior in four reconsolidation tests. Moreover, except for

sample B47-S7-2, experimental data (i.e., the curvature of the compression curve) in the

loading branch of all other three tests indicate the yield stress had not been reached

during loading, which confirms that the bounding surface in Figure 4.29 is smaller than

the actual one. For test B47-S7-2, the yield point can be identified in the initial loading,

because the applied vertical stress is much higher than the other three cases. The model

simulation well captures such yielding behavior, which suggests the selected p0 value is

reasonable. Some difference among experiments results and model simulations can be seen

in the case of B46-S12-1, in which the model computes less void ratio reduction during

the initial loading. This discrepancy may be caused by the natural variations in samples

as one single set of parameters is used in the four simulations. Otherwise, this difference

may suggest an overestimation of p0 value, which is a compromise for the model’s better

performance in cyclic loading.

Model Simulations and Performance

In the simulations, similar to actual experiments, three continuous stages were em-

ployed: (a) construction-induced stress changes were reproduced; (b) 40 stress-controlled

loading cycles with triaxial CSR=0.2 were applied under undrained condition; (c) strain-

controlled undrained post-cyclic shearing was applied.

Figure 4.31 shows the experimentally observed and computed stress-strain responses

during cyclic loading tests on samples in Figure 4.28. Note that dash-dot and dash line

denote 1st cycle and 40th cycle data, respectively. The cyclic stress-strain data in test

B47-S9-1 are used in the model calibration, so the corresponding simulation is labeled

“computation” and simulations for other three tests are labeled “predication”.
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Figure 4.30. Comparison between experimental observations and model
simulations in reconsolidation tests: (a) sample B47-S9-1; (b) sample B47-
S7-2; (c) sample B48-S6-2; (d) sample B46-S12-1

Experimental data in Figure 4.31 show that the construction activities, and associated

soil stress changes significantly affect the strain accumulation during cyclic loading. The

same CSR defined the cyclic loading for each sample, but resulting in substantial differ-

ences in applied cyclic stresses. The specimen B47-S9-1 was subjected to a consolidation

history similar to other samples but then subjected to a drained compression loading path

representative of a foundation soil beneath a retaining structure such that the specimen
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Figure 4.31. Comparison between experimental observations and model
simulations of stress-strain response during undrained cyclic loading tests:
(a)-(d) experimental data; (e)-(h) simulations by the proposed model; (i)-(l)
simulations by the reference model

was lightly overconsolidated after applying the load. It can be seen that the strains which

accumulated in this lightly overconsolidated specimen are significantly larger than those
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that developed in the samples that were more heavily-overconsolidated (i.e., B47-S7-2 and

B48-S6-2). The simulation results in Figure 4.31 shows the above construction effect is

reasonably reproduced by the proposed basic model.

        s t r e s s  a f t e r  c o n s t r u c t i o n

u n l o a d i n g - 2
l o a d i n g - 2

u n l o a d i n g - 1
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        s t r e s s  b e f o r e  c o n s t r u c t i o nq

p

B o u n d i n g  S u r f a c e

Figure 4.32. Schematic illustrations of the effects of pre-cyclic construction
paths on the computed strain accumulation directions

It is found that the construction stress path can also impact the preferential direction

of cyclic strain accumulation. For instance, compressive strains (i.e., positive axial strain)

accumulated in specimen B47-S9-1, while strains featuring extension (i.e., negative axial

strain) accumulated in specimen B46-S12-1 and B48-S6-2. Again, the model simulations

correctly capture the direction of strain accumulation. Figure 4.32 illustrates how the pro-

posed model reproduces the above influences of the construction-induced stress changes.

After a construction stress path induces a higher shear stress in compression (e.g., sample

B47-S9-1), the loading branch featuring compression (loading-1 in Figure 4.32) induces
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more permanent deformation than unloading (unloading-1 in Figure 4.32), because the

computed amount of plastic deformation is proportional to the proximity of a stress point

to the bounding surface. On the other hand, after soil experiences a construction path

that brings stress point closer to the extension side of the bounding surface (e.g., sample

B46-S12-1), unloading featuring extension (unloading-2 in in Figure 4.32) induced more

irrecoverable deformation than loading (loading-2 in in Figure 4.32) in the compression

direction, which finally produced a strain accumulation in extension.

The direction of strain accumulation has partially resulted from the effect of recent

stress history (Finno and Cho, 2010; Finno and Kim, 2012). The first one-half cycle for

specimen B48-S6-2 and B46-S12-1 had a relatively large stress path rotation from its

prior construction path. As a result, the corresponding shear stiffness at the first loading

branch is much higher than the loading branch of subsequent cycles, which results in less

deformation during the first loading. However, this difference in shear stiffness between

the first loading and subsequent ones is less noticeable for B47-S9-1, as the stress path

rotation of the first loading branch is much smaller. This effect of recent history on shear

stiffness is achieved by the adopted small strain elasticity model, in which upon stress

reversal (i.e., greater stress path rotation), elastic shear modulus recovers to G0.

Moreover, as a result of the small strain elasticity model, the shape of stress-strain

hysteresis loop observed in tests is reasonably well reproduced by the model simulations.

This achievement is more pronounced when the strains developed during cyclic loading

are relatively small. Note that less success is seen in the prediction of the test on sample

B46-S12-1, in which the amount of strain accumulation is overestimated. Nevertheless,
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considering the actual difference between observed and predicted final strain accumula-

tion, i.e., 0.18% versus 0.65%, the simulation is still acceptable.

To highlight the benefits of new model components, simulations are also included in

Figure 4.31 under the conditions that the image stress flow rule is employed (w = 0),

cyclic shakedown is not considered (cd = 0) and small strain elasticity model is switched

off. These computations are referred to as “Reference model” simulations. It can be seen

that the reference model significantly overestimates the amount of strain accumulation in

the tests of B47-S9-1 and B46-S12-1. This discrepancy partially results from the fact that

cyclic shakedown and small strain stiffness behavior are not taken into consideration.

Additionally, the accumulation of negative excess pore pressure shown in Figure 4.33

indicates that negative plastic volumetric strain keeps accumulating in the simulations of

the reference model, which induced a gradually shrinking bounding surface. Accordingly,

computed plastic deformation and the amount of strain accumulation are increased.

Furthermore, in simulations of tests B47-S7-2 and B48-S6-2 by the reference model,

the slope of stress-strain curve gradually increases during cyclic loading, which indicates

the soil stiffness is increasing as more cycles are applied. This cyclic hardening is contrary

to the cyclic softening observed in the experiments and is attributed to the accumulation

of negative pore pressure which increases the effective stress and the computed elastic

stiffness which is proportional to the effective stress. These observations highlight the

coupling between clay strain accumulation and pore pressure build-up in a undrained

cyclic loading and the importance of the appropriateness of the plastic flow rule, as the

reasonably accurate predictions of strain and pore pressure accumulation heavily rely on

it.
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Figure 4.33. Comparison between experimental observations and model
simulations of strain-pore pressure response during undrained cyclic load-
ing tests: (a)-(d) experimental data; (e)-(h) simulations by the proposed
model; (i)-(l) simulations by the reference model

Figure 4.33 shows the pore pressure responses during the above cyclic loading. Note

that the reference model, which uses the image stress flow rule, simulates the accumula-

tions of negative pore pressure. On the other hand, the proposed model can satisfactorily
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reproduce the build-up of positive pore pressure during cyclic loading for all tests. The

final amount of pore pressure build-up simulated by the proposed model is 5 to 25 kPa

higher than experiments. As discussed earlier, one possible explanation for the discrep-

ancy above is that non-uniform pore pressure within a specimen cannot reach equalization

during cyclic loading of 1Hz. As a result, the pore pressure measured at the bottom of a

sample cannot represent soil constitutive responses, which the model tries to reproduce.

Besides, to verify the above hypothesis, cyclic loading tests with lower cyclic loading rates,

which can ensure the equalization of pore pressure, are needed in the future. Finally, It

worth mentioning that the above comparisons illustrate the strong predictability of the

proposed model. The model can reasonably predict cyclic stress-strain responses in tests

that were not used in the model calibrations and especially these tests have very different

pre-cyclic stress history compared with the test that was directly used to calibrate model

parameters.

Figure 4.34 shows the tests results of post-cyclic undrained shearing and the sim-

ulations of the basic model. It can be seen the computed responses reasonably agree

with the experimental observations regarding strain-stress-pore pressure response during

post-cyclic shearing. The difference between computed and measured undrained strength

varies from 2% to 10%, which is accurate enough for the model to be used in assessing the

stability of geotechnical facilities after cyclic loadings (e.g., earthquake or offshore wave

actions). Also, the trend of pore pressure evolution during shearing is correctly captured

by the model.
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Figure 4.34. Comparison between experimental observations and model
simulations in post-cyclic undrained shearing: (a): stress-strain response;
(b) strain-pore pressure response

4.6. Summary and Conclusions

This chapter presents the formulation of the basic constitutive model in triaxial space,

which is developed within a bounding surface plasticity framework. Compared with exist-

ing bounding surface plasticity models for cyclic clay behavior, three major enhancements

are proposed, including the mixed plastic flow rule, a new form of plastic modulus to uni-

formly reproduce cyclic softening and shakedown, and the adoption of a small strain

elasticity model. The results from a series of parametric studies are discussed, which

elucidate the roles of new model components. The steps required to calibrate model pa-

rameters and estimate the initial values of the internal variables are presented. Finally,

the basic model is validated with respect to experimental observations of two relatively
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unstructured types of clay: reconstituted Georgia kaolin and relatively insensitive BCF

clay. The following main conclusions can be drawn from this chapter:

(1) The verification with experimental observations shows that the proposed basic

model is general, versatile and can reliably represent observed responses. With

a single set of parameters, the proposed basic model is capable of reproducing

strain and pore pressure accumulation during cyclic loading with different shear

stresses and various complex stress histories before cyclic loading.

(2) The proposed mixed plastic flow rule incorporates characteristics of plastic flow

direction defined by the current stress state into the existing image stress flow

rule. The employment of this new flow rule successfully solves the undesirable

early stop of pore pressure build-up inherent with the use of flow rule based on

the image stress. Further, compared with the image stress flow rule, the proposed

flow rule ensures that a correct trend of pore pressure build-up is reproduced.

The new parameter w provides model users additional flexibility in controlling

the amount of pore pressure build-up during undrained cyclic loading.

(3) The proposed plastic modulus formulation enables the model to reproduce in a

unified manner both cyclic softening and cyclic shakedown, which are observed in

tests on the reconstituted Georgia kaolin and insensitive BCF clay, respectively.

(4) When large plastic deformation develops and forms the majority of total de-

formation, ignoring small strain stiffness will not cause significant differences

in computed responses. When cyclic strains are relatively small, incorporation

of the small strain elasticity model will better simulate the cyclic stress-strain

hysteresis loop, corresponding energy dissipation, and the recent stress history
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effects. Ignoring small strain stiffness under some circumstance can limit the

amount of deformation accumulation and underestimate pore pressure build-up

in cyclic loading, which may eventually lead to unsafe predictions if the number

of cycles is large.

(5) Experiments on relatively insensitive BCF clay show construction-induced stress

changes significantly affect clay behavior during cyclic loading, including the

amount and directional preference of strain accumulation. This feature is deli-

cately reproduced by the proposed model. The proposed model also can satis-

factorily capture the stress-strain-pore pressure responses observed in post-cyclic

shearing on relatively insensitive BCF clay, which enables the model to be used

in assessing the stability of geotechnical facilities after cyclic loading.
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CHAPTER 5

EXTENSION OF THE BASIC CONSTITUTIVE MODEL

FOR CYCLICALLY LOADED STRUCTURED CLAY
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5.1. Introduction

To consider structure effects typical of natural clays and their deterioration during

cyclic loading, the basic constitutive model presented in chapter 4 is extended. The

formulation and validation of this extended model are the focus of the present chapter.

Within various constitutive models that achieve encouraging success in modeling struc-

tured soil and its destructuration, very few of them (e.g., Yu et al. (2007b)) have studied

the influence of the soil’s structure on material plastic flow, which is a keystone for models

to capture plasticity behavior of structured soil. A new form of plastic potential surface

has been employed in the extended model, which explicitly considers clay fabric anisotropy

and inter-particle bonds. To provide more insights concerning the issue above, the effects

of structure on plastic flow has been studied through the stress-dilatancy relation derived

from the above plastic potential surface. Further, available experimental evidence is used

to evaluate and validate the appropriateness of the proposed plastic potential surface.

The capacity of the extended model is assessed via comparing model simulations with

experimental observations on eight different natural clays. To provide a comprehensive

evaluation, the selected clays are characterized by a wide range of index properties; tested

samples have various stress history (i.e., OCR ranges from 1 to 5); loading programs

include both monotonic and cyclic loading, drained and undrained conditions and com-

pression and extension shearing. Notably, the validation on experiments of Grande Baleine

clay, Cloverdale clay and sensitive BCF clay examines the ability of the model to track

clay structure degradation and correspondingly reproduce strength reduction during cyclic

loading.
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This chapter is organized as follow: First, the extension of the basic model and rel-

evant formulation in triaxial space is presented. Then, the effects of soil structure on

stress-dilatancy relation are discussed. Besides, calibration of newly introduced model

parameters is demonstrated, which is followed by the method to estimate new internal

variables. Finally, the validation of the extended model with experimental observations

is discussed.

5.2. Extension of the Basic Model to Consider the Effects of Soil Structure

In this section, the extension of the basic model is discussed. This extension enables

the model to reproduce salient features in the stress-strain behavior of natural clays, in-

cluding enlarged yielding stress, substantially higher compressibility during post-yielding

compression, strain-softening during shearing, and most importantly, the progressive con-

vergence of natural clays behavior to the corresponding intrinsic behavior.

The emphasis of this section is given to the concepts of intrinsic surface and struc-

ture surface, proposition of a new plastic potential surface, and destructuration law that

governs the structure degradation with plastic deformations. Also, the modifications of

plastic modulus and the evolution rule of projection center are discussed. It is worth

mentioning that model components that remain the same as ones in the basic model will

not be repeated.

5.2.1. Intrinsic Surface, Structure Surface, and Plastic Potential Surface

The intrinsic surface and structure surface in the extended model are illustrated in Fig-

ure 5.1. Following the logic behind the term “intrinsic behavior” introduced by Burland
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(1990), the intrinsic surface governs the behavior of clays, in which the effects of structure

are negligible. Therefore, the intrinsic surface takes the same form as the bounding surface

in the basic model. The structure surface is the real bounding surface in the extended

model, which is constructed based on the intrinsic surface and two additional internal

variable pm and pt. Being the macroscopic manifestation of inter-particle bonds, pm is

introduced to reproduce the enlarged yield surface (bounding surface in this work) of nat-

ural clay while pt is used to model the true cohesion that exists in natural clay (Rampello

et al., 1993). Furthermore, as portrayed in Figure 5.1(a), the structure surface is assumed

to have the same shape, rotation and distortion as the intrinsic surface, i.e., both surfaces

are characterized by the same value of α. As the internal variable α is determined by the

stress history, the above assumption implies that the plasticity anisotropy is an intrinsic

property of natural clay and is solely determined by stress history, which is consistent

with experimental evidence (Tavenas and Leroueil, 1977; Leroueil and Vaughan, 1990;

Gens, 1982; Parry and Nadarajah, 1973).

For the sake of convenience, a translated coordinate p∗ − q is introduced, which hori-

zontally translates the bounding surface by pt from the original p− q coordinate. In the

new coordinate, the structure surface is expressed as:

Fs = (q̄ − αp̄∗)2 − (N2 − α2)p̄∗(p∗s0 − p̄) (5.1)

with the loading direction defined at the image stress as:

∂Fs/∂p̄
∗ = p̄∗(N2 − η̄∗2); ∂Fs/∂q̄ = 2p̄∗(η̄∗ − α) (5.2)
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Figure 5.1. Schematic illustration of important surfaces in the extended
model: (a) intrinsic surface and structure surface; (b) plastic potential sur-
face

Superscript ′∗′ in the above equations denotes the variable after axis translation, i.e.,

p̄∗ = p̄ + pt, p
∗
s0 = ps0 + pt and η̄∗ = q̄/p̄∗. The variables ps0, pm and pt shown in Figure

5.1 are related to each other through:

ps0 = p0 + pm

pm = Sbp0

pt = rcpm

(5.3)

Sb is a new internal variable which quantifies the amount of inter-particle bonds. For

the sake of simplicity, the variable pt is assumed to be linearly related to pm through the

model parameter rc.
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For the extended model, the mixed flow rule proposed in the basic model (i.e., equation

4.8) is inherited. However, the plastic potential surface has been modified:

gs = (q − αp∗)2 − (M2 − α2)p∗(pa − p∗) (5.4)

with its derivatives being:

∂gs/∂p
∗ = p∗(M2 − η∗2); ∂gs/∂q = 2p∗(η∗ − α) (5.5)

As shown in Figure 5.1(b), modified plastic potential surface is also anchored at the origin

of coordinate p∗−q. Due to this axis translation, the line passing through the peak of the

plastic potential surface is shifted to the left. These line is renamed as phase transition

line (PTL), since this line is the collection of stress state at the boundary between plastic

dilation and contraction. The designation of critical state line (CSL) is not used, as crtical

state, strictly speaking, is the state of continuous and purely frictional shearing (Schofield

and Wroth, 1968), as opposed to the cohesive-frictional nature of structured clay due to

the existence of inter-particle bonds (Rampello et al., 1993). Therefore, critical state can

only be reached after inter-particle bonds has been completely eliminated. Considering

the relations in equation 5.3, the location of phase transition line in stress space depends

on the amount of inter-particle bonds. When bonds deteriorate, the phase transition line

will shift to the right due to the decrease of the internal variable pt and thereby creates a

changing boundary between plastic contraction and dilation. As a result, soil’s dilatancy

predicted by the model is not only a function of stress state but also relies on the amount

of inter-particle bonds. Eventually once all inter-particle bonds has been broken (i.e.,

pm = 0 and pt = 0), the phase transition line will converge back to the critical state
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line and plastic potential surface will become the one in the basic model. At the same

time, the structure surface coincides with intrinsic surface and the constitutive behavior

predicted by the extended model is identical to the ones obtained from the basic model.

This is consistent with the idea that the behavior of structured clay will be identical to

that of reconstituted clay once the loading or deformation is large enough to remove all

the structure (Burland, 1990).

5.2.2. Internal Variables Hardening Laws and Plastic Modulus

The destructuration law proposed by Taiebat et al. (2010) is adopted in this work to

govern bond deterioration, i.e., the evolution of the internal variable Sb:

Ṡb = −(kiSb)ε̇de = 〈Λ〉S̄b;

ε̇de =
√

(1− A)(ε̇pv)2 + A(ε̇pd)
2; S̄b = −(kiSb)

√
(1− A) (Rv)

2 + A (Rd)
2

(5.6)

This rate form of destructuration law implies Sb value will exponentially decrease with

the growth of destructuration strain εde, and the constant ki controls the rate of destruc-

turation. The decrease of Sb and its competition with the hardening that is associated

with density increase are keys for the model to capture higher post-yield compressibility,

strain-softening and other peculiar features of natural clay. The definition of destructura-

tion strain implies both volumetric and deviatoric plastic strains contribute to the bond

deteriorations. This is consistent with the experimental evidences that loss of bonds are

observed in both compression and shearing tests. Parameter A is responsible for allocat-

ing relative contributions of deviatoric and volumetric plastic strains. Additionally, the

form of εde ensures that inter-particle bonds monotonically decreases, independently of
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the sign of the plastic strain. In terms of plastic volumetric strains, it implies that both

plastic contraction and dilation will induce the degradation of natural clay.

The isotropic hardening law for internal variable p0 in the basic model (i.e., equa-

tion 4.20) is assumed to be valid for natural clays. However, the rotation hardening law

needs slight modifications. The term (p̄/p0)2 and (η̄ − χα) in equation 4.21 is replaced

by (p̄∗/p∗s0)2 and (η̄∗−χα), respectively, due to facts that structure surface is the bound-

ing surface and the rotation axis is passing the origin of translated coordinate p∗ − q .

Correspondingly, the vector r in equation 2.5 for the extended model is :

r = [p̄0, ᾱ, S̄b] (5.7)

The term K̄p in plastic modulus equation of the basic model (i.e., equation 4.24) is

modified based on the consistency condition of the structure surface:

K̄p = −
(
∂Fs
∂p∗s0

p̄∗s0 +
∂Fs
∂α

ᾱ + rc
∂Fs
∂p̄∗

(p0S̄b + Sbp̄0)

)
(5.8)

where:
∂Fs
∂p∗s0

= −p̄∗(N2 − α2);
∂Fs
∂α

= −2p̄∗(q̄ − p∗s0α);

p̄∗s0 = (1 + (1 + rc)Sb)p̄0 + (1 + rc)p0S̄b

(5.9)

In the extended model, function f(b) in plastic modulus equation takes the following form:

f(b) =
h(1 + e0)p∗3s0
〈b/(b− 1)− s〉

ms (5.10)

Compared with the counterpart in the basic model (i.e., equation 4.27), the only change

is that p0 has been replace by p∗s0. Since p∗s0 is larger than p0, this modification is able to
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reproduce higher cyclic stiffness of natural clay due to the bonds between soil particles.

Moreover, as the degradation of inter-particle bonds (i.e., Sb decreases) will lead to the

decrease of p∗s0, equation 5.10 explicitly considers the effect of particle bond breakage on

the gradual stiffness reduction of natural clay during cyclic loading.

5.2.3. Projection Center Evolution Rule and Elasticity Model

In the extended model, the variable Xp and Xd in equation 4.18 is redefined in terms of

structure surface:

Xp =
p∗c
p∗s0

; Xd =
qc − qa
qb − qa

(5.11)

Through differentiating equation 5.11 and setting Ẋp = 0 and Ẋd = 0, the evolution of

projection center is again expressed as a function of changes of internal variables:

ṗc =
p∗c
p∗s0

ṗ∗s0 − ṗt; q̇c =
qc
p∗s0

ṗ∗s0 +
N2
c p
∗
c − αqc

N2
c − α2

α̇ (5.12)

where:

ṗ∗s0 = (1 + (1 + rc)Sb)ṗ0 + (1 + rc)p0Ṡb; ṗt = rc(Sbṗ0 + p0Ṡb) (5.13)

While different elastic properties have been observed for some natural clays, generally

changes are not very significant (Burland, 1990; Smith et al., 1992). Specifically, Cotecchia

and Chandler (1997) compared normalized shear modulus with respect to confining stress

at small to intermediate strains of natural Pappadai clay samples and corresponding

reconstituted ones. Little difference was observed. Therefore, the nonlinear small strain

elasticity model in the basic model is used to describe the elasticity behavior of natural
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clays, and for simplicity the relevant parameters are assumed to be independent of soil

structure.

5.3. The Influence of Natural Clay Structure on Plastic Flow

In the extended model, the plastic potential surface proposed by Dafalias (1986a),

which explicitly considers the influence of fabric anisotropy, is further modified via axis

translation. The new plastic potential surface (i.e., equation 5.4) is a function of both

fabric anisotropy (i.e., internal variable α) and inter-particle bonds (i.e., internal vari-

able pt), which are critical components of the natural clay structure. In this section,

the stress-dilatancy relation derived from the plastic potential surface above has been

used to elucidate the roles of soil structure on material plastic flow. Accordingly, rele-

vant experimental evidence is used to examine the appropriateness of the above plastic

potential.

As suggested by Wood (1990), the stress-dilatancy relation is presented in the form of

a stress-dilatancy diagram, in which stress ratio η and plastic dilatancy angle β are used.

And β is defined as:

tan β =
ε̇pd
ε̇pv

(5.14)

As shown in Figure 5.2, for the condition of positive ε̇pd, angle 0 < β < π/2 indicates

plastic contraction (i.e., ε̇pv > 0), β > π/2 indicates plastic dilation (i.e., ε̇pv < 0) and

β = π/2 implies the state of zero plastic volumetric strain rate (i.e., critical state for

reconstituted clay) is reached. To highlight the influence of soil structures on plastic flow,

let us consider the situation that ε̇pd > 0 and the stress point is on the bounding surface

(i.e., plastic flow direction is solely determined by plastic potential surface and current
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Figure 5.2. The influences of variable α and pt/p on stress-dilatancy curve:
(a) varying α under pt/p = 0; (b) varying pt/p under α = 0

stress state). Based on the plastic potential surface in equation 5.4, tan β could be written

as:

tan β =
∂g/∂q

∂g/∂p
=

2(η∗ − α)

M2 − η∗2
(5.15)

with

η∗ = q/p∗ = η/(1 + pt/p) (5.16)

It is worth mentioning when fabric anisotropy and inter-particle bond are ignored (i.e.,

α = 0 and pt = 0), the stress-dilatancy relation of Modified Cam-Clay model is recovered.

Figure 5.2 presents theoretical stress-dilatancy curves based on equation 5.15. For the

sake of clarity, the effects of α and pt are illustrated separately in Figure 5.2(a) and (b),

respectively. Nevertheless, in reality, these two factors will work together. Figure 5.2(a)

shows the increase of α induces a clockwise rotation of the diagram around a fixed point,

which represents the state of critical state. In other words, the stress ratio at critical state

is independent of the value of α. As a result of the rotation, the plastic volume change will

increase given the same stress ratio. Furthermore, the predicted stress-dilatancy diagram
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under non-zero value of α will intersect axis η = 0 at a non-zero β. This implies that

due to the existence of fabric anisotropy, after yielding the increase of isotropic stress

in the absence of deviatoric stress can cause not only compression but also distortion.

While the intersections between stress-dilatancy curves and axis β = 0 indicates purely

compressive, non-distortional plastic deformation occurs for non-isotropic stress state (i.e.,

non-zero stress ratio η) due to fabric anisotropy.

Another signature of any plastic flow rule is the K0 value predicted for normally con-

solidated state. If the elastic strain rate is ignored, which is a reasonable assumption when

clay is normally consolidated, the angle β for K0 condition (i.e., ε̇r = 0) is approximately

constant and equals:

tan β =
ε̇d
ε̇v

=
2/3ε̇a
ε̇a

=
2

3
(5.17)

As depicted in Figure 5.2(a), the increase of α induces a growth of stress ratio that

corresponds to K0 condition. Considering the relation between stress ratio and K0,NC

value:

K0,NC =
σr
σa

=
3− η
2η + 3

(5.18)

one can conclude that a positive value of α, which is compatible with the stress condition in

naturally deposited soil, will lead to lower K0 value compared with theoretical prediction

that ignores influence of fabric anisotropy (i.e., α = 0). This trend is supported by the

experimental observation conducted by Nadarajah (1973), in which measured K0 values

in consolidation tests is remarkably lower than the value predicted by Modified Cam Clay

model, which does not consider plasticity anisotropy. This difference could significantly

affect the estimation of in-situ stresses in the field.
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One should be aware of that stress-dilatancy diagrams presented in Figure 5.2(a)

are obtained through freezing the internal variables. However, in the real simulations,

internal variable α will also change in accordance to its hardening law. Therefore, the

stress-dilatancy simulated by the model will form a curve connecting the η − β curves

that represents varying states of fabric anisotropy. This also implies, due to existing fabric

anisotropy, predicted stress-dilatancy relation by the model is not unique but depends on

initial conditions and subsequent loading paths, unlike the stress-dilatancy relation in

Cam-Clay model or Rowe’s dilatancy theory (Rowe, 1962; Roscoe et al., 1963), which is

solely a function of stress states.
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Figure 5.3. Experimentally observed stress-dilatancy relations and their
comparisons with theoretical predictions: (a) reconstituted clay samples
under isotropic and K0 consolidation history (Lewin, 1973); (b) reconsti-
tuted clay samples under constant stress ratio consolidation (Gens, 1982)

Further evaluation of theoretical predictions with respect to experimental evidences

is presented in Figure 5.3. Tests on reconstituted clays are selected for above purpose, in

which presumably the effects of inter-particle bonds are negligible. Lewin (1973) prepared

two groups of reconstituted samples that were consolidated from slurry, in which one

group was isotropically consolidated and the other one is anisotropically consolidated
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with a constant stress ratio η = 0.57. This anisotropic consolidation is intended to give

approximately zero lateral strain (i.e., K0 path). After consolidation, each sample was

brought to different stress ratio under the condition of constant mean effective stress and

dilatancy relation were measured during subsequent drained constant stress ratio shearing.

To interpret soil dilatancy, Lewin (1973) assumed elastic strain generated during shearing

is negligible so that the total strain increment was essentially equal to plastic strain.

The test results are presented in Figure 5.3(a), accompanied by stress-dilatancy diagrams

computed based on equation 5.15 with the value of M and different values of α shown

in the figure. For isotropically consolidated samples (open symbol), the experimentally

observed stress-dilatancy relation of the stress states near the isotropic condition (i.e.,

η = 0), is well captured by the theoretical prediction that assumes a zero value of α

(i.e., Modified Cam-Clay model). However, as the stress ratio increases, experimental

data keeps deviating from the prediction based on an isotropic flow rule. Specifically,

given the same stress ratio, samples exhibited a higher degree of plastic contraction than

the prediction that ignores anisotropy effect. Moreover, measured data points forms a

curve connecting the η − β curve of α = 0 and curves of increasing values of α, which

suggests that the aforementioned discrepancy is due to the anisotropic fabric developed

during a non-isotropic loading history. The influence of anisotropic stress history on

plastic flow is even pronounced for the samples after K0 consolidation. For these samples,

plastic distortion (i.e., β 6= 0 ) were observed at the isotropic stress state and pure plastic

volumetric change corresponds to a positive value of stress ratio (i.e., η ≈ 0.4). The same

trend can be also observed in the theoretically predicted stress-dilatancy curve under a

positive value of α, which is consistent with samples’ K0-consolidation history. Moreover,
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observed dilatancy data at stress ratios close to that at the end of K0 consolidation can

be well fitted by predicted stress-dilatancy curve with positive value of α = 0.4. With

the decreasing of stress ratio, these stress-dilatancy data forms a curve that starts from

the above predicted curve and ends with prediction corresponding to a negative value

of α (α = −0.2 in this case). As a loading path featuring decreasing stress ratio η will

induce a progressive reduction of α value in the proposed model (recall the hardening

rule in section 4.2.4), predicted plastic flow in the model is expected to follow the same

trend as experiments. Another significant observation is that data points from two groups

eventually converge together at both high and low stress ratio. This suggests the previous

consolidation stress history has been swept out by subsequent loading path and the stress-

dilatancy relation is solely determined by current stress state and its corresponding fabric

anisotropy. From a numerical modeling point of view, the above observation confirms

the appropriateness of incorporating the current stress state as the saturation value of

internal variable α in its hardening law (i.e., equation 4.21). Figure 5.3(b) presents the

stress-dilatancy data obtained from constant stress ratio tests conducted on reconstituted

clay (Gens, 1982), in which the total strain increment after the soil yields was used to

obtain the stress-dilatancy relation. Again, with the increase of stress ratio, measured

points form a similar curve as the previous example.

Concerning the effects of inter-particle bond on plastic flow in the model, equation

5.15 reveals that the relative ratio between inter-particle bonds and stress level, i.e., pt/p,

plays an important role in determining the response. This ratio implies the influence

of bond on stress-dilatancy relation is more pronounced for low stress level than high

stress level. To illustrate this concept, the stress-dilatancy diagram predicted based on
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equation 5.15 under various values of pt/p is presented in Figure 5.2(b). As a result of

the increase of ratio pt/p, predicted stress-dilatancy curves gradually rotate to the left

with coordinate origin as the fixed point. This implies that purely plastic volumetric

deformation will be predicted for isotropic stress state, regardless of the amount of inter-

particle bonds. Due to above shift, stress ratio corresponding to zero plastic volumetric

strain rate (i.e., β = π/2) increases. Moreover, material plastic contraction is intensified

and plastic dilation is delayed. In other words, given the same stress ratio, a higher

value pt/p leads to lower value of β, and thereby higher degree of plastic contraction

as well as a larger amount of pore pressure for undrained shearing. This higher pore

pressure physically could be attributed to natural clay’s larger void size compared with

reconstituted state and corresponding material’s higher tendency to contract after inter-

particle bonds start to break. On the other hand, under the same stress ratio, the plastic

dilatancy predicted by the flow rule without bond effect will change to plastic contraction

if the ratio pt/p is high enough. Figure 5.2(b) also shows the predicted K0 value for

the normally consolidated state is also affected by inter-particle bonds. The increase of

pt/p ratio will increase the stress ratio corresponding to 1D compression condition and

consequently decrease K0,NC value. Such a theoretical prediction implies that K0,NC of

natural clays is not only a function of fabric anisotropy, but also a function of inter-particle

bonds and confining stress. Ignoring the effects of fabric and inter-particle bonds may

both lead to an overestimation of the K0 value in the field, which further leads to an

underestimation of in-situ shear stress and potentially overestimates the additional shear

stress, which can be sustained by the clay material.
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Figure 5.4. Experimentally observed stress-dilatancy relations and their
comparisons with theoretical predictions: (a) pyroclastic weak rock (Cec-
coni and Viggiani, 2001); (b) artificially cemented sand (Schnaid et al.,
2001); (c) Bangkok clays (Balasubramaniam and Hwang, 1980); (d) Grav-
ina di Puglia calcarenite (Lagioia et al., 1996)

After the discussion of influences of inter-particle bonds on predicted stress-dilatancy

relation in the model, experimental observations and their comparisons with theoretical

predictions are able to provide deeper understanding of material behavior. Cecconi and

Viggiani (2001) conducted a series of triaxial tests on pyroclastic weak rock, which ex-

hibits the degradation of inter-particle bonds during shearing. Figure 5.4(a) presents the

corresponding stress-dilatancy curves interpreted from CID TXC tests that begin with
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four different confining stress (i.e., pc). In calculating dilatancy, elastic axial strain was

ignored while elastic volumetric strain was calculated based on κ value obtained in com-

pression tests (Cecconi and Viggiani, 2001). Interpreted results show that the condition

of β = 0 (i.e., zero plastic volumetric strain rate) are attained at a different stress ratio for

different samples and the general trend is that increasing initial confining stress pc will de-

crease the stress ratio corresponding to zero plastic volumetric strain rate. If the amount

of inter-particle bonds could be assumed to be equal for all samples, then above observa-

tion supports the aforementioned left shift of predicted stress-dilatancy curves due to the

increasing pt/p value. The initial portion of observed stress-diltancy curves also suggests

that the effect of pt/p is correctly (at least qualitatively) considered in the proposed flow

rule. In other words, data from tests with lower initial confining stress tend to start from

predictions that represent higher values of pt/p. Furthermore, experimentally observed

stress-dilatancy curves qualitatively form curves that starts from theoretical predictions

corresponding to higher value pt/p and ends with ones of lower value of pt/p. As model

simulations of same loading paths as experimental tests will involve a increase in p value

(before softening) and a decrease in pt value once plasticity is activated, it is reasonable

to expect that the similar connecting paths can be reproduced by the employed flow rule.

One may notice that the initial portion of stress-dilatancy curves for tests with pc = 2.00

and 2.50 MPa does not follow the aforementioned trend. This may be due to the fact that

elastic axial strain rate is ignored in experimental results interpretation, which may lead

to an overestimation of plastic shear strain rate ε̇pd and thereby corresponding β value.

This error tends to be more pronounced at stage of lower stress ratio, as the effective
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stress path progresses most nearly tangentially to the yield surface (Wood, 1990). A fi-

nal observation from Figure 5.4(a) is that stress-dilatancy curves obtained from different

tests tend to converge to a single theoretical prediction. This suggests that there exists a

intrinsic stress-dilatancy relation that is independent of bonds between particles and this

intrinsic behavior is recovered when all bonds have been eliminated.

Figure 5.4(b) presents the stress-dilatancy relations interpreted by Yu et al. (2007b)

from CID TXC tests on three artificially cemented sand with different cement percentage

conducted by Schnaid et al. (2001). Unlike previous case, all cemented sand samples were

sheared from the same isotropic consolidation stress. When interpreting dilatancy from

test results, elastic strain rate was ignored (Yu et al., 2007b). Experimental observations

show stress-dilatancy curve shifts to the left when cement amount increases, which is con-

sistent with theoretical predictions of increasing values of pt/p, which is due to a increase

in pt value that reflects higher amount of cementation in the model. Further verifica-

tion of proposed plastic flow rule comes from the fact that continuous shear deformation

and presumably breakage of inter-particle bonds cause measured stress-dilatancy curve

of cemented sand bending to the right, which forms a path connecting predicted curves

representing decreasing values of pt/p. When shear deformation is large enough, observed

stress-dilatancy relations of sand with 1% and 3% cement eventually can be characterized

by the same theoretical prediction (i.e., the one with pt/p = 0) as the sand without cement.

This further supports aforementioned idea that the intrinsic stress-dilatancy exists.

Experimental work on Bangkok weathered soft clays and Gravina di Puglia calcarenite

provide additional supports of the predicted left shift of the stress-dilatancy curve due to

the existence of inter-particle bonds. Balasubramaniam and Hwang (1980) conducted a
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series of triaxial tests on Bangkok weathered soft clays, which exhibits relatively strong

destructuration phenomenon during consolidation tests. Figure 5.4(c) presents the inter-

preted stress-dilatancy curves from two CID TXC tests with two initial confining stresses,

pc = 104 kPa and pc = 208 kPa. Dilatancy was interpreted by the author of this work,

by ignoring elastic shear strain and estimating elastic volumetric strain based on κ value

measured from 1D compression test. Isotropic compression test results on Bangkok clays

suggest all inter-particle bonds are eliminated at the moment of effective mean stress p

being increased to 208 kPa, which makes stress-dilatancy obtained from subsequent shear-

ing representative of the intrinsic response. Compared with this, stress-dilatancy data for

the test with pc = 104 kPa exhibits the same left shift as previously discussed. Gravina

di Puglia calcarenite is a soft rock that exhibits inter-particle bonds degradation dur-

ing loading or deformation. Two stress-dilatancy curves in Figure 5.4(d) are interpreted

from CID TXC tests by Lagioia et al. (1996), in which consolidation to an effective mean

stress p = 3.5 MPa is believed to have eliminated all bonds. Again, a left shift of the

stress-dilatancy curve induced by inter-particle bonds is observed. It is noteworthy that

for both Bangkok clay and Gravina di Puglia calcarenite, the aforementioned curves that

connect stress-dilatancy diagrams with different pt/p ratios are not observed. While the

exact reason is not clear at this stage, possible explanation is the change of fabric due

to the increasing stress ratio rotates the stress-dilatancy curve clockwise, thereby making

it difficult to observe the trend of stress-dilatancy diagram shifting to the right due to

degradation of inter-particle bonds. It is likely that such a change of fabric induced by

anisotropic loading is less pronounced for soft rock and cemented sand shown in Figure

5.4 (a) and (b).
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Lastly, one should be aware of that the above discussed influences of inter-particle

bonds on plastic flow are not applicable to all natural clays that exhibit destructuration.

For instance, Rampello et al. (1993) studied the plastic flow of intact and reconstituted

Vallericca clay and no noticable difference was observed. In addition, Walker and Ray-

mond (1969) investigated the plastic flow of natural Leda clay under different confining

pressure and concluded that the stress-dilatancy curves of clay under different confining

stress fall within a narrow band. Nevertheless, from a numerical modeling point of view,

the above observations could be reproduced by simply setting parameter rc = 0, through

which the plastic flow rule in the basic model and extended model will be identical.
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5.4. Calibration of Model Parameters and Initial Conditions for the

Extended Model

Table 5.1 and Table 5.2 summarize the parameters and required initial conditions

for the extended model, respectively. Besides the parameters in the basic model, three

destructuration parameters ki, A and rc are introduced in the extended model. Also, a

new internal variable Sb is introduced to represent the amount of inter-particle bonds. For

natural clay, it is recommended that the parameters for the basic model are calibrated

from tests in which samples are consolidated to high stresses if the reconstituted samples

are not available.

The calibration of the additional parameters and the new internal variable is illustrated

based on the experimental evidence on the Bothkennar clay (Smith et al., 1992). This

demonstration clarifies the roles of the new model parameters.

5.4.1. Calibration of Destructuration Parameters

• Parameter ki

The parameter ki controls the rate of the destructuration. Its value is calibrated by

fitting post-yield compression curves of intact natural clay specimens in isotropic consol-

idation, 1D compression or anisotropic consolidation. Figure 5.5(a) shows a compression

curve in the e− log(σ′v) plane from a 1D compression test on intact Bothkennar clay and

simulation results with three different values of ki. Note that a higher value of ki leads

to a greater compressibility at the post-yielding stage. Moreover, as ki increases, the

compression line of natural clay converges more rapidly to the intrinsic compression line

(ICL) (Burland, 1990), which implies smaller load and less deformation are required to
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Table 5.1. Model parameters and their roles in the extended model

Designation Description of Its Role

Elasticity (small strain) eg/Ag/ng Interpolation parameters for shear
modulus at very small strain, G0

γ07 Degradation rate of elastic stiffness
with respect to shear strain

Elasticity (large strain) κ Slope of rebound line in e− ln(p) plane
ν Poisson’s ratio

Critical State Mc/Me Stress ratio at critical state
Isotropic Hardening λ Slope of virgin compression line in e−

ln(p) plane
Rotation Hardening C Rate of surface rotation

χ Saturation value of rotation
Bounding surface shape Nc/Ne Shape of bounding surface

Cyclic loading hc/he Cyclic stiffness
w Pore pressure build-up in cyclic loading
cd Cyclic shakedown/ratcheting

Destructuration ki Destructuration rate with respect to
plastic strain

A Relative contribution of plastic volu-
metric and deviatoric strain to destruc-
turation

rc True cohesion in natural clay

Table 5.2. Initial conditions in the extended model

Designation Description of Its Role

p0 Size of the intrinsic surface
α Inclination and distortion of the struc-

ture surface and intrinsic surface
Sb Amount of inter-particle bonds
e0 Initial void ratio

break all bonds between particles. It also implies that a higher ki value indicates a more

sensitive clay. For Bothkennar clay, ki = 12 is an appropriate value.
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Figure 5.5. Calibration of the parameters ki and A in a 1D compression
test on the Bothkennar clay: (a) varying values of ki; (b) varying values of
A

• Parameter A
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The parameter A controls the relative contributions of plastic volumetric and devi-

atoric strains to the destructuration. When A equals zero, the destructuration solely

is induced by the volumetric plastic strain whereas purely deviatoric destructuration is

achieved when A equals one. Figure 5.5 (b) illustrates the sensitivity of simulated com-

pression curves to the parameter A. It can be seen that a higher A value results in a

slower structure deterioration, which implies along this specific loading path the volumet-

ric plastic strain is higher than the deviatoric plastic strain. Nevertheless, such difference

is likely to be small, as the simulated results are relatively insensitive to the parameter

A. Therefore, for the Bothkennar clay, the value of A is calibrated from a CK0U TXC

test, as shown in Figure 5.6. Note that the change in A value significantly alters the

rate of strain softening in undrained shearing. Accordingly, A = 0.4 is selected for the

Bothkennar clay. It is worth mentioning that the peak strength and stress-strain curves

before the peak strength are insensitive to the value of A.

• Parameter rc

The parameter rc quantifies true cohesion in natural clay. Figure 5.7(a) shows sim-

ulated effective stress paths of a CAU TXC test for three different values of rc and the

corresponding initial phase transition lines (PTL). Note that when rc equals zero, the

corresponding PTL coincides with the critical state line (CSL). Figure 5.7(a) shows that

a higher value of rc results in a higher computed peak strength. Moreover, for a non-zero

rc, the peak mobilized stress ratio in the simulation is higher than the critical state stress

ratio. As positive excess pore pressure monotonically increases in the above simulations,

the above higher mobilized friction is not attributed to soil’s tendency to dilate but the

true cohesion in natural clay. The experimental observations on natural Vallericca clay
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Figure 5.7. Calibration of the parameter rc: (a) simulated effective stress
paths for different rc; (b) calibrate rc for the Bothkennar clay

(Rampello et al., 1993) have shown that in addition to friction, dilatancy and cohesion

are two factors that contribute to the mobilized friction in natural clay. Note that the

stress point that represents the peak mobilized friction (closed circle in Figure 5.7(a)) is

close to the initial PTL, which inspires the way to calibrate rc. As an approximation, it is

assumed that the stress point (pk,qk) that corresponds to peak mobilized friction lies on

the initial PTL, as shown in Figure 5.7(b). Smith et al. (1992) reported the critical state

stress ratio Mc equals 1.4 for the Bothkennar clay. So one can find the intercept of PTL,

pt, equals 8.9 kPa. As will be shown later, the initial internal variable Sb and p0 for the

Bothkennar clay equal 6.1 and 8.3 kPa, respectively. Based on the definition of pt, (i.e.,

pt = rcSbp0), rc = 0.17 is obtained for the Bothkennar clay.
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5.4.2. Estimation of Initial Values for Internal Variables

• Internal variable Sb
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Figure 5.8. Estimation of internal variable Sb in 1D compression tests on
the Bothkennar clay

The internal variable Sb represents the amount of inter-particle bonds in natural clay.

Its value can be estimated based on the results of compression tests on intact natural

clay and corresponding reconstituted clay. The specific steps are illustrated in Figure 5.8,

which shows the results of 1D compression tests on intact and reconstituted Bothkennar

clay in the e − log(σ′v) plane. One needs to determine the max past pressure σ′p of the

intact natural clay. Then, a line is drawn starting from the point of σ′p with a slope equals

to the recompression index Cr. The intersection between this line and the compression

curve for the reconstituted clay is defined as the intrinsic maximum past pressure σ′∗p .
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Considering the similarity between the structure surface and the intrinsic surface, one

assumes that σ′p/σ
′∗
p ≈ ps0/p0 and therefore:

Sb = σ′p/σ
′∗
p − 1 (5.19)

For the Bothkennar clay, Sb = 85/12− 1 = 6.1.

If reconstituted specimens are not available, a compression test on natural clay samples

wherein the applied pressure is sufficiently high to eliminate inter-particle bonds fully

can be used to estimate Sb value. In the high-pressure regime of the above test, the

compression curve can be assumed to have converged to the ICL. A straight line that

connects data points at the later stage of compression test (e.g., dot-dash line shown in

Figure 5.8) is approximately the same as the ICL. Accordingly, the intrinsic maximum

past pressure σ′∗p can be found from the intersection of this line and the line with a slope

of Cr through σ′p. However, when employing this method, one should be very careful to

ensure all structure has been eliminated at the end of compression test. Otherwise, as

illustrated in Figure 5.8, the Sb value will be underestimated due to the overestimation

of intrinsic yielding stress σ̂′∗p .

• Internal variable p0

For natural clay, the stress pair (p, q) that corresponds to the maximum past pressure

σ′p should lie on the structure surface instead of the intrinsic surface. Therefore, the

analytical solution to estimate p0 in the basic model (i.e., equation 4.54) is modified to

be:

p0(1 + Sb) = pp +
(qp − (pp + rcSbp0)α)2

(N2
c − α2)(pp + rcSbp0)

(5.20)
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This equation is a non-linear and its exact solution exists but is tedious. It is suggested

to solve this equation by numerical iterative methods (e.g., Newton method). If rc value

is zero or small enough to be ignored, then equation 5.20 can be simplified as:

p0 =
pp

(1 + Sb)
+

(qp − ppα)2

(N2
c − α2)pp(1 + Sb)

(5.21)

Note that when rc value is not negligible, equation 5.21 can provide a first guess of p0.

Further adjustment can be made to match the yield stress in compression tests (e.g., 1D

compression).

5.5. Validation of the Extended Model

Table 5.3. Index properties and USGS classification of the investigated natural clays

Norrk-
öping
clay

Valler-
icca
clay

Shanghai
clay

Wuzhou
clay

Both-
kennar
clay

Grande
Balenein

clay

Sensitive
BCF
clay

Clover-
dale
clay

PL (%) 25 26 22 28 31 22 20 26
LL (%) 68 55 44 63 80 34 31 50
PI (%) 43 29 22 35 49 12 11 24
Wn (%) 76 27 52 68 70 59 30 50

LI 1.19 0.03 1.36 1.14 0.80 3.08 0.91 1.0
USCS CH CH CL CH CH CL CL CL
St
∗ - - 4 - 5 - 4 > 300 5 - 6 16

Note: ∗ the sensitivity was measured with the Swedish fall cone and laboratory vane for the Grande
Balenein clay and Cloverdale clay, respectively.

Comparisons between computed results with the extended model and experimental

observations of eight different natural clays are presented to validate the proposed model.

Table 5.3 summarizes the basic index properties of these clays. Figure 5.9 shows their

liquid limit and plasticity index on Casagrande’s plasticity chart. Note that all points
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Figure 5.9. Atterberg limits for investigated natural clays on the
Casagrande plasticity chart

in the chart are above “A-line”, which indicates that all the soils are either CL or CH

according to the USCS designation. Moreover, because the clays have a relatively wide

range of liquid limit and plasticity index, they are expected to exhibit relatively diverse

behavior. Furthermore, the liquidity index of these natural clays varies from 0.03 to 3.08.

Considering the correlation between soil sensitivity and liquidity index (Bjerrum, 1954;

Mitchell, 1993), these clays are likely to have a varied degree of sensitivities as well. Thus,

the corresponding evaluation provides a comprehensive picture of the model performance

and ensure that the proposed model is quite general.



254

5.5.1. Norrköping clay

Norrköping clay is an inorganic clay from southern Sweden. Its clay content is about

62%, and the silt content is about 36%. Illite is the dominant clay mineral (Rouainia and

Wood, 2000). The test results in the following comparisons were reported by Westerberg

(1995), while the data was digitized from the work of Rouainia and Wood (2000).

Model Parameters and Initial Conditions

Table 5.4. Model parameters for Norrköping clay

λ κ ν Mc Me Nc Ne C χ hc he cd w ki A rc

0.35 0.047 0.2 1.6 1.4 1.15 1.1 10 1.73 25 25 0 1 16 0.9 0

Table 5.4 summarizes the model parameters for the Norrköping clay. The parameters

λ and κ are estimated from the compression index Cc in the high pressure regime of

a 1D compression test (due to the absence of reconstituted specimens) and the recom-

pression index Cr, respectively. It is worth mentioning that for most of natural clays

simulated in this work, the parameter κ is obtained from the initial loading curve prior

σ′p in compression tests. For the Bothkennar clay, the value of κ is calibrated through

the initial unloading curve (unloading range is 800 kPa vertical effective stress) from an

1D compression test on a reconstituted sample. Poissons ratio ν is assumed to be 0.2.

The parameters Mc and Me were calibrated from the effective stress paths of a CK0U

TXC test and a CK0U TXE test. The parameters Nc and Ne are calibrated by fitting the

peak strength in the above two undrained shearing tests. The parameter C is determined

by fitting the effective stress path of the above CK0U TXE test. The parameter χ is

obtained by the analytical solution of equation 4.44. The parameter ki is calibrated by
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fitting the post-yield compression curve in the aforementioned 1D compression test. The

parameter A is determined by fitting the strain-softening rate in the CK0U TXC test and

CK0U TXE test. The parameter rc is assumed to be zero, as the peak mobilized friction

in shearing under low and high consolidation pressures are quite similar. The parameter

hc is calibrated by fitting the stress-strain response in a CIU TXC test on an overcon-

solidated sample. The parameter he is assumed to equal hc. The results of cyclic tests

on the Norrköping clay are not available, so the parameters cd and w take their default

values, which are 0 and 1, respectively. It is worth mentioning that due to the absence of

relevant measurements, small strain stiffness response is not considered in the following

simulations.

Table 5.5. Initial conditions for Norrköping
clay simulations

p0 (kPa) α Sb e0 p (kPa) q (kPa)

16 0.63 1.5 2.05 10 0

Initial values of the internal variables, void ratio and stress state are summarized

in Table 5.5. Because 1D compression tests on reconstituted Norrköping clay were not

reported, Sb = 1.5 was estimated through the alternative method shown in Figure 5.8.

The initial value of α is estimated through equation 4.50 based on the parameter Mc.

The variable p0 is estimated through equation 5.21 based on an estimated maximum past

pressure σ′p = 54.1 kPa and a K0,NC value calculated from the parameter Mc (i.e., equation

4.47 and 4.48). The initial (p, q) stress shown in Table 5.5 is assumed to represent the

residual stress of clay samples (i.e., the effective stress within a specimen that prevents it

from falling apart after the specimen has been sampled and trimmed).
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Comparisons between experimentally observed and computed results are presented in

two groups: model simulation and model prediction. The comparisons for tests that have

been used to define the above model parameters are shown in the “model simulation,”

whereas those for tests that have not been used are shown in the “model prediction.”

Model Simulation
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Figure 5.10. Comparison between the experimental observation and model
simulation for a 1D compression test on the Norrköping clay

Figure 5.10 compares the experimental observation and model simulation for a 1D

compression test. It can be seen that the model simulation fits well with the observed 1D

compression behavior. The yield stress is well reproduced in the simulation, which shows

the internal variable p0 calculated from the proposed analytical solution (i.e., equation

5.21) is reasonable. Moreover, both the experimental data and simulation result show a

decrease in compressibility at higher vertical effective stress.
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Figure 5.11. Comparison between the experimental observations and model
simulations for a CK0U TXC test and a CK0U TXE test on the Norrköping
clay: (a) stress-strain response; (b) strain-pore pressure response
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Figure 5.12. Comparison between the experimental observations and model
simulations for a CK0U TXC test and a CK0U TXE test on the Norrköping
clay: effective stress path
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Figure 5.13. Comparison between the experimental observations and model
simulations for a CIU TXC test on a Norrköping clay with OCR=2: (a)
stress-strain response; (b) strain-pore pressure response

Figure 5.11 and Figure 5.12 shows the stress-strain responses and effective stress paths

of a CK0U TXC test and a CK0U TXE test and the corresponding model simulations. The

dashed line in the figure represent the reconsolidation stress path that is reproduced by

the simulations. The critical state line was computed from the parameters Mc and Me. As

shown in Figure 5.11 (a), the destructuration induced by monotonic shearing is indicated

by the noticeable strain-softening in both compression and extension tests. The model

simulates this feature very well. The experimental data show the strain-softening in the

compression loading is greater than that in the extension, so does the model simulation.

Moreover, the simulation reasonably reproduces the shear-induced excess pore pressure.

Figure 5.13 presents the observed and computed results in a CIU TXC tests on an

OC specimen that was isotropically consolidated to p = 70, q = 0, then unloaded to

p = 35, q = 0 to create an OCR=2. Note that the model reasonably reproduces the

stress-strain-pore pressure responses observed in the experiment. The computed excess
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pore pressure increases faster than that observed, and the final amount of excess pore

pressure is slightly overestimated in the simulation.

Model Prediction
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Figure 5.14. Comparison between the experimental observations and model
predictions for four CAU TXC tests on the Norrköping clay: (a) stress-strain
response; (b) strain-pore pressure response

Figure 5.14 and Figure 5.15 present the observed stress-strain responses and effective

stress paths in four CAU TXC tests and the corresponding model predictions. It can be

seen that the predictions reasonably agree with the experimental results regarding the

peak strength, strain-softening and gradually increasing excess pore pressure. With the

increase in consolidation stress, more soil structure is eliminated. The four tests shown in

Figure 5.14 and Figure 5.15 presumably represent the responses of clays that have different

degrees of structure deterioration. The model’s success in predicting these behavior shows

its capacity to successfully track structure changes during consolidation and reproduce

the shearing behavior of soil with different degrees of structure degradation. Less success

is seen in the simulation of the CAU TXC-2, in which model underestimates the peak
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Figure 5.15. Comparison between the experimental observations and model
predictions for four CAU TXC tests on the Norrköping clay: effective stress
path

strength. This difference is likely to be caused by natural variations in specimens because

the observed strength in the CAU TXC-2 is almost the same as that in the CAU TXC-3

for which the sample was consolidated to stress greater than the TXC-2.

Figure 5.16 compares the predicted and experimentally observed responses in a CIU

TXC test on a heavily OC sample that was isotropically consolidated to p = 175, q = 0,

then unloaded to p = 35, q = 0 to create an OCR=5. It can be seen that the model pre-

diction generally reproduces the observation. The predicted strain-softening rate agrees

well with that observed, but the peak strength is overestimated by 35%. This discrep-

ancy is probably a result of the large bounding surface that is created by the preceding
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Figure 5.16. Comparison between the experimental observations and model
predictions for a CIU TXC test on a Norrköping clay of OCR=5: (a) stress-
strain response; (b) strain-pore pressure response

reconsolidation to high stress. The predicted excess pore pressure first increases, then

decreases, and then gradually increases again, as observed in the test.
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Figure 5.17. Comparison between experimental observations and model
predictions for CID TXC and CAD TXC tests on the Norrköping clay:
(a) stress-strain response; (b) volume change
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Results of two drained triaxial compression tests (CAD TXC and CID TXC) are shown

in Figure 5.17. The significant point made in this figure is that for structured clays,

when strain-softening is seen in undrained shearing tests, strain-hardening can develop

in drained tests. This feature is shown in both experiments and model predictions. In

the model, hardening in drained tests results from the fact that destructuration induced

softening has been compensated by the hardening associated with density increase. In the

undrained tests, however, as volume change is restrained, the above hardening is limited.

In CAD TXC, the predicted strain-hardening rate reasonably agrees with the experimental

data and the computed yield stress and the strength are higher than that observed. A

relatively poor agreement is seen between the predicted stress-strain curve of CID TXC

test and the corresponding experimental data, in which the strain-hardening and strength

are considerably overestimated. Figure 5.17 (b) shows that the volumetric responses of

both drained tests are generally reproduced by the model, but a better agreement is seen

in the CAD TXC.

5.5.2. Vallericca Clay

Vallericca clay is a natural Plio-Pleistocene marine clay. It is stiff, over-consolidated with a

medium plasticity and activity. This clay is characterized by a calcium carbonate content

of 30% (Kavvadas and Amorosi, 2000). The following experimental tests on Vallericca

clay were conducted by Amorosi (1996), and the corresponding data was obtained by

digitizing the work of Kavvadas and Amorosi (2000).

The shearing tests were divided into medium-high-pressure (MP) and high-pressure

(HP) based on the applied stress level in reconsolidation (Kavvadas and Amorosi, 2000).
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In each group, specimens were anisotropically reconsolidated to sufficiently high pressure

to create normally consolidated samples, which were then either sheared (undrained and

drained) or unloaded to generate different OCR values.

Model Parameters and Initial Conditions

Table 5.6. Model parameters for the Vallericca clay

λ κ ν Mc Me Nc Ne C χ hc he cd w ki A rc

0.147 0.018 0.2 1.05 0.78 1.1 1 4 1.63 50 50 0 1 20 0.5 0.0

The model parameters for the Vallericca clay are summarized in Table 5.6. The

parameters λ and κ are calibrated from an isotropic compression test on an intact sample.

The Poisson’s ratio ν is assumed to be 0.2. The parameters Mc, Nc and C are estimated

from the effective stress path of a CAU TXC test on an NC specimen in the HP group.

Due to the absence of the results of extension tests, Me is estimated through equation

4.42 and Ne is assumed to be 1.0. The parameter χ is obtained by the analytical solution

of equation 4.44. The parameter ki is obtained by fitting the post-yield compression

curve in the above compression test. The parameter A is calibrated by fitting the strain-

softening rate in a CAU TXC test on an NC specimen in the MP group. Because negligible

difference is observed between the peak mobilized friction in shearing under low and high

consolidation pressures, the parameter rc is assumed to be zero. The parameter hc is

calibrated by fitting the stress-strain response in a CAU TXC test on an OC specimen in

the HP group. The parameter he is assumed to equal hc. The parameters w and cd take

their default values.
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Table 5.7. Initial conditions for the Vallericca
clay simulations

p0 (kPa) α Sb e0 p (kPa) q (kPa)

1840 0.39 0.35 0.75 400 0

Table 5.7 presents the initial conditions for simulations. The internal variable Sb =

0.35 was estimated based on the previously mentioned isotropic compression test. The

initial value of α is estimated through equation 4.50 based on the parameter Mc. The

variable p0 is estimated through equation 5.21 based on an estimated maximum past

pressure σ′p = 2100 kPa and a K0,NC value calculated from the parameter Mc. Following

Kavvadas and Amorosi (2000), all simulations begin with the initial stress p = 400 kPa,

q = 0 kPa.

Model Simulation
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Figure 5.18. Comparison between experimental observations and model
simulation for isotropic compression tests on the Vallericca clay
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Figure 5.18 compares the experimental data and model simulation for isotropic com-

pression tests. Good agreement can be seen between the experimental observations and

the computed result. It is worth mentioning that the typical destructuration response

(i.e., a decrease in the compressibility at higher stresses) is not observed in tests on the

Vallericca clay. As discussed in Chapter 2, this behavior may result from a compact

structure and more oriented fabric that were formed during soil deposition.
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Figure 5.19. Comparison between the experimental observations and model
simulations for CAU TXC tests on the Vallericca clay: (a) stress-strain
response; (b) strain-pore pressure response

Figure 5.19 and Figure 5.20 present the experimentally observed and computed results

in the three CAU TXC tests that were used in the model calibration. In general, the

model simulations reasonably reproduce the experimental observations. Specimens in the

HP group were consolidated to much higher pressure than their maximum past pressure.

Therefore, presumably, most of the soil structure had been removed before the shearing

and its stress-strain response is more likely to reflect the intrinsic behavior. The significant

point of this comparison is that with a single set of parameters, the proposed model can
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Figure 5.20. Comparison between the experimental observations and model
simulations for CAU TXC tests on the Vallericca clay: effective stress path

satisfactorily reproduce the behavior of both structured and unstructured clays that have

different stress histories. Note that the computed initial pore positive pore pressure for

the two specimens in the HP group is greater than the observations.

Model Prediction

Figure 5.21 and Figure 5.22 present the experimental data and model predictions in

three CAU TXC tests in the MP group. It is noted that the model predictions agree well

with the observed stress-strain-strength responses in the tests, especially the peak strength

and strain-softening. Experimental data show that the excess pore pressure increases first

then decreases and then gradually increases again. Model predictions correctly reproduce

this trend. Moreover, the strain levels that correspond to excess pore pressure starting

to decrease are well predicted. The amount of the above decrease in excess pore pressure
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Figure 5.21. Comparison between the experimental observations and model
predictions for CAU TXC tests on the Vallericca clay (MP group): (a)
stress-strain response; (b) strain-pore pressure response
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Figure 5.22. Comparison between the experimental observations and model
predictions for CAU TXC tests on the Vallericca clay (MP group): effective
stress path

is higher than that observed, which leads to an underestimation of the final excess pore

pressure.



268

0 . 0 2 . 5 5 . 0 7 . 5 1 0 . 00

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

0 . 0 2 . 5 5 . 0 7 . 5 1 0 . 00

1

2

3

4

5

( a )
E x p e r i m e n t  ( C A D  T X C - 1 )
 P r e d i c t i o n

q (
kP

a)

εa  ( % )  

( b )

ε vo
l (%

) 
εa  ( % )  

Figure 5.23. Comparison between experimental observations and model
predictions for a CAD TXC test (MP group) on the Vallericca clay: (a)
stress-strain response; (b) volume change

Figure 5.23 shows the observed and predicted responses in a CAD TXC test in the

MP group, whose effective stress path is shown in Figure 5.22. The predicted stress-strain

response agrees well with the observation and the volume change at relative high axial

strains is underestimated.

Figure 5.24 and Figure 5.25 show the result of a CAU TXC test in the HP group, as

well as the corresponding model predictions. It can be seen that the observed stress-strain

and pore pressure responses are satisfactorily predicted by the model.

5.5.3. Bothkennar Clay

Bothkennar clay is a typical structured clay, whose intrinsic behavior and yielding behavior

of intact specimens have been experimentally studied by Allman and Atkinson (1992) and
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Figure 5.24. Comparison between the experimental observations and model
predictions in a CAU TXC test (HP group) on the Vallericca clay: (a)
stress-strain response; (b) strain-pore pressure response
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Figure 5.25. Comparison between the experimental observations and model
predictions in a CAU TXC test (HP group) on the Vallericca clay: effective
stress path
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Smith et al. (1992), respectively. The data used in the following comparison were reported

by Smith et al. (1992)

Model Parameters and Initial Conditions

Table 5.8. Model parameters for the Bothkennar clay

λ κ ν Mc Me Nc Ne C χ hc he cd w ki A rc

0.255 0.03 0.2 1.4 1.04 1.3 1 10 1.74 500 500 0 1 10 0.4 0.17

The model parameters for the Bothkennar clay are summarized in Table 5.8. The

parameters λ and κ are calibrated from 1D compression test on a reconstituted specimen.

The Poisson’s ratio ν is assumed to be 0.2. The parameters Mc = 1.4 and Me = 1.04

were reported by Smith et al. (1992). The parameters Nc and Ne are calibrated by fitting

the peak strength of a CK0U TXC test and a CK0U TXE test on samples that have

been K0 consolidated to vertical effective stress more than twice as high as the σ′p. The

parameter C is obtained by fitting the effective stress path of the CK0U TXE test. The

parameter χ is calculated from the analytical solution of equation 4.44. The calibration

of destructuration parameters ki, A and rc has been shown in the section 5.4.1. The

parameter hc is calibrated by fitting the stress-strain response in a CAU TXC test on an

OC specimen. The parameter he is assumed to equal hc. The parameters w and cd take

their default values.

Table 5.9. Initial conditions for the
Bothkennar clay simulations

p0 (kPa) α Sb e0 p (kPa) q (kPa)

8.3 0.52 6.1 1.89 22 0
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Figure 5.26. Comparison between computed initial bounding surface and
experimentally observed yield stresses of the Bothkennar clay (Smith et al.,
1992)

The initial conditions in model simulations are presented in Table 5.9. The estimation

of the internal variable Sb has been shown in section 5.4.2. The initial value of α is

estimated through equation 4.50 based on the parameter Mc. The variable p0 is estimated

through equation 5.21 based on an estimated maximum past pressure σ′p = 85 kPa and a

K0,NC value calculated from Mc. The initial stress p = 22 kPa, q = 0 kPa was reported

by Smith et al. (1992).

As a preliminary validation of the model parameters and initial conditions, the com-

puted initial bounding surface is compared with the yield stresses obtained in drained

probe tests reported by Smith et al. (1992), as shown in Figure 5.26. Note that the com-

puted bounding surface is in good agreement with the measured yield stress envelope.

This agreement indicates that the proposed analytical solutions (i.e., equation 4.50 and



272

equation 5.21) can provide a reasonable estimation of the initial size and inclination of

the bounding surface.

Model Simulation
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Figure 5.27. Comparison between the experimental observation and model
simulation for a 1D compression on the Bothkennar clay

Figure 5.27 compares the experimental observation and the corresponding model simu-

lation in a 1D compression test on intact Bothkennar clay. For the purpose of comparison,

the result of a 1D compression test on a reconstituted specimen is included in the figure.

Note that a good agreement is seen between the model simulation and the experimental

data. Both the experimentally observed and computed results show that the compression

curve of the intact sample gradually converges to the compression curve of the reconsti-

tuted sample, i.e., the intrinsic compression line (ICL) (Burland, 1990).
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Figure 5.28. Comparison between the experimental observations and model
simulations for triaxial shearing tests on the Bothkennar clay: stress path
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Figure 5.29. Comparison between the experimental observations and model
simulation for a CAU TXC test on the Bothkennar clay: (a) stress-strain
response; (b) strain-pore pressure response
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Figure 5.28 presents the observed and computed effective stress paths in undrained

triaxial shearing tests on specimens that had experienced different reconsolidation paths.

In group 1, samples were reconsolidated back to in-situ stress along continuous stress

paths that retraced their lightly overconsolidated stress history. In group 2, specimens

were K0 consolidated to normally consolidated state (Smith et al., 1992). In general, the

model simulations achieve good agreement with the experimental observations. Note that

the experimental data of the CK0U TXE test show that the excess pore pressure starts to

decrease (i.e., bending the effective stress path to the right) when stress ratio η reaches Me,

which is not seen in the model simulation. As discussed by Dafalias et al. (2006), this type

of effective stress path can be reproduced when the rotation hardening is also dependent

on the plastic deviatoric strain rate (e.g., the model proposed by Wheeler et al. (2003)).

Out of the above three tests, Smith et al. (1992) only reported the stress-strain response

for the CAU TXC test, which is presented in Figure 5.29. Note that the experimentally

observed peak strength, strain-softening and gradual increase in excess pore pressure are

well reproduced by the simulation.

Model Prediction

Figure 5.30 shows the effective stress paths in three other undrained shearing tests

and the corresponding model predictions. In group 3, the specimen was isotropically

consolidated to a normally consolidated state before the shearing, whereas the group

4 sample experienced passive consolidation that started from the in-situ stress (Smith

et al., 1992). Note that the model predictions reasonably agree with the experimental

observations. In the CIU TXC, the computed initial pore pressure is lower than that

observed and the peak strength is overestimated by the model by 15%. Figure 5.31
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Figure 5.30. Comparison between the experimental observations and model
predictions for triaxial shearing tests on the Bothkennar clay: stress path
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Figure 5.31. Comparison between the experimental observations and model
prediction for a CAU TXE test on the Bothkennar clay: (a) stress-strain
response; (b) strain-pore pressure response

compares the observed and predicted stress-strain response in the CAU TXE test. Note

that the peak strength and strain-softening are predicted very well by the model whereas

the excess pore pressure at large strains is slightly overestimated.
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5.5.4. Shanghai Clay

Shanghai clay is a soft, normally consolidated material of relatively high sensitivity. Huang

et al. (2011) reported results of a series of laboratory tests on the Shanghai clay and these

data are used in the following comparisons.

Model Parameters and Initial Conditions

Table 5.10. Model parameters for the Shanghai clay

λ κ ν Mc Me Nc Ne C χ hc he cd w ki A rc

0.210 0.03 0.2 1.37 0.9 1.2 1.0 6 1.73 100 100 0 1 8 0.3 0.0

The model parameters for Shanghai clay are summarized in Table 5.10. The parame-

ters λ and κ are calibrated from a 1D compression test on an intact sample. The Poisson’s

ratio ν is assumed to be 0.2. The parameters Mc, Nc and C are calibrated based on the

effective stress path of a CIU TXC test on an NC sample. Because the results of ex-

tension test are not available, Me is estimated through equation 4.42 and Ne is assumed

to be 1.0. The parameter χ is calculated from the analytical solution of equation 4.44.

The parameter ki is obtained by fitting the post-yield compression curve in the above 1D

compression test. The parameter A is calibrated by fitting the strain-softening rate in the

above CIU TXC test. No noticeable difference is observed between the peak mobilized

friction in shearing tests under low and high consolidation pressures, so the parameter rc

is assumed to be zero. The parameter hc is obtained by fitting the stress-strain response

in a CIU TXC test on an OC specimen. The parameter he is assumed to equal hc. The

parameters w and cd take their default values.
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Table 5.11. Initial conditions for the
Shanghai clay simulations

p0 (kPa) α Sb e0 p (kPa) q (kPa)

32 0.51 1.16 1.40 20 0

The initial conditions of the following simulations are presented in Table 5.11. The

internal variable Sb is estimated from the 1D compression test. The initial value of α is

estimated through equation 4.50 based on the parameter Mc. The variable p0 is estimated

through equation 5.21 based on an estimated maximum past pressure σ′p = 97 kPa and a

computed K0,NC value from the parameter Mc. The initial stress p = 20 kPa, q = 0 kPa

is assumed to represent the residual stress of the samples.

Model Simulation
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Figure 5.32. Comparison between the experimental observation and model
simulation in a 1D compression test on the Shanghai clay
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Figure 5.32 presents the comparison between the experimental data and model simula-

tion for a 1D compression test on the Shanghai clay. It is clear that the model simulation

successfully captures the yield stress and the post-yield compressibility. Note that the

simulated swelling during unloading is lower than that observed in the test, which re-

sults in an underestimation of the void ratio at the end of unloading. The discrepancy

may arise from two factors. First, a constant parameter κ and Poisson ratio ν will lead

to a decreasing Cr in 1D unloading due to an increasing K0 value. Second, the model

underestimates the plasticity dilatancy during unloading.

Figure 5.33 and Figure 5.34 show the experimental data and model simulations in

two CIU TXC tests that have been used to define the model parameters. Note that the

model simulations satisfactorily reproduce material’s stress-strain responses, particularly

the peak strength, strain softening and excess pore pressure. The initial shear stiffness is

overestimated by the model, which leads to lower strains that correspond to peak strength.

Model Prediction

Figure 5.35 and Figure 5.36 present results of two CAU TXC tests on the same ma-

terial. Note that based on the parameters calibrated from the CIU TXC tests, the model

predicts very well the response observed in the CAU TXC tests, which validates the

capacity of the model to capture the effects of anisotropic stress history.

5.5.5. Wenzhou Clay

Wenzhou clay is a marine deposit characterized as slightly organic and highly plastic. Yin

et al. (2015) reported the experimental tests data in the following comparisons.
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Figure 5.33. Comparison between the experimental observations and model
simulations in two CIU TXC tests on the Shanghai clay: (a) stress-strain
response; (b) strain-pore pressure response

Model Parameters and Initial Conditions

Table 5.12. Model parameters for the Wenzhou clay

λ κ ν Mc Me Nc Ne C χ hc he cd w ki A rc

0.275 0.03 0.2 1.23 0.87 1.2 1.1 10 1.73 100 100 0 1 12 0.75 0.0

The model parameters of the Wenzhou clay are shown in Table 5.12. The parameters

λ and κ are calibrated from a 1D compression test on an intact sample. The Poisson’s

ratio ν is assumed to be 0.2. The parameters Mc and Me are calibrated from the effective

stress paths in a CK0U TXC and a CK0U TXE on samples that have been consolidated to

pressure more than four times greater than σ′p, respectively. The parameters Nc and Ne

are obtained by fitting the peak strength in the two undrained tests. The parameter C is

calibrated through fitting the effective stress path in the CK0U TXE test. The parameter

χ is calculated from the analytical solution of equation 4.44. The parameter ki is obtained
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Figure 5.34. Comparison between the experimental observations and model
simulations in two CIU TXC tests on the Shanghai clay: effective stress path

by fitting the post-yield compression curve in the 1D compression test. The parameter

A is calibrated by fitting the strain-softening rate in the CK0U TXC test. As negligible

difference is observed between the peak mobilized frictions in shearing tests under low and

high consolidation pressures, the parameter rc is assumed to be zero. The experimental

data on OC samples are not available, so the parameters hc and he are assumed to be

100. The parameters w and cd take their default values.

Table 5.13. Initial conditions for the
Wenzhou clay simulations

p0 (kPa) α Sb e0 p (kPa) q (kPa)

21 0.45 1.4 1.89 20 0
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Figure 5.35. Comparison between the experimental observations and model
predictions in two CAU TXC tests on the Shanghai clay: (a) stress-strain
response; (b) strain-pore pressure response

The initial conditions of the following simulations are presented in Table 5.13. The

internal variable Sb is estimated from the 1D compression test. The initial value of α is

estimated through equation 4.50 based on the parameter Mc. The variable p0 is estimated

through equation 5.21 based on an estimated maximum past pressure σ′p = 70.4 kPa and

a calculated K0,NC value from the parameter Mc. The initial stress p = 20 kPa, q = 0

kPa is assumed to represent the residual stress of the samples.

Model Simulation

Figure 5.37 shows that excellent agreement is seen between the model simulation

results and experimental observations in the 1D compression test.

Figure 5.38 and Figure 5.39 show the experimentally observed and computed results

in the undrained shearing tests used in the model calibration. The simulated responses

reasonably agree with that observed. In the CK0U TXE, the computed shear modulus
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Figure 5.36. Comparison between the experimental observations and model
predictions in two CAU TXC tests on the Shanghai clay: effective stress
path

is higher than that observed, which leads to lower strains that correspond to the peak

strength. Both the experimental data and model simulation show that the excess pore

pressure in the CK0U TXE first decreases then gradually increases. The computed in-

crease of the pore pressure is slightly higher than that observed.

Model Prediction

Figure 5.40 and Figure 5.41 show the model predictions for other CK0U TXC and

TXE tests. In general, the predictions reasonably agree with the experimental observa-

tions. Experimental data show that strain-softening is stronger in compression loading,

which presumably reflects the effect of preceding anisotropic consolidation. The model
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Figure 5.37. Comparison between the experimental observation and model
simulation for a 1D compression test on the Wenzhou clay
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Figure 5.38. Comparison between the experimental observations and model
simulations for a CK0U TXC test and a CK0U TXE test on the Wenzhou
clay: (a) stress-strain response; (b) strain-pore pressure response
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Figure 5.39. Comparison between the experimental observations and model
simulations for a CK0U TXC test and a CK0U TXE test on the Wenzhou
clay: effective stress path
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Figure 5.40. Comparison between the experimental observations and model
predictions for two CK0U TXC tests and two CK0U TXE tests on the
Wenzhou clay: (a) stress-strain response; (b) strain-pore pressure response

successfully predicts this feature. In the CK0U TXC-1, the peak strength is underesti-

mated about 22% by the model. In CK0U TXE tests, the trend of excess pore pressure
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Figure 5.41. Comparison between the experimental observations and model
predictions for two CK0U TXC tests and two CK0U TXE tests on the
Wenzhou clay: effective stress path

development is reproduced by the model predictions, but the computed increase in excess

pore pressure is higher than observed.

5.5.6. Grande Baleine Clay

Grande Baleine clay is a postglacial marine clay, which was deposited in the Tyrrell Sea

about 7000 years ago. The plasticity of this clay is low, and its clay fraction reaches around

60%. One salient feature of Grande Baleine clay is its high natural water content compared

with its liquid limit, as indicated by a liquidity index as high as 2.84. The behavior and

destructuration of the Grande Baleine clay during monotonic loading and cyclic loading

have been studied by Locat and Lefebvre (1985) and Lefebvre et al. (1989). Both these

work presented the experimental data for the following evaluation. It is noteworthy that

Lefebvre et al. (1989) reported observations in both cyclic loading tests and post-cyclic
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undrained shearing tests. This set of observations provides key data for evaluating the

model’s capacity to simulate destructuration induced by cyclic loading and predict the

available strength after cyclic loadings.

Model Parameters and Initial Conditions

Table 5.14. Model parameters for the Grande Baleine clay

λ κ ν Mc Me Nc Ne C χ hc he cd w ki A rc

0.136 0.007 0.2 1.49 1 1 1 12 1.73 200 550 -250 0 20 0.1 0.135

The model parameters for the Grande Baleine clay are summarized in Table 5.14.

The parameters λ and κ are calibrated from 1D compression tests on reconstituted and

intact specimen, respectively. The Poisson’s ratio ν is assumed to be 0.2. To study the

effects of destructuration on the shearing behavior, Lefebvre et al. (1989) conducted CIU

TXC tests on samples had experienced two different reconsolidation. Samples in group

1 were reconsolidated to pressure twice as high as σ′p to create a destructured, NC clay.

For specimens in group 2, the applied reconsolidation stress was equal to in-situ vertical

effective stress to preserve the intact clay structure. The parameters Mc, Nc and C are

calibrated based on the effective stress path in a CIU TXC test in group 1. Results of

extension tests are not available, so the parameter Me is estimated through equation 4.42

and Ne is assumed to be 1.0. The parameter χ is calculated from the analytical solution

of equation 4.44. The parameter ki is obtained by fitting the post-yield compression curve

in above 1D compression test on the intact sample. The parameter A is calibrated by

fitting the strain-softening rate in the above CIU TXC test. The peak stress ratio in a

CIU TXC test in group 2 and the Mc value are used to define the parameter rc based on
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the method shown in section 5.4.1. The parameters hc, he, cd and w are defined based on

results of an undrained cyclic loading test.

Table 5.15. Initial conditions for Grande
Baleine clay simulations

p0 (kPa) α Sb e0 p (kPa) q (kPa)

4.3 0.57 31.7 1.65 20 0

Table 5.15 shows the initial conditions for the model simulations of Grande Baleine

clay behavior. The initial value of internal variable Sb is calibrated by comparing the

compression curves of the reconstituted and intact samples. The initial value of variable

α is estimated through equation 4.50 based on the parameter Mc. Based on an estimated

maximum past pressure σ′p = 85 kPa, equation 5.21 yields a value of p0 equal to 2 kPa.

Figure 5.42 compares the effective stress path for the group 2 CIU TXC and the computed

initial bounding surface based on these initial conditions. It can be seen that the bounding

surface would underestimate the peak strength in the CIU TXC. So the value of p0 is

determined by fitting the peak strength in the CIU TXC, as shown in Figure 5.42. Note

that the initial phase transition line (PTL) passes the peak stress ratio in the test.

Model Simulation

Figure 5.43 shows the experimental data of a 1D compression test on intact Grande

Baleine clay and the corresponding model simulation. For comparison, the result of 1D

compression on a reconstituted sample is included in the figure. It can be seen that the

computed compression curve reasonably reproduce the experimentally observed greater

post-yield compressibility and its decrease due to the destructuration. Moreover, both

the observed and computed compression curves tend to converge to the ICL at higher
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stresses. The simulated yield stress is higher than that observed, which is expected as

the p0 value used in the simulation is higher than that determined based on the observed

maximum past pressure. This discrepancy may partially result from the natural variation

between the samples for shearing tests by Locat and Lefebvre (1985) and the sample

for the compression test by Locat and Lefebvre (1985), as these work reported different

maximum past pressures.
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Figure 5.44. Comparison between the experimental observations and model
simulations in two CIU TXC tests on the Grande Baleine clay: (a) stress-
strain response; (b) strain-pore pressure response

Figure 5.44 and Figure 5.45 show the data from two CIU TXC tests. Note that CIU

TXC-1 and CIU TXC-2 reflect the shearing responses of intact and destructured samples,

respectively. In general, the model simulations reasonably agree with the observations.

Note that in CIU TXC-1, a more rapid decrease of shear stress after peak strength is seen

in the experiment. This abrupt drop of strength suggests localized deformation may have

occurred, which cannot be captured by the model that is aimed at reproducing stress-

strain behavior at the level of stress point. The comparison of the stress-strain curve
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Figure 5.45. Comparison between the experimental observations and model
simulations in two CIU TXC tests on the Grande Baleine clay: effective
stress path

for the CIU TXC-2 shows that the initial shear stiffness is overestimated by the model,

which results in an underestimation of strain levels that correspond to the peak strength.

This discrepancy is likely to result from a higher elastic stiffness computed by the model,

as indicated by the fact that the computed initial excess pore pressure is higher than

that observed. This discrepancy stimulates a revisit of the assumption that the elastic

property is independent of soil structure. The elastic stiffness calculated by the employed

elasticity model is proportional to mean effective stress p. As a result, the computed

elastic stiffness for CIU TXC-2 test is higher than that of CIU TXC-1 test, which can

be seen in Figure 5.44, due to the difference in their consolidation stresses. However,

experimental data show negligible difference in initial shear stiffness between the two tests
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above. This observation suggests that in addition to stress level, the elastic properties

may also depend on the structure deterioration. Such a relation was observed by Leroueil

et al. (1979) in tests on Saint Alban clay. From a modeling point of view, to reproduce

the above dependence, the elasticity model constants (e.g., κ) can be formulated as a

function of the internal variable Sb (i.e., the amount of soil structure). A similar strategy

has been implemented by Yu et al. (2007b) to model artificially cemented sand.

Figure 5.46 shows the results of an undrained one-way cyclic loading of cyclic shear

stress qcyc equal to 73.5 kPa on a sample that was isotropically consolidated to in-situ

vertical effective stress (σc=45 kPa). Immediately following the cyclic loading, the sample

was subjected to an undrained post-cyclic shearing. The corresponding data and model

simulations are included in the figure.

It can be seen that the computed strain development and excess pore pressures build-

up reasonably agree with the experimental data. In particular, the magnitude of strain

accumulation after 71 cycles is well represented by the simulation. Moreover, the simu-

lation reasonably reproduces the cyclic shakedown in the test, which is reflected by the

location of stress-strain curves for 8th, 49th, and 71st cycle. The experimental data show

little strain accumulated between the 49th cycle and 71st cycle while around 0.13% per-

manent strain developed during the same stage in the simulation. The computed shear

stiffness in unloading is lower than that observed in the experiment, which may be at-

tributed to the fact that small strain stiffness is not modeled. The model computes more

excess pore pressure change for each cycle, which eventually leads to a lower magnitude

of pore pressure build-up.
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Figure 5.46. Comparison between experimental observations and model
simulations in undrained cyclic test and post-cyclic shearing test on the
Grande Baleine clay: (a)-(b) stress-strain response ; (c)-(d) strain-pore
pressure response

The comparison of post-cyclic shearing response shows that the model accurately

predicts the material strength after cyclic loading. Both experimental data and model

simulation show that the natural Grande Baleine clay exhibits a negligible strength re-

duction (i.e., 4% and 7%, respectively) after 71 loading cycles. This insignificant strength
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loss is consistent with the fact that only 0.7% axial strain accumulated in the cyclic load-

ing. This correlation between strength reduction and strain accumulation is also reported

for other clays (Thiers and Seed, 1969; Andersen et al., 1980). More importantly, this

correlation confirms that soil structure degradation is directly related to the irrecover-

able deformation of soil, which is one of the fundamental assumptions in formulating the

model. Additionally, the strain-softening trend during post-cyclic shearing is captured

by the simulation. Similar to the monotonic test, experimental data exhibits stronger

brittle behavior than the simulation. The model’s prediction of pore pressure response

during post-cyclic loading is less successful. The prediction shows that the excess pore

pressure starts to decrease after the peak, which is in contrast to a monotonic increase

of the excess pore pressure in the experiment. Nevertheless, quantitatively speaking, the

predicted amount of pore pressure during post-cyclic loading reasonably agrees with the

experimental data.

In summary, the evaluation regarding the experimental evidence of the Grande Baleine

clay shows that the proposed model can satisfactorily reproduce material behavior during

cyclic loading and post-cyclic shearing based on model parameters primarily determined

from monotonic tests. In particular, the available strength after cyclic loading is well

reproduced by the model.

5.5.7. Cloverdale Clay

Cloverdale clay is a soft gray marine clay characterized by relatively high liquidity index

(i.e., LI = 1.0) and sensitivity (i.e., St = 16 measured by laboratory vane shear). The

sensitive nature of Cloverdale clay was probably caused by the surface infiltration (i.e.,
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salt leaching) following ground uplift above the sea level (Zergoun, 1991). Zergoun (1991)

and Zergoun and Vaid (1994) reported the results of monotonic loading tests, slow triaxial

cyclic loading tests, and post-cyclic shearing on undisturbed Cloverdale clay specimens

collected through block sampling. To ensure the equalization of pore pressure within

specimens, an axial stress rate of 60 kPa per hour were employed in the stress-controlled

cyclic loading tests. The reported data are used in the following evaluation regarding the

model’s capacity to represent both cyclic and post-cyclic clay behavior.

Model Parameters and Initial Conditions

Table 5.16. Model parameters for the Cloverdale clay

Ag eg ng γ0.7 κ ν λ Mc Me Nc Ne C χ

400 2.64 0.635 10E-4 0.027 0.2 0.168 1.31 0.97 0.95 0.90 4 1.72

hc he cd w ki A rc

105 125 29 5 18 0 0

The model parameters of the Cloverdale clay are shown in Table 5.16. The parameters

λ and κ are calibrated from the virgin compression curve and rebound curve in a 1D

compression test on an intact sample, respectively. The Poisson’s ratio ν is assumed to

be 0.2. The parameter Ag is obtained by fitting the shear stiffness at the initial portion

of unloading in an undrained cyclic loading test, which presumably is close to G0. The

parameters eg and ng are assumed to be the same as those for the insensitive BCF clay

presented in Chapter 4, as suitable experimental data are not available. The parameters

Mc and Me are calibrated from the effective stress paths in a CIU TXC and a CIU

TXE tests on samples that have been isotropically consolidated to pressure more than

three times greater than σ′p, respectively. The parameters Nc, Ne and C are obtained by
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fitting the stress path and peak strength in the two undrained tests. The parameter χ

is calculated from the analytical solution of equation 4.44. The parameter ki is obtained

by fitting the post-yield compression curve in the 1D compression test. The parameter

A = 0 is selected to fit the monotonic strain-hardening observed in the two undrained

tests, which implies that the destructuration of Cloverdale clay solely results from plastic

volume change. The parameter rc is assumed to be zero. The parameters hc and he are

determined by fitting the stress-strain curve of the first cycle of the cyclic loading test,

while the parameters cd and w are calibrated by matching the strain developments and

pore pressure accumulations in the same test.

Table 5.17. Initial conditions for the
Cloverdale clay simulations

p0 (kPa) α Sb e0 p (kPa) q (kPa)

11 0.48 5.25 1.475 20 0

The initial conditions of the following simulations are presented in Table 5.17. The

internal variable Sb is estimated from the 1D compression test. The initial value of α is

estimated through equation 4.50 based on the parameter Mc. The variable p0 is estimated

through equation 5.21 based on an estimated maximum past pressure σ′p = 90 kPa and a

calculated K0,NC value from the parameter Mc. The initial stress p = 20 kPa, q = 0 kPa

is assumed to represent the residual stress of the samples.

Model Simulation

Figure 5.47 shows the experimental observation of the 1D compression test on undis-

turbed Cloverdale clay and the corresponding model simulation. It can be seen that the
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Figure 5.47. Comparison between the experimental observation and model
simulation for a 1D compression test on Cloverdale clay

computed compression curve very well reproduces the observed yield stress, greater post-

yield compressibility and its decrease due to the destructuration. However, the amount

of swelling during unloading is slightly underestimated by the simulation.

Figure 5.48 presents the experimentally observed and computed stress-strain-pore

pressure responses in the CIU TXC and CIU TXE tests, in which specimens were isotropi-

cally consolidated to p = 200 kPa before shearing. A good agreement can be seen between

the model simulation and the observed responses.

Figure 5.48 shows the experimental data of the undrained cyclic loading on an isotrop-

ically consolidated NC specimen with its corresponding model simulation. Note that the

model reasonably reproduces the effective stress path’s gradually shifting towards the ori-

gin of stress space. Moreover, when the effective stress path is close to the critical state
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Figure 5.48. Comparison between the experimental observations and model
simulations for CIU TXC and CIU TXE tests on NC Cloverdale clay: (a)
stress-strain response; (b) strain-pore pressure response

line, the “butterfly” shape loop is formed, as does the experimental observation. How-

ever, the computed accumulation rate of pore pressure is higher than that observed in the

test. The cyclic softening, indicated by the gradually clockwise rotating and broadening

stress-strain loops, are also reasonably represented by the simulation. It can be noted

that the computed areas of stress-strain hysteresis in the last several cycles are larger

than that observed in the experiment, because the experiment shows an abrupt drop of

stiffness once the effective stress path passes the p axis whereas the corresponding model

simulation exhibits more smooth stiffness degradation.

Model Prediction

Figure 5.50 compares the experimentally observed and predicted stress-strain-pore

pressure responses for CIU TXC and TXE tests on OC Cloverdale clay. It is noteworthy

that the samples with different OCR were created by isotropic unloading after samples
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Figure 5.49. Comparison between the experimental observations and model
simulations for an undrained cyclic loading test on NC Cloverdale clay: (a)-
(b) effective stress path; (c)-(d) stress-strain response

have been isotropically loaded to p = 200 kPa. Note that a reasonable agreement is seen

between the experimental data and model predictions.

Figure 5.51 and 5.52 present the experimental data regarding the effective stress paths

and stress-strain responses in three undrained cyclic loading tests and their corresponding

model predictions. In general, the model reasonably predicts the pore pressure accumu-

lation indicated by the migration of effective stress path and the strain developments
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Figure 5.50. Comparison between the experimental observations and model
simulations for three CIU TXC and TXE tests on OC Cloverdale clay: (a)
effective stress path; (b) stress-strain response
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Figure 5.51. Comparison between the experimentally observed and com-
puted effective stress paths for three cyclic loading tests on NC Cloverdale
clay: (a)-(b) qcyc = 75 kPa; (c)-(d) qcyc = 88 kPa; (e)-(f) qcyc = 100 kPa
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Figure 5.52. Comparison between the experimentally observed and com-
puted stress-strain responses for three cyclic tests on NC Cloverdale clay:
(a)-(b) qcyc = 75 kPa; (c)-(d) qcyc = 88 kPa; (e)-(f) qcyc = 100 kPa

during cyclic loading tests characterized by different shear stresses. Note that for the test

qcyc = 75 kPa, the computed reduction of effective stress at the end of cyclic loading is

higher than that observed in the test. For test qcyc = 88 kPa, the computed axial strains

at the peak cyclic shear stress during the last two cycles are lower than the observed

values.

Figure 5.53 compares the experimentally observed pore pressure accumulation with

the computed results based on the mixed flow rule and image flow rule. It is clear that

the employment of the mixed flow rule considerably improves the simulation of cyclic

pore pressure build-up. Note that for the test qcyc = 75 kPa, simulations based on both

the flow rules overestimate the amount of the pore pressure accumulation. For the test
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Figure 5.53. Comparison between the experimentally observed and com-
puted pore pressure accumulation for three cyclic loading tests on NC
Cloverdale clay: (a) qcyc = 75 kPa; (b) qcyc = 85 kPa; (c) qcyc = 88 kPa

qcyc = 88 kPa, the accumulation of pore pressure computed based on the mixed flow rule

reaches a plateau after the 5th loading cycle and then starts to increase again after the

9th loading cycle, which corresponds to the acceleration of strain development shown in

Figure 5.49. On the other hand, the experiment shows a progressive build-up of pore

pressure.
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Figure 5.54. Comparison between the experimentally observed and com-
puted strains at the peak cyclic shear stress for three cyclic loading tests on
NC Cloverdale clay: (a) qcyc = 75 kPa; (b) qcyc = 85 kPa; (c) qcyc = 88 kPa
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Figure 5.54 quantitatively evaluates the model’s capacity to reproduce strain develop-

ment during cyclic loading with varying shear stresses. Note that a reasonable agreement

is seen between the computed results and the experimental data.
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Figure 5.55. Comparison between the experimentally observed and com-
puted stress-strain-pore pressure responses for three post-cyclic shearing
on Cloverdale clay: (a) stress-strain response ; (b) strain-pore pressure re-
sponse

Figure 5.55 presents the experimentally observed and predicted stress-strain-pore pres-

sure responses of post-cyclic shearing after three of the aforementioned cyclic loading tests.

Note that the model reasonably predicts the post-cyclic shear strength. Specifically, the

maximum difference regarding shear strength in the three cases is 24%. Moreover, while

cyclic degradation is observed in all three tests, the amount of strength reduction is not

significant, i.e., the maximum strength reduction in experiments and model predictions

are 70% and 88%, respectively. Such a moderate degree of strength loss is likely to re-

sult from the considerable destructuration during the consolidation before cyclic loading

indicated by the compression curve in Figure 5.47. Moreover, the pore pressure build-up
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during undrained cyclic loading creates an apparent over-consolidated state and thus the

clay samples had a relatively high tendency to dilate during post-cyclic shearing as shown

in Figure 5.56. This tendency to dilate and a consequent increase of the effective stress

lead to a higher post-cyclic shear strength. This observation emphasizes that an accurate

prediction of post-cyclic strength relies on the accurate prediction of cyclic pore pressure

accumulation. Figure 5.55 also shows that the shear stiffness during post-cyclic shearing

is overestimated by the model. This discrepancy suggests that the employed elasticity

model needs improvements so that it can reproduce the stiffness loss of natural clay due

to the change of effective stress state and soil structure.
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Figure 5.56. Comparison between the experimentally observed and com-
puted effective stress paths for three post-cyclic shearing on Cloverdale clay
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5.5.8. BCF Clay With a Sensitivity of 5 to 6

In this section, the capability of the proposed model to capture structure degradation of

natural clay during cyclic loading is further evaluated by comparing model simulations

with experimental data for BCF clays. Tested samples were collected at 13 m below the

ground at the Lynn Ary Park, Anchorage, as discussed in Chapter 3. In contrast to the

BCF clay studied in the validation of the basic model, the BCF clay explored in this

section is more sensitive. The in-situ field vane tests show the sensitivity of the tested

clays is approximately 5 to 6.

Model Parameters and Initial Conditions

Model parameters for the sensitive BCF clay are summarized in Table 5.18. It can be

seen that most of the parameters are directly taken from those calibrated on the insensitive

BCF clay presented in Chapter 4. Note that the parameters hc, he, cd and w have

been changed based on the observed cyclic response of the sensitive BCF clay. Because

cyclic loadings on the insensitive and sensitive BCF clay were characterized by different

shear rates (1 cycle per second and 0.5% per hour, respectively), the above adjustments

indicate that these parameters may depend on the loading rate. The parameter λ has

been changed based on the compression curve during the consolidation portion of the test.

The parameters ki and A are obtained through a trial and error procedure to reproduce

the strength degradation in a cyclic loading. The parameter rc is assumed to be zero.

Table 5.19 shows the initial conditions for the model simulations of the sensitive BCF

clay. Because the typical destructuration response is not observed in the 1D consolidation

test, the initial value of variable Sb is evaluated by a trial and error procedure to match

the observed responses in both consolidation and cyclic loading. The initial value of α is
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Table 5.18. Comparison between model
parameters for the insensitive and sensitive

BCF clay

Insensitive BCF clay Sensitive BCF clay

Ag 250 250
eg 2.64 2.64
ng 0.635 0.635
γ07 7.00E-04 7.00E-04
κ 0.022 0.022
ν 0.24 0.24
λ 0.08 0.186
Mc 1.27 1.27
Me 0.92 0.92
Nc 1.22 1.22
Ne 0.8 0.8
C 8 8
χ 1.98 1.98
hc 400 25
he 300 15
cd -38 -2
w 10 2
ki - 7
A - 0.95
rc - 0

Table 5.19. Initial conditions for the
sensitive BCF clay simulations

p0 (kPa) α Sb e0 p (kPa) q (kPa)

40 0.41 3 0.85 21 0

calculated through equation 4.50 based on the parameter Mc. The p0 value is calculated

from the equation 5.21 based on the yield stress p = 132 kPa and q = 112 kPa observed
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in the consolidation portion of the test. The initial stress (p = 21kPa ,q = 0kPa) is the

measured residual stress.

Model Simulation
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Figure 5.57. Time history of the imposed strain in a strain-controlled cyclic
loading test on the BCF clay with St = 5 to 6

In the experiment, the specimen was first anisotropically reconsolidated from the resid-

ual stress to sufficiently high pressure (p = 249 and q = 225) to create a normally consol-

idated sample. Once this target stress was reached, samples were subjected to a drained

creep period under a constant total stress, which was terminated when the measured

creep axial strain rate reduced to 0.0025%/hr. During the period of the creep, there was

a minor change of the effective stress, from (p = 249, q = 225) to (p = 264, q = 229),

primarily due to the dissipation of the excess pore pressure generated during the recon-

solidation. After the reconsolidation and creep, a prescribed cyclic strain path (Figure

5.57) was applied, which was a reproduction of the strain history experienced by a sample

under a stress-controlled cyclic loading of CSR=0.3. The strain-controlled cyclic loading
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is preferred for the investigation of cyclic degradation, as in stress-controlled cyclic tests,

a sample will tend to collapse once material strength is less than the applied cyclic shear

stress. In the simulation, a stress path from (p = 21, q = 0) to (p = 264, q = 229) is

employed as a simplification of actual reconsolidation stress path. Then, the cyclic strain

path shown in Figure 5.57 is reproduced in the simulation.
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Figure 5.58. Comparison between the experimental observation and model
simulation for the anisotropic consolidation on the BCF clay with St = 5
to 6: (a) CYC-1 test; (b) CYC-1-Dulp test

Figure 5.58 (a) shows the observed and computed BCF clay compression response in

the reconsolidation stage. It can be seen that the simulation satisfactorily reproduces

the experimental observations. However, the experimental data indicate that the tested

sample experienced a rapid destructuration after yielding, which is followed by a stable

compression, i.e., the slope of the compression curve is relatively constant. In contrast,

the destructuration in the simulation is slower, and the compressibility at the end of the

reconsolidation is higher than that in the experiment. To study the reason of the above
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difference, Figure 5.58 (b) compares the same model simulation with the reconsolidation

data of a duplicated test on a specimen that is obtained from the same tube as the previous

sample. In this comparison, it is clear that the simulation well reproduces the behavior

in the post-yield stage in the experiment. Therefore, the aforementioned discrepancy is

more likely to be accidental instead of a systematic issue.

0 5 1 0 1 5 2 0 2 50

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

0 5 1 0 1 5 2 0 2 50

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

( a )

 E x p e r i m e n t s  ( C Y C - 1 )
 S i m u l a t i o n

q (
kP

a)

εa  ( % )  

t e s t  s t a r t i n g  p o i n t

( b )

Ue
 (k

Pa)

εa  ( % )  
Figure 5.59. Comparison between the experimental observation and model
simulation for a strain-controlled cyclic loading test on the BCF clay with
St = 5 to 6: (a) stress-strain response; (b) strain-pore pressure response

Figure 5.59 shows the simulated and observed stress-strain-pore pressure response from

the cyclic loading test. It can be seen that material strength significantly degrades during

the cyclic loading, i.e., more than 50% of strength lost after eight loading cycles. This

considerable strength loss is closely related to the high amount of strain accumulated in

the cyclic loading (i.e., 20%). Note that the simulation reproduces this gradual reduction

of material strength. A progressive decrease of material stiffness, which is reflected by the

decreasing stress-strain curve slope, is observed in both the experiment and simulation.
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Nevertheless, the degree of stiffness reduction is not remarkable. The comparison of

pore pressure response in Figure 5.59(b) shows that the model both qualitatively and

quantitatively reproduces the progressive excess pore pressure build up in cyclic loading.

It is noted that the model simulation does not capture the peak strength value in the first

cycle, but underestimates it by around 5%. This difference is probably due to the fact

that the tested sample was subjected to drained creep before the cyclic loading, which

may increase apparent preconsolidation stress and create secondary soil structure. All

these changes can contribute to a slightly higher material strength. Since the proposed

model is time-independent, the above factors are not represented in the simulated results.
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Figure 5.60. Comparison between the experimental observation and model
simulation (no destructuration) for a strain-controlled cyclic loading on the
BCF clay with St = 5 to 6: (a) stress-strain response; (b) strain-pore
pressure response

To illustrate the role of the destructuration, Figure 5.60 shows the simulation of the

same cyclic test but under the condition of ki = 0, which implies the soil structure
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degradation is deactivated. Compared with the experimental data, the simulation signifi-

cantly underestimates the strength reduction in cyclic loading. The computed excess pore

pressure stops accumulating after the first two cycles, which eventually leads to a lower

magnitude of pore pressure build-up. The above observation signifies that ignoring the

destructuration of natural clay can result in an unsafe assessment of the available mate-

rial strength and excess pore pressure in cyclic loading, which leads to an unconservative

evaluation of the stability of geotechnical facilities during and after cyclic loading.

5.5.9. Summary of Model Parameters for Different Structured Clays

Table 5.20 summarizes model parameters for the natural clays studied in the model veri-

fication. The minimum, maximum, and averaged values of parameters are also included.

For most of the seven clays, the experimental data suitable to calibrate the Poisson’s

ratio ν are not available and consequently ν = 0.2 is assumed. The model performance

presented in the previous sections shows that ν = 0.2 is a reasonable assumption when

more accurate calibration is absent. It can be seen that the variation of parameter χ

between different clays is limited, which indicates the possibility to make the parameter

χ a constant in the model that is independent of clay type. Moreover, among all pa-

rameters, hc and he have the largest variations. As discussed in section 4.4, to efficiently

and more objectively calibrate these two parameters, parameters optimization techniques

are recommended. Among the eight clays, cyclic experimental data are available only for

the Grande Baleine clay, the Cloverdale clay and the BCF clay. For other five clays, the

parameter w and cd, which control the cyclic pore pressure and strains accumulation, re-

spectively, take their default values (i.e., w = 1 and cd = 0). So the variation of parameter
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w and cd between different soils cannot be evaluated in this work. Nevertheless, it can

be seen that the default value w = 1 is a reasonable estimation for most of the available

tests.

The parameters shown in Table 5.20 are calibrated based on the responses of a rel-

atively wide range of natural clays. Consequently, from a model use point of view, the

averaged value of parameters shown in Table 5.20 can serve as a first guess if the relevant

experimental observations are not available. Furthermore, the range of each parame-

ter shown in Table 5.20 can be treated as a guideline to check whether selected model

parameters are reasonable.
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Table 5.20. Summary of model parameters for different structured clays

Soil Name κ ν λ Mc Me/Mc Nc Ne/Nc C χ hc he w∗ c∗d ki A rc

Norrköping
clay

0.047 0.2 0.35 1.6 0.88 1.15 0.96 10 1.73 25 25 1 0 16 0.9 0

Vallericca
Clay

0.018 0.2 0.147 1.05 0.74 1.1 0.91 4 1.63 50 50 1 0 20 0.5 0.0

Bothkennar
Clay

0.03 0.2 0.255 1.4 .74 1.3 0.77 10 1.74 500 500 1 0 10 0.4 0.17

Shanghai
Clay

0.03 0.2 0.210 1.37 0.66 1.2 0.83 6 1.73 100 100 1 0 8 0.3 0.0

Wuzhou
Clay

0.03 0.2 0.275 1.23 0.71 1.2 0.92 10 1.73 100 100 1 0 12 0.75 0.0

Grande
Baleine

Clay
0.007 0.2 0.136 1.49 0.67 1 1 12 1.73 200 550 1 -250 20 0.1 0.135

Cloverdale
Clay

0.027 0.2 0.168 1.31 0.74 0.95 0.95 4 1.72 105 125 5 29 18 0 0

BCF Clay 0.022 0.24 0.186 1.27 0.72 1.22 0.66 8 1.98 30 25 2 -2 7 0.95 0

Minimum
value

0.007 0.2 0.136 1.05 0.66 0.95 0.66 4 1.63 25 25 - - 7 0 0

Maximum
value

0.047 0.24 0.35 1.6 0.88 1.3 1 12 1.98 500 550 - - 20 0.95 0.2

Averaged
value

0.026 0.21 0.216 1.34 0.73 1.2 1 9 1.75 139 185 - - 14 0.55 0.04

Note: ∗ Minimum, maximum and averaged values are not provided, as the default values are used in most of cases.
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5.6. Summary and Conclusions

This chapter presents the extension of the basic model presented in Chapter 4 to

reproduce the effects of soil structure and its deterioration. In particular, the concept of

structure surface and intrinsic surface are introduced, which govern the response of natural

clay and its corresponding reconstituted state, respectively. A new internal variable Sb

that represents the amount of soil structure and a destructuration law that quantifies the

monotonic decrease of Sb under irrecoverable deformation are discussed. The proposed

plastic potential surface in the extended model is a function of fabric anisotropy (internal

variable α) and inter-particle bonds (internal variable pt). The influences of these two

aspects of soil structure on material plastic flow are explored based on the stress-dilatancy

relation which is derived from the plastic potential surface. The appropriateness of this

plastic potential surface to describe natural clay behavior is validated with experimental

evidence. Finally, this chapter shows the validation of the extended model based on

experimental data of eight natural clays. The main conclusions drawn from this chapter

are:

(1) The fabric anisotropy and inter-particle bonds can significantly affect plastic flow.

The change in fabric induced by the anisotropic loading tends to increase the plas-

tic volume change. Moreover, when fabric anisotropy exists, after yielding the

increase of isotropic stress in the absence of deviatoric stress can cause not only

compression but also distortion, and purely compressive, non-distortional plastic

deformation can occur for non-isotropic stress state. On the other hand, an in-

crease in the inter-particle bonds exacerbates soil’s plastic contraction and delays

the occurrence of phase transformation as well as the plastic dilatancy. Moreover,
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the influence of inter-particle bonds is dependent on confining stress, and the in-

crease in confining stress level will weaken the effects of inter-particle bonds on

the plastic flow. Careful examinations of stress-dilatancy relations derived from

the proposed plastic potential with experimental evidence on structured soil prove

the appropriateness of this plastic potential.

(2) The versatility of the extended model has been validated with experimental ob-

servations on different natural clays that have a relatively wide range of index

properties. The versatility, generality, and predictability of the model are empha-

sized by the fact that with a single set of parameters, the model can adequately

represent material behavior under different stress histories, drainage conditions,

and loading paths (i.e., compression v.s. shearing, monotonic v.s. cyclic). The

model parameters can be determined based on conventional experiments in a rel-

atively straightforward way. If one is only interested in the monotonic behavior

of natural clay, compression tests (1D or isotropic), CK0 TXC and CK0 TXE

tests on NC and OC samples are sufficient to define model parameters. If cyclic

behavior is considered, then additional stress or strain controlled cyclic test is

needed. The proposed analytical solutions provide reasonable estimations of the

initial values of model internal variables.

(3) Experimental data in cyclic loading tests on Grande Baleine clay and BCF clay

show strength reduction of natural clay during cyclic loading is strongly corre-

lated with the permanent strains developed. The model successfully captures

this feature. Modeling of cyclic loading of BCF clay shows that ignoring de-

structuration, in conditions where the cyclic loading results in significant plastic
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strains, can lead to a significant underestimation of strength degradation and ex-

cess pore pressure build-up, which results in an unsafe assessment of the stability

of geotechnical facilities in and after cyclic loadings.



316

CHAPTER 6

MODEL GENERALIZATION AND IMPLEMENTATION
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6.1. Introduction

For the purpose of testing the proposed model with experimental observations and

further using this model in the analysis of geotechnical boundary value problems, the

model implementation is a necessary and important step. This chapter has been focused

on the implementation of the proposed model and its associated stress integration strategy.

To facilitate the model implementation in 3D finite element codes, the generalization

of the proposed model from triaxial space to multiaxial space is first introduced. The

proposed model is implemented via an explicit stress integration method, namely Runge-

Kutta-Fehlberg method. The specific stress integration algorithm is presented in this

chapter.

Stress states in the laboratory tests are usually in triaxial condition. Also, constitutive

model formulations in triaxial space are relatively simple and therefore easier to imple-

ment. To validate the proposed model with the experimental stress-strain response, the

model is first implemented into a triaxial space constitutive driver in MATLAB, which

can integrate stress-strain responses under mixed-control conditions (e.g., stress-controlled

oedometer test). This driver will also provide benchmarks to validate further implemen-

tation of the model into 3D finite element code. The novelty of this driver is that it can

handle constitutive models with an elastoplastic modulus that depends on strain rate.

Detailed formulation of this driver is also presented in this chapter.

Lastly, model implementation into a general 3D finite element code, ABAQUS, is

discussed, in which a single element test has been used to validate the implementation.
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6.2. Model Generalization in Multiaxial Space

This section discusses the generalization of the bounding surface, plastic potential

surface, plastic flow rule, internal variables hardening rule, plastic modulus as well as

the projection center evolution rule. Benz (2007) has well documented the generalization

of the small strain elasticity model. This will not be repeated herein. The only point

worth noting is that the scalar-natured strain history variable γ̄hist in the elasticity model

is replaced by a tensor-natured variable εhist in multiaxial stress space. Besides, as the

bounding surface and plastic potential surface in the proposed model are similar to the

surfaces in SANICLAY model (Dafalias et al., 2006), the expressions of derivatives of

surfaces in multiaxial space presented by Dafalias et al. (2006) are included in this work.

Model generalization is performed based on the following relations between tensor

variables and their counterpart invariant scalars. First, deviatoric stress tensor s is related

to scalar q through:

[(3/2)s : s]1/2 = q (6.1)

where bold symbol indicates tensor and the symbol : implies the double dot production

between two tensors, i.e., A : B = AijBij, with Einstein summation convention being

applied. Deviatoric stress tensor is defined as:

s = σ − pI (6.2)

with I being identity tensor. Along the same line, fabric tensor α is introduced as the

multiaxial counterpart of scalar α in the triaxial space formulations:

[(3/2)α : α]1/2 = α (6.3)
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6.2.1. Structure Surface, Plastic Potential Surface and Plastic Flow Rule

In multiaxial space, the bounding surface (i.e., structure surface) is expressed as:

Fs =
3

2
(s̄− p̄∗α) : (s̄− p̄∗α)− (N2 − 3

2
α : α)p̄∗(p∗s0 − p̄∗) (6.4)

where s̄ is the image deviatoric stress tensor, given by:

s̄ = σ̄ − p̄I (6.5)

Similar to equation 4.3, the image stress tenor is related to current stress tensor through

a similarity ratio b and projection center tensor σc:

σ̄ = σc + b(σ − σc) (6.6)

In multiaxial space, the parameter N will be interpolated between Nc and Ne by means

of the Lode angle θ̄ of deviatoric stress s̄ − p̄∗α. The definition of θ̄ and the shape of

bounding surface are illustrated in Figure 6.1. The interpolation proposition by Argyris

et al. (1974) is adopted in this work, which, with cN = Ne/Nc, reads as:

N = Θ(θ̄, cN)Nc =
2cN

(1 + cN)− (1− cn) cos 3θ̄
Nc

cos 3θ̄ =
√

6trn̄3; n̄ =
s̄− p̄∗α
||s̄− p̄∗α||

(6.7)

The bracket ′||...||′ denotes the Eulerian norm of a tensor, i.e., ||A|| =
√
A : A. n̄

represents the unit tensor in deviatoric plane pointing from α axis to the image stress

point, as shown in Figure 6.1. The component form of n̄3 is given as n̄ijn̄jkn̄kl, and tr()

represents the trace of a tensor.
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Figure 6.1. Schematic illustration of the dependence of parameters N , M
and h on the Lode angle of s̄− p̄∗α

Based on the bounding surface, the loading direction L in multiaxial space is defined

as:

L =
∂Fs
∂σ̄

= Ld +
1

3
LvI (6.8)

with Lv and Ld being given by:

Lv = tr

(
∂Fs
∂σ̄

)
= p̄∗(N2 − 3

2
r̄∗ : r̄∗) + 3

(
∂Fs
∂θ̄

)
tr(n̄2α)− trn̄3tr(n̄α)√

3/2(1− 6tr2n̄3)||s̄− p̄∗α||

Ld = 3(s̄− p̄∗α) +
√

6

(
∂Fs
∂θ̄

)
(trn̄3)n̄− n̄2

||s̄− p̄∗α||
√

1− 6tr2n̄3

(6.9)
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with r̄∗ being the image stress ratio in multiaxial space, i.e., r̄∗ = s̄/p̄∗ and

∂Fs
∂θ̄

= 6N2p̄∗(p∗s0 − p̄∗)
(

1− cN
2cN

)
Θ(θ̄, cN) sin 3θ̄ (6.10)

The plastic potential surface in multiaxial space is expressed as:

gs =
3

2
(s− p∗α) : (s− p∗α)− (M2 − 3

2
α : α)p∗(pa − p∗) (6.11)

where parameter M also varies based on the same interpolation function in equation 6.7,

i.e.,

M = Θ(θ̄, cN)Mc =
2cM

(1 + cM)− (1− cM) cos 3θ̄
Mc (6.12)

with cM = Me/Mc.

The generalized plastic flow direction is given by:

R = Rd +
1

3
RvI; (6.13)

Rd, based on equation 4.8, is the deviatoric component of image stress flow direction, as

shown in Figure 6.1:

Rd =
∂gs
∂σ̄
− 1

3
tr(

∂gs
∂σ̄

)I = 3(s̄− p̄∗α) +
√

6

(
∂gs
∂θ̄

)
(trn̄3)n̄− n̄2

||s̄− p̄∗α||
√

1− 6tr2n̄3
(6.14)

where:

∂gs
∂θ̄

= 6M2p̄∗(pa − p̄∗)
(

1− cM
2cM

)
Θ(θ̄, cM) sin 3θ̄ (6.15)
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As discussed before, the volumetric component of plastic flow Rv combines the those from

the current stress flow rule and image stress flow rule:

Rv = Ri
vgi +Rc

v(1− gi) (6.16)

And Ri
v in multiaxial space is given by:

Ri
v = tr(

∂gs
∂σ̄

) = p̄∗(M2 − 3

2
r̄∗ : r̄∗) + 3

(
∂gs
∂θ̄

)
tr(n̄2α)− trn̄3tr(n̄α)√

(3/2)(1− 6tr2n̄3)||s̄− p̄∗α||
(6.17)

Similarly, Rc
v in multiaxial space can be expressed as:

Rc
v = p∗(M2 − 3

2
slr
∗ : r∗) + 3b

(
∂gs
∂θ̄

)
tr(n̄2α)− trn̄3tr(n̄α)√

(3/2)(1− 6tr2n̄3)||s̄− p̄∗α||
(6.18)

with term ∂gs/∂θ̄ is rewritten as:

∂gs
∂θ̄

= 6M2p∗(pa − p∗)
(

1− cM
2cM

)
Θ(θ̄, cM) sin 3θ̄ (6.19)

to reflect the nature of current stress dependence. The terms with “-” is due to the

assumption that the value of M is solely determined by the location of image stress in

deviatoric plane, even for the case that plastic flow direction is defined through current

stress. Similarity ratio b is introduced as a result of ∂σ̄/∂σ in the chain rule expansion

∂θ̄/∂σ = (∂θ̄/∂σ̄)(∂σ̄/∂σ).

In multiaxial space, the rule to define variable sl is generalized as:

sl =


1 if nn̄ ≥ 0

−1 if nn̄ < 0

(6.20)
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As shown in Figure 6.1, n is a unit tensor pointing from origin of deviatoric plane to

current stress point.

6.2.2. Internal Variables Hardening Rules and Plastic Modulus

In multiaxial space, the isotropic hardening rule for internal variable p0 is formed in the

following way:

ṗ0 = 〈Λ〉p̄0; p̄0 =

(
1 + e

λ− κ

)
p0Rv (6.21)

The rotation hardening rule generalized by Dafalias et al. (2006) is adopted in this work:

α̇ = 〈Λ〉ᾱ

ᾱ =

√
3

2

(
1 + e

λ− κ

)
C

(
p̄∗

p∗s0

)2

|Rv| ||(r̄∗ − χα)||(αb −α)

(6.22)

where:

αb =
√

2/3Mn̄x; n̄x =
(r̄∗ − χα)

||r̄∗ − χα||
(6.23)

The readers are referred to the work of Dafalias et al. (2006) for more details concerning

above generalized rotation hardening law.

The destructuration law for internal variable Sb is generalized as:

Ṡb = 〈Λ〉S̄b; S̄b = −(kiSb)
√

(1− A)R2
v + A(3/2Rd : Rd) (6.24)

The hardening vector r in equation 2.5 remains the same form as the one in triaxial

space:

r = [p̄0, ᾱ, S̄b] (6.25)
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In multiaxial space, the plastic modulus takes the same form as in triaxial space:

Kp = K̄p + f(b) (6.26)

Based on the consistency condition of the bounding surface, K̄p is given by:

K̄p = −
(
∂Fs
∂p∗s0

p̄∗s0 +
∂Fs
∂α

: ᾱ+ rc
∂Fs
∂p̄∗

(p0S̄b + Sbp̄0)

)
(6.27)

with

∂Fs
∂α

= −3p̄∗(s̄− p∗s0α) (6.28)

Function f(b) remains the same:

f(b) =
h(1 + e)p3

0

〈b/(b− 1)− s〉
ms (6.29)

whereas the value of h in multiaxial space is assumed to be dependent on the location of

image stress on devaitoric plane in the same way as M and N :

h = Θ(θ̄, ch)hc =
2ch

(1 + ch)− (1− ch) cos 3θ̄
hc (6.30)

with ch = he/hc.
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6.2.3. Evolution Rule of Projection Center and Similarity Ratio b

To generalize the evolution rule of projection center, the variable Xd in equation 5.11

needs to be redefined in multiaxial space:

Xd =
dc
dd

dc = ||sc − p∗cα||; dd =

√
2

3
(N2 − 3

2
α : α)p∗c(p

∗
s0 − p∗c)

(6.31)

where

sc = σc − pcI (6.32)

and the value of N is determined by equation 6.7 with tensor n̄ being replaced by

0 . 0

0 . 5

1 . 0

1 . 5

0 . 0

0 . 5

1 . 0

1 . 5

0 . 0

0 . 5

1 . 0

1 . 5

d c
d b

n p c

σc

p *
c α

B o u n d i n g  s u r f a c e

( s 3 - p *α)( s 2 - p
* α)

 (s 1-p
* α)

Figure 6.2. Schematic illustration of variables that define the position of
projection center relative to the bounding surface in deviatoric plane

npc, which will be discussed later. As illustrated in Figure 6.2, dc and dd denote the



326

distance between α axis and projection center and bounding surface in deviatoric plane,

respectively. And Xp maintains the same definition as triaxial space:

Xp =
p∗c
p∗s0

(6.33)

In the multiaxial stress space, the projection center is a tensor, which has 6 indepen-

dent components. As a result. to obtain a unique evolution rule for all components of

projection center tensor, it is necessary to have a set of 6 linearly-independent equations.

However, the linearization of equations of Xd and Xp can only provide two equations,

which leaves the problem indeterminate.

To solve it, besides two scalar Xp, Xd, a new directional tensor npc is introduced:

npc =
sc − p∗cα
||sc − p∗cα||

(6.34)

As shown in Figure 6.2, the tensor npc indicates the direction pointing from the α axis to

the projection center σc in the devaitroic plane. As a result, tensor σc can be rewritten

as:

σc = sc + pcI; sc = p∗cα+ dcnpc (6.35)

Suppose the tensor npc remains constant between consecutive stress reversals, the

evolution of the projection center is fully characterized by the change of scalars p∗c , pc and

dc as well as the changes of the internal variables:

σ̇c = ṡc + ṗcI = ṗ∗cα+ p∗cα̇+ ḋcnpc + ṗcI (6.36)
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Following the approach in triaxial space, linearization of Xp and Xd leads to:

ṗ∗c =
p∗c
p∗s0

ṗ∗s0; ṗc =
p∗c
p∗s0

ṗ∗s0 − ṗt

ḋc = −dc
(

3α : α̇

2N2 − 3α : α
+

(2p∗c − p∗s0)ṗ∗c
2p∗c(p

∗
s0 − p∗c)

− ṗ∗s0
2(p∗s0 − p∗c)

) (6.37)

where

ṗ∗s0 = (1 + (1 + rc)Sb)ṗ0 + (1 + rc)p0Ṡb; ṗt = rc(Sbṗ0 + p0Ṡb) (6.38)

Finally, the rate form of the projection center evolution rule is obtained via substitut-

ing equation 6.37 into equation 6.36.

In terms of the similarity ratio b, its evolution rule has been generalized as:

ḃ =
C1

C2

(6.39)

where:

C1 = −∂Fs
∂σ̄

: (σ̇c + b(σ̇ − σ̇c)) +
K̄p

Kp

∂Fs
∂σ̄

: σ̇;

C2 =
∂Fs
∂σ̄

: (σ − σc)
(6.40)

6.3. Stress Integration Algorithm

In general, the methods for implementing constitutive relations (i.e., stress point in-

tegration) are classified as either explicit or implicit schemes. In a fully implicit method,

model components, like loading direction, plastic flow direction, and plastic modulus, are

all evaluated at unknown states. Correspondingly, a system of local nonlinear equations

must be solved iteratively. Besides, if a Newton scheme is used to solve the nonlinear

equations, higher order derivatives of yield surface (or bounding surface) and plastic po-

tential are required. As a payback, the implicit method is unconditionally stable, and
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when used in classical elastoplasticity models, updated stress can be enforced on the yield

surface to a specified tolerance. Furthermore, the Newton implicit stress integration usu-

ally provides an analytical expression for the consistent tangent modulus, which can lead

to a quadratic rate of convergence in global Newton iterations and reduce the computation

time (Simo and Hughes, 2006).

However, for more complex advanced models, the high order derivatives aforemen-

tioned sometimes lead to much tedious algebra. Also, high nonlinearity in advanced soil

models may cause the divergence of local iterations in an implicit method (Jeremic, 2001).

Such non-convergence tends to reduce the step size for global iteration and consequently

weaken the benefits of implicit methods.

On the other hand, in explicit methods, model components are all evaluated at the

known current states, which make it more straightforward to implement. Moreover, ex-

plicit methods do not require local iterations. Furthermore, combined with automatic

substepping and error control, the accuracy and efficiency of explicit methods has been

significantly enhanced (Sloan et al., 2001). Concerning the consistent tangent modulus

for the purpose of quadratic convergence, a numerical perturbation technique can be em-

ployed to estimate it. Several comparisons regarding the performances of implicit and

explicit methods tend to show the latter one is more robust and efficient (Potts and

Ganendra, 1994; Tamagnini et al., 2000).

When explicit methods are used for classical elastoplasticity models, issues mainly

arise from the requirement to find the intersection between an unknown stress increment

path with the yield surface and the overshooting (i.e., the updated stress is outside the

yield surface). For bounding surface models, it is not necessary to find the intersection
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point, as the stress point will always inside or on the bounding surface. For the latter issue,

drift correction, or higher order explicit methods can be employed to provide satisfactory

solutions (Sloan et al., 2001).

Based on the above considerations, an explicit stress integration method, namely

Runge-Kutta-Fehlberg adaptive explicit integration, is selected for the implementation

of the proposed model. This scheme is attractive since the error is controlled by spec-

ified tolerance. Moreover, the size of substepping is automatically extrapolated based

on the difference between the second and third order Runge-Kutta approximation and

a prescribed accuracy. This type of error control permits the varied substepping sizes

(Sloan et al., 2001), which significantly improves computation efficiency. The stability

and robustness of this method have been verified with several complex and advanced

constitutive models (Tamagnini et al., 2000; Castellanza, 2002; Maš́ın, 2009).

The object of the stress integration is to update the stress states and a series of internal

variables under a given amount of strain increment ∆ε within a time period of ∆t. In

the proposed model, besides stress and internal variables, other state-dependent variables,

including the projection center σc, similarity rato b as well as the strain history tensor

εhist in elasticity model, also need to be appropriately updated.

As material rate effects are not considered in the proposed constitutive relations, for

the purpose of stress integration, it is convenient to introduce a pseudo time, T , defined

by:

T = (t− t0)/∆t (6.41)

where t0 is the time at the begining of loading increment, t0 + ∆t is the time at the end

of loading increment, and 0 ≤ T ≤ 1. Since dT/dt = 1/∆t, application of chain rule will
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transform the rate form of constitutive equations, e.g.,

σ̇trial = Deε̇

σ̇ = Depε̇

(6.42)

to forms as follow:

∆σtrial =

∫
dσtrial
dT

dT =

∫
De∆εdT

∆σ =

∫
dσ

dT
dT =

∫
Dep∆εdT

(6.43)

It is noteworthy that this transformation is under the assumption that strains vary “pro-

portionally” (i.e., the ratio between the strain components remains constant ) over given

increment (Potts and Ganendra, 1994). Therefore, this transformation may introduce

error into the computation if the aforementioned assumption is not valid.

It is also worth noting that both elasiticy stiffness matrix De and elasto-plasticity

stiffness matrixDep are dependent of the strain increment ∆ε, due to stiffness degradation

mechanism introduced in the adopted elasticity model. In addition, as discussed before,

such stiffness degradation is a function of finite strain increment instead of strain rate

(Benz, 2007).

The increment form of constitutive equations exemplified by equation 6.43 is essentially

a set of ordinary differential equations with respect to the pseudo time T , which can be

numerically integrated via a substepping explicit integration. This method requires the

strain increment ∆ε to be further subdivided into a number of sub-strain increments,

∆εk = ∆ε∆Tk and substep size ∆Tk satisfies the identity condition, i.e.,
∑m

k=1 ∆Tk = 1.

The complete stress integration algorithm is shown in Box 4.1. In step-1, a trial stress

increment is obtained with one step Forward-Euler method, i.e., ∆Tk = 1. If higher
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accuracy is demanded, then substepping scheme described later can also be applied. The

actual stress reversal criteria used in model implementation (i.e., equation 6.45) has been

slightly modified compared with the one in equation 4.17. The reason is that elastic stress

update, which follows a stress reversal, may bring updated stress outside the bounding

surface, when stress before the update is close to the apex of the bounding surface and trial

stress increment barely satisfies the criteria shown in equation 4.17. The modification,

suggested by Sloan et al. (2001), provides a mechanism to allow aforementioned situation

to be treated as elastoplasticity update determined by the specified tolerance and ensure

the consistency condition of bounding surface is not violated. The directional tensor npc

will be updated after each stress reversal and remains the same before next stress reversal.

Strain history tensor εhist will be updated according to the strain increment in each step

according to the algorithm provided by Benz (2007), which will not be repeated.

After each elastoplasticity computation step, the consistency condition of the bound-

ing surface in terms of the image stress will be checked. In other words, the updated

image stress, which depends on the update of stress, projection center and similarity

ratio, should be close enough to the bounding surface. This can be viewed as the coun-

terpart of a stress drifting check from the yield surface in classical elastoplasticity models

and provides an indication about the accuracy of stress integration. If the consistency

criteria is not satisfied, the integration will be treated as inaccurate, and the informa-

tion of corresponding stress points will be recorded. It is also worth mentioning that no

correction of stress or other variables is attempted at current stage, and the strategy to

correct image stress back to bounding surface will be part of future research work. Never-

theless, based on the author’s experience, with employed Runge-Kutta-Fehlberg explicit
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integration method, the stresses, internal variable and other state dependent variables are

usually very accurate and seldom need to be corrected.

Box 4.1 Stress Integration Algorithm

Input: states at the end of the nth step (σn, qn,σc,n, bn, εhist,n) and strain

increment for the n+1 step ∆εn+1;

Output: states at the end of the n+ 1th step (σn+1, qn+1,σc,n+1, bn+1, εhist,n+1)

Step-1: calculate the elastic stiffness matrix and trial stress increment;

De = De(σn, εhist,n,∆εn+1); ∆σtrialn+1 = De∆εn+1 (6.44)

Step-2: calculate the normalized loading index;

Ln =
L∆σtrialn+1

||L|| × ||∆σtrialn+1 ||
(6.45)

with loading direction L being evaluated at the state before update i.e.,

L = L(σn, qn,σc,n, bn);

Step-3: decide loading or unloading (i.e., stress reversal);
stress reversal triggered, go to step-4 if Ln < LTOL

no stress reversal, go to step-5 if Ln >= LTOL

(6.46)

where LTOL = 1e−6
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Step-4: update projection center to current stress σn, recalculate the variable b and

tensor npc for new projection center, freeze the internal variables, and update strain

history tensor;

σc,n+1 = σn; bn+1 = b(σc,n+1, qn); npc,n+1 = npc(σc,n+1, qn)

σn+1 = σn + ∆σtrialn+1 ; qn+1 = qn; εhist,n+1 = εhist(εhist,n,∆εn+1)

(6.47)

This is the end of stress update for current step

Step-5: call Runge-Kutta-Fehlberg algorithm to do the elastoplasticity stress

update:

(σn+1, qn+1,σc,n+1, bn+1, εhist,n+1) = RKF(σn, qn,σc,n, bn, εhist,n,∆εn+1) (6.48)

and check the bounding surface consistency after stress integration:

Fs = Fs(σ̄n+1, qn+1) (6.49)

And: 
consistency condition is fulfilled if |Fs|/||σ̄n+1|| <= FTOL

consistency condition is not fulfilled if |Fs|/||σ̄n+1|| > FTOL

(6.50)

where σ̄n+1 = σc,n+1 + bn+1(σn+1 − σc,n+1) and FTOL = 1e−3

This is the end of stress update for current step

For strain increment ∆εn+1 not triggering a stress reversal, Runge-Kutta-Fehlberg

explicit integration algorithm will be called to integrate the stress, internal variables and
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other state-dependent variables. The detailed algorithm is presented in Box 4.2. In the

initialization step, pseudo time Tk and iteration number Niter are set to 0. In addition,

the substepping size initially is set as its default value ∆Tk = 0.1. For each strain

sub-increment ∆εk, second and third order accurate Runge-Kutta approximations are

calculated based on the states at the end of previous substep (e.g., σk−1 and qk−1). The

differences between the above two approximations are used to quantify the integration

error. Based on numerical tests and computation stability consideration, only stress,

internal variables and similarity b are considered for the estimation of integration error.

Since the magnitude order of various stress or internal variables are different,they are

normalized and then put into a error (or residual ) vector Rk. The norm of such error

vector is used as a scalar measurement of error. The value of this error scalar Rk and

specific error tolerance STOL are used to extrapolate strain sub-increment size for next

substep via the extrapolation rule proposed by Sloan et al. (2001). The value 0.9 acts

as a factor of safety, to prevent substepping size from failing to meet the chosen error

tolerance STOL. A upper bound 1.1∆Tk and lower bound 0.1∆Tk are set up for accepted

and rejected substeps, respectively. This helps reduce the number of failure substeps and

increase the computation efficiency (Sloan et al., 2001). It is also worth mentioning that

the strain history εhist will also be updated after each successful substep instead of merely

after each step, which ensures the elasticity stiffness for next substep is appropriately

degraded. This will be more important if larger strain sub-increments are involved in

computations.
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Box 4.2 Runge-Kutta-Fehlberg Adaptive Explicit Stress Integration

Algorithm

Input: states at the end of the nth step (σn, qn,σc,n, bn, εhist,n) and strain

increment for the (n+ 1)th step ∆εn+1;

Output: states at the end of the (n+ 1)th step (σn+1, qn+1,σc,n+1, bn+1, εhist,n+1)

Step-1: Initialize the iteration control variables

k = 0; Tk = 0; ∆Tk = 0.1; Niter = 0 (6.51)

Step-2: While Tk < 1, perform steps 3-10; else go to step 11

Step-3: Compute the strain increment for kth substep

∆εk = ∆Tk∆εn+1 (6.52)

and

Niter = Niter + 1 (6.53)

reject substep stress integration if Niter is larger than allowable maximum iteration

number Niter,max = 1e4.

Step-4: Compute the stress increment, internal variable increment, projection

center increment and variable b increment for i=1,2,3 based on their corresponding
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rate form evolution rule and one step Forward-Euler method and

∆σki = Dep(σ
k
i−1, q

k
i−1,σ

k
c,i−1, b

k
i−1, ε

k−1
hist ,∆ε

k)∆εk

Λ =
L(σki−1, q

k
i−1,σ

k
c,i−1, b

k
i−1)∆σki

Kp(σki−1, q
k
i−1,σ

k
c,i−1, b

k
i−1, ε

k−1
hist ,∆ε

k)

∆qki = Λr(σki−1,σ
k
c,i−1, b

k
i−1)

∆σkc,i = ∆σc(q
k
i−1,∆q

k
i )

∆bki = ∆b(σki−1,σ
k
c,i−1, b

k
i−1,∆σ

k
c,i,∆σ

k
i )

(6.54)

where:

σk0 = σk−1; σk1 = σk−1 +
1

2
∆σk1 ; σk2 = σk−1 −∆σk1 + 2∆σk2

qk0 = qk−1; qk1 = qk−1 +
1

2
∆qk1 ; qk2 = qk−1 −∆qk1 + 2∆qk2

σkc,0 = σk−1
c ; σkc,1 = σk−1

c +
1

2
∆σkc,1; σkc,2 = σk−1

c −∆σkc,1 + 2∆σkc,2

bk0 = bk−1; bk1 = bk−1 +
1

2
∆bk1; bk2 = bk−1 −∆bk1 + 2∆bk2;

(6.55)

Step-5: Compute the 2nd and 3rd order Runge-Kutta approximations

σk2nd = σk−1 + ∆σk2 ; σk3rd = σk−1 +
1

6
(∆σk1 + 4∆σk2 + ∆σk3)

qk2nd = qk−1 + ∆qk2 ; qk3rd = qk−1 +
1

6
(∆qk1 + 4∆qk2 + ∆qk3)

σkc,2nd = σk−1
c + ∆σkc,2; σkc,3rd = σk−1

c +
1

6
(∆σkc,1 + 4∆σkc,2 + ∆σkc,3)

bk2nd = bk−1 + ∆bk2; bk3rd = bk−1 +
1

6
(∆bk1 + 4∆bk2 + ∆bk3)

(6.56)
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Step-6: Estimate the error for kth substep

Rk = [
∆σk

||σk3rd||
,

∆qk

||qk3rd||
,

∆bk

|bk3rd|
] (6.57)

where:

∆σk = σk3rd − σk2nd

∆qk = qk3rd − qk2nd

∆bk = bk3rd − bk2nd

(6.58)

and the scalar measurement of error

Rk = ||Rk|| (6.59)

Step-7: Estimate the size for k + 1th substep

∆T ∗k+1 = 0.9∆Tk

(
STOL

Rk

)(1/3)

(6.60)

with STOL = 1e−7

Step-8: Determine whether substep is acceptable or not:
substep accepted, go to step-9 if Rk =< STOL

substep rejected, go to step-10 if Rk > STOL

(6.61)

Step-9: Update stress, internal variables, projection center, similarity ratio and

strain history

σk = σk3rd; qk = qk3rd; σkc = σkc,3rd; bk = bk3rd; εkhist = εhist(ε
k−1
hist ,∆ε

k) (6.62)
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adjust the substep size for the k + 1 substep, and update pseudo time and substep

number

∆Tk+1 = max(1.1∆Tk,∆T
∗
k+1); (6.63)

∆Tk+1 = min(1− Tk,∆Tk+1) (6.64)

Tk = Tk + ∆Tk; k = k + 1 (6.65)

Step-10: Reduce the substep size

∆Tk+1 = min(0.1∆Tk,∆T
∗
k+1) (6.66)

and compare it with the allowable minimum substep size ∆Tmin. If ∆Tk+1 < ∆Tmin,

substep stress integration fails and the global step number for explicit integration

should be increased so that the size of strain increment is reduced.

Step-11: Substep stress integration finishes, update stress, internal variables,

projection center, similarity ratio and strain history for the (n+ 1)th step

σn+1 = σk; qn+1 = qk; σc,n+1 = σkc ; bn+1 = bk; εn+1
hist = εkhist (6.67)

6.4. Formulation of Triaxial Space Constitutive Driver

The formulation of the triaxial space constitutive driver are based on the linearized

integration technique proposed by Bardet and Choucair (1991). The linearized constraints

during a loading increment can be expressed as:

S∆σ +E∆ε = ∆Y (6.68)
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where ∆σ and ∆ε in triaxial space are expressed as the relevant invariants:

∆σ =

∆p

∆q

 ; ∆ε =

∆εv

∆εd

 (6.69)

and matrix S and E represent the linearized constraints on stress and strain increment,

respectively. The first row of vector ∆Y is always set to be zero, to enforce relations

between components of stress or strains, while the second row represents the loading

increment, which can be stress or strain. For instance, in a stress-controlled undrained

triaxial compression test, the constraint is no volumetric deformation (i.e., εv = 0) and

the driving variable is the growing shear stress (i.e., q stress). Therefore, equation 6.68

can be written as: 0, 0

0, 1


∆p

∆q

+

1, 0

0, 0


∆εv

∆εd

 =

 0

(q1 − q0)/Nl

 (6.70)

where q1 − q0 is the shear stress change in the test and the Nl is the number of loading

steps in the test.

Under mixed-control conditions, both stress increment ∆σ and strain increment ∆ε

are generally unknown. Considering the stress integration method discussed in the pre-

vious section, it is convenient to express ∆σ as a function of ∆ε, i.e., ∆σ = fc(∆ε). If

∆ε for each step is small enough, ∆σ = fc(∆ε) can be simplified as ∆σ ≈ D∆ε and

depending on elasticity update or elasto-plasticity update, D = De or D = Dep. By

further substituting this relation into equation 6.68, one can obtain:

M∆ε = ∆Y (6.71)
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with

M = SD +E (6.72)

For constitutive models in which matrix D is independent of strain increment ∆ε, the

increment ∆ε is uniquely determined, given the non-singularity of matrix M (i.e., the

determinant det(M) is not equal to 0). However, due to the adopted non-linear elasticity

model, the matrix D itself is a function of ∆ε, which make the equation 6.71 a set

of nonlinear equations. Therefore, the Newton-Raphson method is used to solve these

nonlinear equations. In addition, ∆ε is not necessary to be very small, as substepping

algorithm is used to solve ∆σ = fc(∆ε).

First, equation 6.68 is rewritten as:

fr = Sfc(∆ε) +E∆ε−∆Y = 0 (6.73)

Then fr shall be expanded in a Taylor series about current strain increment ∆ε0:

fr = fr,0 +
∂fr
∂∆ε

∣∣∣
∆ε0

δε = 0 (6.74)

where fr,0 and ∂fr/∂∆ε|∆ε0 are the value of fr and Jacobian matrix that are evaluated at

∆ε0, respectively. The strain increment correction δε is given by solving above equation

and the updated strain increment is obtained by:

∆ε = ∆ε0 + δε (6.75)
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This calculation is iteratively conducted until the value of fr reaches the specific tolerance:

||fr|| ≤ NTOL (6.76)

where NTOL is set as 1e−6 in this work. And corresponding stress and strain increment

that fulfill loading increment are obtained.

To start the iteration, the first guess of strain increment is obtained by solving equa-

tion 6.68 under the assumption that material is purely elastic and no stiffness degradation

is considered (i.e., G = G0), which leads to a system of linear algebra equations. Consid-

ering the complexity in the derivation, a numerical perturbation is selected to obtain the

Jacobian matrix ∂fr/∂∆ε. Forward difference method is used in the perturbation. Com-

putation sequences and details of this mixed-control constitutive driver are summarized

in Box 4.3.

Box 4.3 Mixed-Control Constitutive Driver Computation Sequences

Input: linearized constraint matrix S and E, loading variable Y and the number of

loading step Nl;

Output: strain ε and stress σ;

Step-1: Calculate the loading variable for each step

∆Y = Y /Nl (6.77)

Step-2: Guess the strain increment ∆ε0 by assuming material is elastic and solving

(SD +E)∆ε0 = ∆Y (6.78)
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Step-3: Begin Newton-Raphson iteration to calculate strain increment that satisfies

equation 6.73: While ||fr|| > NTOL, go to step 4-6; else go to step 7

Step-4: Approximate Jacobian matrix via numerical perturbation: for j = 1 to 2

∆ε∗n = ∆εn

∆ε∗n,j = ∆ε∗n,j + εpert(
∂fr
∂∆ε

)
ij

=
fr,i(∆ε

∗
n)− fr,i(∆εn)

εpert

(6.79)

where εpert is the strain perturbation amplitude, which is set as 1e−6 and i is the

component of vector fr, i.e., i = 1, 2

Step-5: Calculate the strain increment correction and update strain increment

δεn+1 =

(
∂fr

∂∆ε

)−1

fr(∆εn)

∆εn+1 = ∆εn + δεn+1

(6.80)

Step-6: Calculate new stress increment and updated fr:

∆σn+1 = fc(∆εn+1)

fr,n+1 = S∆σn+1 +E∆εn+1 −∆Y

(6.81)

Step-7: Accept the stress and strain increment, and internal variables as well as

state dependent variables.

Step-8: Repeat step 3-7 until all the loading has been applied.
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6.5. Model Implementation into UMAT Subroutine

The implementation of the proposed model into UMAT subroutine of ABAQUS is

based on the UMAT file provided by the Soilmodels Projection (Gudehus et al., 2008;

Miriano, 2011; Martinelli, 2012). While the same stress integration algorithm is employed

in UMAT as shown in section 6.3, a slight modification has been made in terms of the

criteria that determines when to relocate the projection center to the current stress.

Numerical tests after model implementation show that a very small amount of strain

perturbation, which is of numerical origin, usually will trigger the stress reversal criteria

and consequently relocation of projection center. However, this relocation of projection

center should not happen based on the prescribed boundary conditions. Since the pro-

jection center plays a crucial role in various aspects of plasticity computation, this side

effect decreases the stability of stress integration, increases the iteration number in global

Newton iteration and sometimes even make the problem divergent.

As a solution, a new criteria for projection center relocation is superposed to the one

described in equation 6.45:

||∆σtrial||
p∗s0

≥ SRTOL (6.82)

with SRTOL = 1e−4. This implies that the magnitude of strain change should be large

enough so that corresponding trial stress increment is sufficiently large compared with

the size of bounding surface, before the projection center can be relocated. As a result,

aforementioned strain perturbation can will only lead to the elastic stress update for

current step and keep the projection center unchanged. Elastic stress update for current

step is necessary, as the step that triggers stress reversal must correspond to a loss of
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positive definition of plastic multiplier Λ. Nevertheless, the change of stress is expected

to be very small due to the magnitude of strain increment.

To preserve the quadratic rate convergence of global Newton iteration in ABAQUS,

the consistent tangent moduli is computed via similar numerical perturbation technique

detailed in Box 4.3.

To validate the model implementation in UMAT of Abaqus, a single element test

is conducted. Specifically, the stress-strain response from single element simulations is

compared with the results from the constitutive driver, both of which are loaded under

the same conditions.

Figure 6.3 shows the boundary conditions for the single element. The element type

is CAX4, which is an axisymmetric element of four Guess points at its four nodes. For

undrained analysis, CAX4P element is used, whose four nodes have an additional freedom

for pore pressure. As shown in Figure 6.3, this single element represents one-quarter of a

vertical cross-section of a 2:1 cylindrical specimen. As a result, the vertical and horizontal

displacement are restrained at the bottom and left boundaries of the element, respectively.

Pressures are applied on the top and right boundaries to simulate the axial stress and

lateral confining stress.

The model parameters used in the single element test is shown in Table 6.1. The

loading programs in this validation and the corresponding initial conditions for simulations

are summarized in Table 6.2

Table 6.1. Model parameters in the single element test of UMAT

λ κ Mc Me Nc Ne C χ hc he cd w Ag eg ng γ0.7

0.08 0.02 1.2 0.9 1 1 16 1.56 30 30 0 1 180 2.64 0.635 5.00E-05
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Figure 6.3. Single element and its boundary conditions for a triaxial sample

Table 6.2. Simulation cases in the single element test of
UMAT

Case Num Loading Path p0 α Sb p q void ratio

3 CAU TXC 40 0.3 1 80 27 0.75
5 CAU TXC 40 0.3 1 30 9 0.75
6 CAU TXE 40 0.3 1 80 27 0.75
8 CAU TXE 40 0.3 1 30 9 0.75
9 CAD TXC 40 0.3 1 80 27 0.75
11 CAD TXC 40 0.3 1 30 9 0.75
12 CADTXE 40 0.3 1 80 27 0.75
14 CAD TXE 40 0.3 1 30 9 0.75
15 CAU TX-CYC 40 0.3 1 80 27 0.75

Figure 6.4 and 6.5 show the response of undrained and drained monotonic loading.

Figure 6.6 displays the computed secant shear modulus Gsec degradation with the axial

strain from the above simulations. Also, Figure 6.7 presents the simulated response in

undrained cyclic loading. Results simulated by the single element in Abaqus and the

constitutive driver are almost identical to each other, which suggests the model is correctly

implemented in the UMAT of Abaqus.
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Figure 6.4. The comparison in undrained monotonic loading tests: (a) ef-
fective stress path; (b) stress-strain response
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Figure 6.5. The comparison in drained monotonic loading tests: (a) stress-
strain response; (b) volume change response

6.6. Summary and Conclusions

This chapter presents the generalization of the proposed model from triaxial space to

multiaxial space, followed by the stress integration algorithm used in the model imple-

mentation, which is based on the Runge-Kutta-Fehlberg auto-stepping explicit method.
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Figure 6.6. The comparison of small strain responses: (a) undrained com-
pression tests; (b) drained compression tests
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Figure 6.7. The comparison in undrained cyclic loading tests: (a) effective
stress path; (b) stress-strain response

The proposed model is implemented into a triaxial space constitutive driver developed

by this work aimed at integrating constitutive relations with elastoplastic modulus being

dependent on strain rate. The formulation of this driver is presented in this chapter.
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Lastly, Chapter 6 shows the implementation of the model into the finite element code

Abaqus via its user-defined material subroutine (UMAT). The following main conclusions

can be drawn from this chapter:

(1) The Runge-Kutta-Fehlberg auto-stepping algorithm has been shown to be a sta-

ble and efficient integration method for the implementation of the proposed model

into both the triaxial space constitutive driver and 3D finite element code.

(2) The proposed constitutive driver provides a general and efficient method to inte-

grate constitutive laws in triaxial space under various mixed-control conditions.

Its capacity to handle constitutive models with an elastoplastic modulus that

depends on strain rate enables it to serve as a platform to integrate other consti-

tutive relations that have the same feature.

(3) The single element test in Abaqus has proved the success of the model imple-

mentation in this 3D finite element code.
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CHAPTER 7

SUMMARY AND CONCLUSIONS



350

7.1. Summary

The goal of this work is to develop a model which quantifies the strength degradation

of natural clay during cyclic loading. This phenomenon is a key factor in the failure of

clay slopes and retaining structures during earthquakes. A particular example studied

in this work is the disastrous landslides in the city of Anchorage caused by the 1964

Alaska earthquake. The fundamental assumption made by this work is that the strength

degradation is related to the deterioration of soil structure and effective stress changes

when the natural clay is subjected to cyclic loading. To quantify such a strength loss, an

effective stress based constitutive model is developed in two steps. First, a basic model

is formulated to reproduce the responses of reconstituted clay during cyclic loading, i.e.,

the intrinsic cyclic behavior. Then, this basic model is extended to consider the effects of

structure and its degradation as a function of plastic deformations. Both the basic model

and the extended models have been verified with respect to the experimental observations.

Chapter 2 presents a literature review of various aspects related to the topic of this

thesis. The studies about major landslides caused by the 1964 earthquake and the Boot-

legger Cove Formation (BCF) that composes the failed slopes are reviewed. Observations

from experimental tests on natural clay are summarized to illustrate the effects of soil

structure on the mechanical behavior of natural clay. A review of clay behavior during

undrained cyclic loading and post-cyclic shearing is presented to show the factors that

affect strain accumulation during cyclic loading and post-cyclic shear strength. Lastly,

Chapter 2 presents a review of bounding surface models aimed at simulating cyclically

loaded clay and constitutive modeling strategies used to reproduce the effects of soil

structure.
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Chapter 3 presents a back analysis of an upper bound on the strength degradation

of BCF clay needed to initiate failure of the Tunagain Height landslide during the 1964

earthquake. In-situ tests were conducted at Lynn Ary Park, Anchorage, which is adjacent

to the Turnagain Heights landslide scarp. Chapter 3 presents the soil strength profile and

stratigraphy at the Turnagain Heights area, which is generated based on the in-situ tests.

The sensitivity of BCF clay is evaluated based on the same field investigations. Chapter 3

also discusses the correlation between the interpreted sensitivity and soil index properties

and pore fluid chemical compositions. Lastly, this chapter presents the slope stability

analysis of Turnagain Heights based on the strength parameters obtained from the in-situ

tests, in which the stability condition before the 1964 earthquake and an upper bound on

required strength reduction of BCF clay to trigger the slope failure are presented.

Chapter 4 presents the formulation of the basic model in triaxial space, which is de-

veloped within a bounding surface plasticity framework. Compared with other bounding

surface plasticity models for cyclic clay behavior, three major enhancements are proposed,

including the mixed plastic flow rule, a new form of plastic modulus to uniformly repro-

duce cyclic softening and shakedown, and the adoption of a small strain elasticity model.

The results from a series of parametric studies are discussed, which elucidate the roles of

new model components. The steps required to calibrate model parameters and estimate

the initial values of the internal variables are presented. Finally, the basic model is val-

idated with respect to experimental observations of two relatively unstructured types of

clay: reconstituted Georgia kaolin and relatively insensitive BCF clay.

Chapter 5 extends the basic model presented in Chapter 4 to reproduce the effects of

soil structure and its deterioration. In particular, the concept of structure surface and
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intrinsic surface are introduced, which govern the response of natural clay and its cor-

responding reconstituted state, respectively. A new internal variable Sb that represents

the amount of soil structure and a destructuration law that quantifies the monotonic de-

crease of Sb under irrecoverable deformation are discussed. The proposed plastic potential

surface in the extended model is a function of fabric anisotropy (internal variable α) and

inter-particle bonds (internal variable pt). The influences of these two aspects of soil struc-

ture on material plastic flow are explored based on the stress-dilatancy relation which is

derived from the plastic potential surface. The appropriateness of this plastic potential

surface to describe natural clay behavior is validated with experimental evidence. Finally,

this chapter shows the validation of the extended model based on experimental data of

eight natural clays.

Chapter 6 presents the generalization of the proposed model from triaxial space to

multiaxial space, followed by the stress integration algorithm used in the model imple-

mentation, which is based on the Runge-Kutta-Fehlberg auto-stepping explicit method.

The proposed model is implemented into a triaxial space constitutive driver developed

by this work aimed at integrating constitutive relations with elastoplastic modulus being

dependent on strain rate. The formulation of this driver is presented in this chapter.

Lastly, Chapter 6 shows the implementation of the model into the finite element code

Abaqus via its user-defined material subroutine (UMAT).

7.2. Conclusions

From the in-situ tests at the Lynn Ary Park and the back analysis of Turnagain

Heights landslide, the following main conclusions can be drawn:
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(1) The strength profile interpreted from FV and CPT tests suggests that BCF soil at

the tested site (i.e., Lynn Ary Park) is overconsolidated at the top of the layer,

and gradually becomes normally consolidated with depth. Also, this trend of

stress history is supported by the classification of soil behavior type based on the

normalized CPT data. BCF clay at this site can be divided into four sublayers

based on their undrained strength variation: upper stiff clay, upper soft clay,

lower soft clay and lower stiff clay.

(2) The sensitivity of BCF clay interpreted from the in-situ tests at the Lynn Ary

Park ranges from 2 to 10, with the majority of data falls between 2 and 6. This

sensitivity, together with the liquidity index indicates that the BCF clay at the

Lynn Ary Park is not very sensitive. Moreover, the sensitivity of the upper stiff

clay and upper soft clay layers is noticeably larger than that of the lower soft

clay and lower stiff clay layers.

(3) A comparison between the pore fluid chemical composition concentration profile

at the Lynn Ary Park and the variation of sensitivity suggests that the high

sensitivity of the upper stiff clay and upper soft clay layers may be caused by the

low concentration of total cation and the low percentage of the divalent cations.

(4) The stability analysis based on the strength parameters interpreted from the in-

situ tests shows that the Turnagain Heights slope was at a relatively safe condition

before the 1964 earthquake (i.e., FS=1.30 - 1.38). Furthermore, stability analysis

which decreases the strength of BCF clay reveals that 68% to 76% strength

reduction for the upper stiff clay is needed to trigger slope failure under static

condition, while a higher strength reduction is required for the upper soft clay
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layer (80% to 88%). If a strength degradation uniformly occurs in both the above

layers, a relatively lower reduction (37% to 43%) is sufficient to initiate the slope

failure. These strength reductions represent an upper bound on the amount of

degradation required to initiate failure during cyclic loading, and these results are

compatible with the sensitivity interpreted from the in-situ tests implying that

the degradation of BCF clays during the earthquake individually was sufficient

to result in the landslide at Turnagain Heights.

(5) The consideration of interbedded sand/silt lenses in the analysis tends to strengthen

the stability of the slope slightly. And the study shows without significant re-

duction of the BCF clay strength, the liquefaction of such lenses during the

earthquake is not able to trigger the landslide.

(6) The current stability analyses provide an upper bound of the required strength

reduction of BCF clay to initiate the landslide. Given that other unfavorable

conditions (e.g., inertial forces in an earthquake) are not considered in this work,

the actual strength loss is expected to be lower than the computed values. Fur-

thermore, the above upper bound is obtained based on the assumption that the

1964 earthquake uniformly reduced the strength of clay throughout individual

BCF layers. If inhomogeneous strength reduction occurred, the greater strength

reduction than the analyses results might be required at local locations.

From the development and verification of the basic model aimed at reproducing in-

trinsic cyclic clay behavior, the following main conclusions can be drawn:

(1) The verification with experimental observations shows that the proposed basic

model is general, versatile and can reliably represent observed responses. With
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a single set of parameters, the proposed basic model is capable of reproducing

strain and pore pressure accumulation during cyclic loading with different shear

stresses and various complex stress histories before cyclic loading.

(2) The proposed mixed plastic flow rule incorporates characteristics of plastic flow

direction defined by the current stress state into the existing image stress flow

rule. The employment of this new flow rule successfully solves the undesirable

early stop of pore pressure build-up inherent with the use of flow rule based on

the image stress. Further, compared with the image stress flow rule, the proposed

flow rule ensures that a correct trend of pore pressure build-up is reproduced.

The new parameter w provides model users additional flexibility in controlling

the amount of pore pressure build-up during undrained cyclic loading.

(3) The proposed plastic modulus formulation enables the model to reproduce in a

unified manner both cyclic softening and cyclic shakedown, which are observed in

tests on the reconstituted Georgia kaolin and insensitive BCF clay, respectively.

(4) When large plastic deformation develops and forms the majority of total de-

formation, ignoring small strain stiffness will not cause significant differences

in computed responses. When cyclic strains are relatively small, incorporation

of the small strain elasticity model will better simulate the cyclic stress-strain

hysteresis loop, corresponding energy dissipation, and the recent stress history

effects. Ignoring small strain stiffness under some circumstance can limit the

amount of deformation accumulation and underestimate pore pressure build-up

in cyclic loading, which may eventually lead to unsafe predictions if the number

of cycles is large.



356

(5) Experiments on relatively insensitive BCF clay show construction-induced stress

changes significantly affect clay behavior during cyclic loading, including the

amount and directional preference of strain accumulation. This feature is deli-

cately reproduced by the proposed model. The proposed model also can satis-

factorily capture the stress-strain-pore pressure responses observed in post-cyclic

shearing on relatively insensitive BCF clay, which enables the model to be used

in assessing the stability of geotechnical facilities after cyclic loading.

From the development and verification of the extended model aimed at capturing the

structure degradation of natural clay during cyclic loading, the following main conclusions

can be drawn:

(1) The fabric anisotropy and inter-particle bonds can significantly affect plastic flow.

The change in fabric induced by the anisotropic loading tends to increase the plas-

tic volume change. Moreover, when fabric anisotropy exists, after yielding the

increase of isotropic stress in the absence of deviatoric stress can cause not only

compression but also distortion, and purely compressive, non-distortional plastic

deformation can occur for non-isotropic stress state. On the other hand, an in-

crease in the inter-particle bonds exacerbates soil’s plastic contraction and delays

the occurrence of phase transformation as well as the plastic dilatancy. Moreover,

the influence of inter-particle bonds is dependent on confining stress, and the in-

crease in confining stress level will weaken the effects of inter-particle bonds on

the plastic flow. Careful examinations of stress-dilatancy relations derived from

the proposed plastic potential with experimental evidence on structured soil prove

the appropriateness of this plastic potential.
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(2) The versatility of the extended model has been validated with experimental ob-

servations on different natural clays that have a relatively wide range of index

properties. The versatility, generality, and predictability of the model are empha-

sized by the fact that with a single set of parameters, the model can adequately

represent material behavior under different stress histories, drainage conditions,

and loading paths (i.e., compression v.s. shearing, monotonic v.s. cyclic). The

model parameters can be determined based on conventional experiments in a rel-

atively straightforward way. If one is only interested in the monotonic behavior

of natural clay, compression tests (1D or isotropic), CK0 TXC and CK0 TXE

tests on NC and OC samples are sufficient to define model parameters. If cyclic

behavior is considered, then additional stress or strain controlled cyclic test is

needed. The proposed analytical solutions provide reasonable estimations of the

initial values of model internal variables.

(3) Experimental data in cyclic loading tests on Grande Baleine clay and BCF clay

show strength reduction of natural clay during cyclic loading is strongly corre-

lated with the permanent strains developed. The model successfully captures

this feature. Modeling of cyclic loading of BCF clay shows that ignoring de-

structuration, in conditions where the cyclic loading results in significant plastic

strains, can lead to a significant underestimation of strength degradation and ex-

cess pore pressure build-up, which results in an unsafe assessment of the stability

of geotechnical facilities in and after cyclic loadings.

From the generalization of the proposed model to multiaxial space and its implemen-

tation, the following main conclusions can be drawn:
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(1) The Runge-Kutta-Fehlberg auto-stepping algorithm has been shown to be a sta-

ble and efficient integration method for the implementation of the proposed model

into both the triaxial space constitutive driver and 3D finite element code.

(2) The proposed constitutive driver provides a general and efficient method to inte-

grate constitutive laws in triaxial space under various mixed-control conditions.

Its capacity to handle constitutive models with an elastoplastic modulus that

depends on strain rate enables it to serve as a platform to integrate other consti-

tutive relations that have the same feature.

(3) The single element test in Abaqus has proved the success of the model imple-

mentation in this 3D finite element code.
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Z. Mrŏz, V. A. Norris, and O. C. Zienkiewicz. An anisotropic, critical state model for

soils subject to cyclic loading. Géotechnique, 31(4):451–469, 1981.
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