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"Optimal Pricing with Intermodal Competition"

Ronald Braeutigam

Northwestern University

ABSTRACT

The regulation of multiproduct enterprises has created some
difficult problems for regulators, particularly where common costs of
production are present and where entry may be allowed in one or more
of the markets served by the multiproduct firm. This paper concentrates
on aspects of economic efficiency in pricing with multiproduct firms and
intermodal competition. It extends the work of Baumol and Bradford on
efficient pricing with a multiproduct monopoly to the case where inter-
modal competition is present. A set of rules is developed, showing how
second best prices deviate from marginal cost when economies of scale
are present. The paper shows why these rules may be difficult to imple-
ment in some cases, with a direct application to the case of freight
transport, and then suggests a variation in the theory of second best

which may be useful given those difficulties.






Introduction

In recent years there has been a growing concern over certain
difficulties encountered in the regulation of multiproduct firms. Among
the major issues has been the problem of pricing. At least three factors
have contributed to the difficulty of the pricing problem in regulated
fi;ms. First, it may be the case that when price is set equal to marginal
cost in each of the markets served by a firm, profits would be negative.
Hence, some deviation of price from marginal cost is required if the firm
is to break even. Second, there may be costs of production which are
shared by two or more services in the production process, so that it is
impossible to assign costs to services in an unambiguous manner. Finally,
there may be other firms participating in some of the markets served by
the multiproduct firm. In such a case pricing policies may affect market
structure, and the two should not be treated independently.

Some of the issues raised where there are shared costs of production
have been addfessed by Faulhaber [1972] and Zajac [1972]. These papers
focus on the question of what constitutes a "fair" price for any service
when there are costs of production shared by two or more services. They
analyze the effects of some of the many possible alternative guidelines
which have been suggested to define '"fair'" prices. For example, it is
sometimes suggested that any price which is no lower than the marginal cost
of providing that service is a fair price for that service. Another possible
definition of a fair price is any one that generates enough revenue to at
least cover all of the costs which can unambiguously be attributed to the
provision of that service. These two definitions are generally considered

as defining lower bounds on fair prices. The papers also suggest possible
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upper bounds on fair prices. For example, one could say that a fair price
is one which does not require a service to generate more revenues than
would be necessary to cover all costs incurred if that service were the
only one being provided. More recently Faulhaber [1975] has proposed an-
other definition of fair prices for a service. Suppose that a firm is pro-
ducing services 1, 2, ..., n in quantities Xps Xpy eees X and that the
total cost of producing the services is denoted by C(xl,xz, g xn).

Then the price for the ith service, pi, is fair as long as

i
Px; 2 C(xl’x2’""xi-l’xi’xi+1""xn) - C(xl’x2""’xi-l’o’xi+f"'xn)'

In other words, as long as the ith service generates revenues which are
large enough to cover the difference in costs caused by the production of
that service, then pi is a fair price.

Several observations can be made regarding these alternative defini-
t;qus{af fair prices., First, one could view these approaches to pricing as being
based primarily on equity considerations rather than on principles of economic

L4
efficiency. In judging whether prices are fair, regulators have historically
tended to allocate shared costs first, and then require that the price charged
for any service generate revenues which cover the portion of shared costs
allocated to that service plus all costs that can be unambiguously attributed
to that service. The rather lengthy proceedings of the Federal Communications
Commission in the Private Line Docket (FCC Docket 18128/18684) and of the
Interstate Commerce Commission(in ICC Docket 34013) address the manner in
which shared costs are to be allocated. Importantly, the prices set as a
result of this process may bear no direct relationship to economic efficienecy.

The issues of efficient pricing for a multiproduct firm have been

examined in a classic article by Baumol and Bradford [1970]. Briefly, this
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research resulted in the development of rules for second best pricing in

a firm which would earn negative profits if price were equal to marginal

cost in each market. The pricing rules derived are those which maximize

economic efficiency (as measured by the sum of producer and consumer sur-
plus) subject to a constraint which allows the firm to break even. [1]

Suppose a firm produces n commodities in quantities x X s

17 e
and, for simplicity, that the demands for the commodities are independent
of one another. Assume also that the cost function for the production

process can be represented by C(xl, Koy aeey xn). Then the second best

2
prices (pl, D 5 sy pn) are those which satisfy Eq. 1 and Eq. 2.

p'- g_c_ pl- g_c
. X, X
R'E — Ll e = |——d| e 32 ), ¥ (1)
1 P J P 1,]
P P
and,
n i
r px, -C=0, (2)
i=1

: g : .t
where epi represents the price elasticity of demand in the i B market.

Eq. 2 represents a condition in which the firm is breaking even
(total revenues equal total cost). Eq. 1 represents the well-known rule
that in each market the amount by which price deviates from marginal cost

is inversely related to the price elasticity of demand. The numbers R

and RJ

are sometimes called Ramsey numbers, based on the work of Frank
Ramsey [1927] which was suggestive of the work that Baumol and Bradford
later performed. The theory has been extended to cover the case in which

the demands are interdependent, resulting in a slightly more complicated
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form for the Ramsey numbers. [2] The basic idea remains unchanged in
characterizing second best, namely, the Ramsey numbers are equal in all
markets and the firmiis earning zero profits.

It is important to note that prices which satisfy Eq. (1) and
Eq. (2) generally may not satisfy all of the possible definitions of
"fair" prices examined by Zajac and Faulhaber. [3] There is an essential
difference between the approaches to pricing taken by regulators and by
Baumol and Bradford. Regulators tend to allocate shared costs first, and
then judge prices based on that allocation as described above. 1In the
work of Baumol and Bradford, efficient prices are based on marginal cost
and conditions of demand. No prior allocation of shared costs is required.
(It is possible to determine how shared costs should be allocated in order
to reach second best once the efficient prices have been found, but the
allocation is done ex post instead of ex ante.)

One of the important gaps which has not been filled by the theory
of second best is its extension to the case of intermodal competition. As
developed by Baumol and Bradford, it applies only to a firm which has a
monopoly in each of its markets. Several questions may be posed in this
connection. Is the notion of Ramsey numbers useful with intermodal com-
petition? If so, what do the Ramsey numbers look like? What particular
kinds of difficulties might be expected in an application of the theory,
and what modifications in the notion of second best may be of interest
as a result of this line of investigation? We address these questions
beginning with the next section, using the regulation of surface freight
transportation to facilitate the development.,

II. Second Best and Intermodal Competition

The regulation of surface freight transportation has posed per-
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plexing problems for the Interstate Commerce Commission, in large part
because of the growth of competition among the various modes of tramsport,
especially since about 1930. Since the regulation of freight transport
provides a convenient framework within which to discuss the concept of
second best, a brief discussion of some of the economic characteristics
of freight carriers will precede the theoretical development.

Modes of transport have often been placed in two categories on the basis

of economic traits. According to Pegrum, '"railroads and pipelines héve
the basic economic characteristics of public utilities and are what econo-
mists call natural monopolies; motor, water, and air transport exhibit
the features of competitive industries." [4] Freight transportation in
this country has certain distinctive features which lead us to concentrate
on the interactions among rail, motor, and water carriers. First, air
carriers primarily provide passenger service. Freight movement generates
only about one percent of air transport revenues, which represents a very
small amount compared with the freight activity of other modes. [5] Second,
pipelines "constitute a highly specialized form of transportation for the
movement of products in liquid or gaseous form." [6] Because of this special
nature of the service they provide and their apparent economies of scale,
the regulation of oil and gas pipelines could be treated separately, under
the jurisdiction of either the Interstate Commerce Commission or the
Federal Power Commission. [7].

The remaining three modes employ greatly differing technologies to
provide services which can be viewed as imperfect substitutes for one
another. It should be noted that the issue of economies of scale in rail-

roads is not a closed matter. Several empirical studies have been made to
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test for the existence of economies of scale, with results that have
generally been mixed. For example, Klein [1953] used 1936 data to find
statistically significant, though modest economies of scale. However,
studies by Borts [1950] and Griliches [1972] have concluded that even if
scale economies are present for smaller railroads, they are not prevalent
in the larger ones.

It is not the purpose of this paper to critique these empirical
studies. Rather, the intent is to examine how second best nrices might
be set if one of the modes has scale economies (and railroads appear to be
the most likely candidate) and the other modes (water and motor) do not.

If none of these modes has increasing returns to scale, the basis for any
regulation at all should be examined. If any of the modes do have scale
economies, then the questions addressed in this paper are appropriate
ones to examine.

We now construct a model of intermodal competition using the follow-
ing assumptions:

1) There are m modes which provide transport services between two
points. Only one of these modes ( mode 1) is characterized by economies
of scale. In other words, if the services provided by mode 1 were all
priced at marginal cost, the profits for the firm would be negative.

2) There are many suppliers of transport service in each of the
other modes, so that each of the modes 2, ..., m is essentially competitive.
It is assumed that with free entry the supply of tranmsport services in each

|

of these modes is perfectly elastic.

3) Each mode may transport any or all of n commodities. Let

i = a modal index, i =1, ..., m
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a commodity index, j =i, ..., n

.
[}

X, .
1]

the amount of commodity j transported by mode i.

4) All carriers of mode i provide identical service in the transport
of commodity j. Restated, this means that there is intramodal homogeneity
in the carriage of a particular commodity.

5) There is intermodal service differentiation. In transporting
commodity j, carriers of one mode will provide service which differs from
the service of carriers of other modes. This recognizes that motor carriers,
water carriers, and railroads may differ in the speed of transport, reli-
ability, and in other aspects of service quality.

5) For our purposes, the demand for transportation of commodity j
via any mode is independent of the demand for transportation of commodity
k (k#j) via any mode. Formally, let

3

ij " :
P =p J(xlj’ ij’ Soimiiai ij)’ 1215 ey WM I5ls wews B

where le represents the (inverse) demand for transport of commodity j

via mode i.

In addition, let

Sij = the price corresponding to the (perfectly elastic) supply
curve for mode i in the provision of service j, and

1

Cc = Cl(x X x. 3 factor prices) be the total cost

12 °°*7 T1n

function for mode 1. Factor prices are assumed constant, so reference to
them is supressed throughout the rest of this paper.

Let us assume that there are zero income effects associated with

J

i
the demand functions p -, so that a measure of the gross benefits from

the provision of (x11, sangy Ba_ b X X

58w 4 wawd ¢ W )
212 > T2n’ > ¥m12 ? Xin



is defined by G, where,

*1j *23
n 1j 2j 4
G = ¥ ) p - (w,0, ..., O)dw + p (xlj, w, 0, ..., 0)dw
j=1 w=0 w=0
x
m]j
mj
+ + S P (xlj’ R xm-l,j’ w)dw 3)

wW=0

If consumers seek to maximize G when confronted by a set of prices
(pij), then they would choose xij so that
1]
We can now write a function, T, which measures the sum of consumer
and producer surplus associated with any level of service:

Y
r=¢-¢ -3 3 sty %)

i=2 j=1
We are now ready to examine the nature of a second best operating

point when the regulator is able to select the levels of Xij for all i and
j. We note that the question of second best is of interest, since if the

regulator attempted to reach first best, we would have:

; 1
g’T‘—ij=P1J’g‘§‘ =0, ¥ )
which means that the mode with economies of scale would be earning negative
profits. If the regulator wants to set the levels of xij to maximize effi-
ciency while allowing the mode 1 firm to break even, then formally it would

‘find a solution to the following problem:



T
max T=G - C1 - ¥y 3 Sleij
y i=2 =
(xij’vi,J) i i=1
subject to 3 lele - g > 0 (6)
5=1

Define L as follows, where )\ is the nonnegative Lagrangean associated with

the break even constraint:

e n .
Lo = b %Slei.+)\(zlex1.-Cl) (7)
i=2 j=1 J j=1 2
Among the first order conditions are:
: 1 1j ; 1
Tl L et iR
1j 1j 1j 1j
oL
¥.ow 20 .. S5 507 =1, sy D (8)
1j 1j Bxlj
and
oL M _ g, a—p—ljx <0
ox.. P Max, . X131 %
ij 1]
oL : g
xij > 0, xij S;TT =05 i=2, ...5 m3 G2Ly .05 D 9)
1]
Eq. 8 can be rewritten
1j _ ac’ ptd
axlj¥i aplj
: ; = - 2 5 Bl exy O (10)
1 5x,, 1 1+ e sug
P J le ] A

where the second term on the left hand side is the reciprocal of the quantity

elasticity of demand for x One could think of the expression on the left

1j°

hand side of Eq. 10 as a modified Ramsey number which will be equal for all
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values of j, since - 3/(1#)) does not vary with j.
However, Eq. 10 must also be satisfied, and here we encounter a

15 and xij

potential administrative nightmare. Since the demands for x
(i > 2) are not independent, the term
L
ox,, 1j
1]

is not zero. In fact, as long as x,., and xij are weak gross substitutes

1j
for one another, this term will have a negative sign. [8] Hence, a second
best solution in which xij is positive would occur only when the markets
served by modes 2, ..., m do not clear! Eq. 9 tells us that price would
have to exceed marginal cost in those modes. There are two effects work-
ing against each other which make this property interesting. Heuristically,
there is some loss in efficiency which occurs in the markets served by modes
2, ..., m because price is greater than marginal cost. However, the higher
prices in modes 2, ..., m lead to increased demands (and more consumer sur-
élus) for the services provided by mode 1. Eq. 9 implies that the second
effect exceeds the first.

In principle one could calculate Ramsey numbers for modes 2, ..., m
which would equal the number - }/(l+)) from Eq. 10, although the form of
these numbers is more complex than the modified Ramsey number in that equation.
Using the assumption of zero income effects, by Hotelling's integrability

condition we have that

B _ pH
ox, ., ox. ., ’
ij 1j

¥i,] (11)
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From Eq. 9 and Eq. 11 it follows that

ij_SiJ
Pij
;s . .. 1+)\; i=2,...,m; j=1, ..., n (12)
gle ler- le_SIJ
b < ij ij
15 | p p

The numerator of the left hand side represents the amount by which the price
of xij would exceed marginal cost, stated as a fraction of the price itself.
A similar expression appears in the second term of the denominator. The
first term of the denominator represents the cross elasticity of the inverse
demand pij with respect to the quantity xlj'

The achievement of second best would then require that

(1) Mode 1 earns zero economic profit.

(2) Prices are set so that the modified Ramsey numbers for all modes
in all markets are equal to one another. The modified Ramsey numbers for
mode 1 are defined by Eq. 10, and for all other modes are as shown in Eq. 12.

(3) Since price exceeds marginal cost in the markets served by modes
2, ..., m, the regulator would have to prevent free entry in those markets.

There can be little doubt that the regulatory scheme just outlined
represents an enormous regulatory undertaking. Some might argue that there
is a striking similarity between the outlined program and the actual kind
of regulation we observe in freight transportation presently. After all,
regulators do adjudge the reasonableness of prices (tariffs) for all regu-
lated modes, and in addition control conditions of entry through certificates
required of common carriers wishing to provide service over particular routes.

One could even argue that through a consideration of "value of service" in
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pricing, regulators attempt to require higher tariffs on commodities with
more inelastic demands, and that this is generally consistent with the
guidelines suggested by rules such as those of Eq. 10 and Eq. 12.

However, one would be hard pressed to carry the analogy much further.
It would be an understatement to say that the data requirements for the
outlined program are great. In fact, the information required on the numer-
ous cross elasticities of demand alone is enough to make the outlined pro-
gram quite unwieldy.

Unfortunately, even if we were to commit ourselves to the quest for
second best, we are likely to encounter other difficulties at least as
important as the information requirements. The case of freight transporta-
tion serves well to illustrate this point. Suppose that mode 2 represents
regulated motor carriage, and that a regulator seeks to limit entry in
order to hold price above marginal cost as discussed above. Then the pre-
sence of an unregulated sector of the motor carrier industry, as we have
in this country, may present an overwhelming problem. For example, if prices
are held above marginal costs for regulated carriers, shippers who would
otherwise have used regulated motor carriers will have incentives to buy
their own trucks for the purposes of hauling their own commodities. Such
private haulage is not regulated, and thus could not be prevented by the
regulations applying to common carriers. As a result, although the intent
of regulation is to proscribe entry, the probable effect would simply be to
change the form of entry to circumvent the regulation.

These difficulties lead us to ask if there is not some modified form
of the notion of second best which requires less information on the part
of regulators, and at the same time avoids the kinds of entry control prob-

lems described above for modes where there do not appear to be significant
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technological barriers to entry, such as economies of scale. One rather
interesting candidate for examination would be a regulatory program which
allows the modes without economies of scale (i=2, ..., m) to clear, and
which concentrates on the prices set by the mode with economies of scale.
In terms of administration, regulators would not have to set the n(m-1)
tariffs (or quantities) for the modes without increasing returns to scale,
and in addition would not concern themselves with the thorny problem of
entry control in those modes. The administration of regulation under this
scenario would be much simplified.

There are other reasons why such a program, which we will call
market-clearing second best, might be of interest. In recent years there
has been much debate over the extent to which regulation is actually needed
in freight transport. Since 1930 technological changes have made the trans-
port of freight by motor and water carriers economically viable on a large -
scale. To control the interactions among modes, the hand of regulation has
been extended repeatedly. However, it is sometimes argued that the presence
of viable alternative modes may mean that with less regulation market forces
might work quite well in making many of the resource allocation decisions
now made by regulators. The market-clearing second best characterization
can be considered as one version of partial regulation (or, alternatively,
partial deregulation), since modes without economies of scale are not dir-
ectly regulated.

The information requirements and welfare properties of such a program

will be addressed in the next section.
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III. Market Clearing Second Best

There are two ways one could formalize the concept of market-
clearing second best. First, a set of market-clearing constraints for
modes 2, ..., m could be appended to the problem defined in Eq. 6. [9]
Then the optimal prices (or quantities) for mode 1 could be determined.
The additional constraints would be

pd -sd=0; i=2, ..., m; =1, ..., n (13)

There would be a Lagrange multiplier associated with the break even
constraint ()), and one associated with each market-clearing condition
(uij). Unfortunately, this approach does not easily lend itself to the
derivation of a set of expressions equal across markets and at the same
time avoiding explicit reference to the values of the Lagrange multipliers
» and uij Thus an important advantage of the approach used by Baumol and
Bradford is lost.

Fortunately there is a second method which will lead us to a sur-
prisingly simple result. We proceed by using implicit functions instead
of the set of market clearing conditions. Based on the set of equalities
in Eq. 13, one could express the changes in the quantities xij prpduced by

modes 2, ..., m in reaction to changes in the quantities x1j for mode 1

as follows:

ar =
2j 2] | . ]
3p /axzj ... Jp /bxmj dx2j/dx1j pt /axlj
3j 3] 3j
dp /ax2j . .. dp /axmj dx3j/dx1j -dp /axlj
mj i v s 3pmd :
.ap /axzj P /axmj_ I dx, 5 /dxli. L.apmg /ax”

j=1, ceey N, (14)
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where all terms as are they have been defined previously.
let the first matrix on the left hand side of Eq. 14 be denoted by [BJ],

the second matrix be denoted by [dxij/dxlj] and the matrix on the right

hand side be written as [-Bplj/axlj].

Then

e e ! ij
[dxij/dxlj] = [B”] [-op /axlj]

J = 1y wses B

The market-clearing second best problem can be stated as follows:

T
max T =G - C1 - % by Sleij
(xll,""xln) i=2  j=1
H 9
subject to § lexl. = C1 > 0
=1

)

For brevity,

(15)

(16)

where 3 will be the Lagrange multiplier associated with the break even con-

straint. All of the variables xij (i > 2) are now implicit functions of

xlj' At an optimum of Eq. 16, the first order conditions are found from

the Lagrangian

1 m n _ij n 1j 1
L8¢-c - % zlexij+)\( szxlj-C)
i=2 j=1 j=1
They are [10]
dx, .
oL _ 15 _act + B pligily -
ox.. P T 3x Z (P dx
1j 1j i=2 1j
1j 1 1 dx,.
sl B o o BB R
ox_ . “1j - e, . O .
1j 13 i=2 77ij 1j
at _ . =
xlj Z 0: xlj axlj =0 ’ J-]-J y I
and
oL n 1j 1 oL

17)

(18)



- 16 -

Since plj -s9 =0 by the market-clearing conditions, Eq. 17

simplifies to Eq. 19.

. 1 1j 1j dx,,
| 15_9C - o) m 9 ij

NP7 S5 = 7 My 5£}j- + z gﬁjj T, . 19)
1j 1j i=2 7ij 1j

The key to an easy interpretation of Eq. 19 lies in the meaning of
the term in brackets on the right hand side. From Eq. 15 and Eq., 19 it

follows that

. 1 1j 15 . ij
1 -
afett B [ Rt @]
1j 1j i=2 "7ij 1j I
=1, ssey O (20)

It can be shown that Eq. 20 implies Eq. 21. [11]
1j _ act
P Bxl.

BN o

4 =1, ..., n (21)

where eplj is the own price elasticity (not quantity elasticity) of demand
for service j in mode 1.
The net result of all of this is that in finding efficient prices

for the market-clearing second best problem, the following conditions must

be satisfied:

n 1j 1
1  sTp Jxl. -¢c =0 (22)
= j
i=1
and
cay 1 B !
i §X1' OX
AR 1 [ TR | R |
%Y o (23)

for j=1, ..., n; k=1, ..., n
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The market-clearing second best prices for the case with intermodal

competition are set according to the same rules as the ones developed by
Baumol and Bradford for a multiproduct monopoly. The Ramsey numbers defined
in Eq. 23 depend only on local information on price, marginal cost, and the
price elasticity of demand for the first mode. [12]

Upon reflection, these results do have an intuitive appeal. The
pricing rules of Baumol and Bradford [1970] are conceptually appropriate
when goods or services produced by mode 1 have demands which are independent
of the demands for goods or services produced by other firms. In other
words, the multiproduct firm must monopolize all of its markets. However,
suppose there are other products whose demands interact with the outputs
of mode 1. Then one could describe second best for the whole set of these
products, as we have done earlier. The results say that if one mode has
economics of scale, it may be efficient (second best) to alter the market-
clearing outcomes for other modes, even if those modes serve markets which
are potentially quite competitive.

. ‘V-W“-Thefe are several reasons why a regulator may not even attempt to
specify a program of total regulation leading to second best. Regulators

may perceive the interactions among the demands for products of mode 1 and
other modes to be small, or they may simply be unaware of the interaction.
They may also recognize the potentially very large information and admin-
istrative requirements for such a program, or the difficulties in controlling
entry as effectively as would be required. There may be other reasons for
which regulators may explicitly decide to let the markets clear for those
modes which are essentially competitive. [13] In any ome of these cases

an interesting candidate for efficient pricing becomes market-clearing

second best.
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Suppose that a regulator mistakenly thinks that the multiproduct
firm has a monopoly in its markets. Then it might determine second best
prices by the rules of Baumol and Bradford. However, this is equivalent
to a situation in which the regulator explicitly recognizes the inter-
dependence of mode 1 products with the outputs of other (competitive)
modes, but decides to allow the markets for other modes to clear. Thus,
the connection between market-clearing second best and the rules of
Baumol and Bradford is drawn more clearly.

IV. A Comparison of Welfare Properties

To illustrate the basic properties of several interesting operating
points with intermodal competition, it is useful to consider a special case
for which a graphical exposition is possible. Assume that there are only
two modes, mode 1 with economies of scale (as before), and mode 2 which
lacks scale economies. Only one basic kind of service is provided by each
mode. The service provided by mode 1 is differentiated from the service
of mode 2. However, all firms in mode 2 provide a homogeneous service.

We have retained the assumption of intermodal service differentiation and
intramodal service homogeneity. For the purpose of the illustration, we

will characterize mode 2 as having a supply schedule which may or may not
be perfectly elastic. In other words, the supply schedule can be written

2 2
as S (xz), where S represents the price at which x, units of service would

2

be provided by producers in mode 2. As long as the mode 2 market clears,

we have
2 2
P (xl,xz) - S (xz) =0, (24)
which implies that
2
op_
o 2 @ 25
= 2
axz - x2
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The property that dx2/dx1 < 0 holds when X, and x, are weak gross sub-
stitutes and when the demand for X, is more negatively sloped than the
supply curve. Since X and x, are assumed to be weak gross substitutes
(as throughout this paper), and since mode 2 is assumed not to have in-
creasing returns to scale, the inequality in Eq. 25 is implied. A locus
of points satisfying Eq. 24 is represented in Fig. 1 by the curve AE.
Point A corresponds to the point at which only mode 2 serves the market.
The negative slope of AE follows from Eq. 25.

We may also represent the sum of consumer and producer surplus by.T,

| %a Xy

T = S pl(w,0)dw + S p’ Gxy,w)dw - ¢l - Ssz(w)dw (26)
w=0 w=0 w=0o

As a result, isosurplus curves will have the slope

,
dx2 p- - dx
i s @7
dx1 p2 . S2

Note that along the curve AE the isosurplus curves are vertical, since

2 2
P -S = 0. Also, T increases along AE as X increases up to a level of

1
output at which p° equals the marginal cost of producing x., where T

1
reaches its maximum. Thus, along AE

1
2 2 1
+ (0 - sdxy = [ bt - § Jax (28)
1

1
dT = pl - %ﬁ— dx
1

Q/

1

Let point E represent the level of output at which price equals

marginal cost for mode 1 along AE. Since T is maximized here, E represents
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a first best operating point. The isoprofit curves around E shown in

Fig. 1 will have values such that TE > TD > TC > TB.

1
The profit for Mode 1 can be expressed as [I', where

nt = plex, %) - clexp) (29)

The isoprofit curves for Mode 1 will have the slope

1, 3 act

dx P T3, ~ ox

__Z - . 1 1
dxl a 1 N
axz 1

Since x1 and x, are weak gross substitutes, the sign of the slope will

be positive when the marginal revenue for x, exceeds the marginal cost of

1
X (for levels of output less than the profit maximizing level, given x2),
and negative when the converse is true. The shapes of these isoprofit

curves are shown in Fig. 1. The ordering of the profit levels can be seen

by noting that given any level of x.,, the profit of mode 1 will increase

1’

when X, decreases, i.e.,

1 1
%gé = %ﬁ; x1 < 0 (30)

Let us now put all of this together., Fig. 1 is drawn to reflect the case
in which it is possible for mode 1 to at least break even for some operating
points when the market for X, clears. Suppose both modes were unregulated,
and that mode 1 chooses the highest isoprofit curve it can attain given that
mode 2 will clear. Then this point of no regulation is shown at B.

If a regulator wants to maximize efficiency while allowing mode 2 to

clear and mode 1 to just break even, it would choose point C. Point C thus

represents market-clearing second best as described in Eq. 22 and Eq. 23.
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Figure 1: Mode 1 Could Be Profitable When Mode 2 Clears
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If a regulator chooses to maximize efficiency while allowing mode 1 to
break even, and is willing to undertake the control of quantities (or tariffs)
and entry in mode 2, then it would strive to reach the totally regulated

second best point, D. At D, the isosurplus curve, T_, is tangent to the

D
zero isoprofit curve for mode 1. Since the slope of the isoprofit curve
for mode 1 is not vertical at that point, D must be located below the curve
AE. This points out that at a totally regulated second best solution, the
market for mode 2 will not be clearing, and entry control will be necessary.
The relationships between the isoprofit curves for mode 1 and the
market-clearing locus, AE, could be other than as depicted in Fig. 1. For
example, if mode 1 can not break even at any market clearing price in mode

2, then Fig. 2 is appropriate. There exists no market-clearing second best

(point C in Fig. 1) and no totally unregulated point where mode 1 is profit-

able (such as point B in Fig.l). Mode 1 can only break even (in the absence of a
subsidy) when mode 2 is prevented from clearing its market,. and the most
efficient point of operation where mode 1 breaks even is the second best
point, D.

In between the situations shown in Fig. 1 and Fig. 2 is the one in
which an unregulated mode 1 would just barely be able to breakeven, such
as in Fig. 3. 1If mode 1 could just earn zero profit in this case, then the
market-clearing second best point (C) and totally unregulated point (B)
would coincide. In this case the Ramsey numbers of Eq. 23 would be a minus
one. [14] This suggests that if it is expected that without any regulation
only small economic proftis would be earned by the mode with economies of
scale, then an unregulated system would achieve nearly the same efficiency
;s market-clearing second best, and without incurring the administrative

costs of the latter.
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Figure 2: Mode 1 Earns Negative Profit When Mode 2 Clears

Figure 3: Unregulated Mode 1 Just Breaks Even
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V. Conclusions

This paper has shown how the theory of second best can be extended
from the work of Baumol and Bradford [1970] to a case in which intermodal
competition exists. We have derived rules characterizing second best under
a form of intermodal competition which may resemble what we observe in
freight transportation in this country. There are at least two major pro-
blems which regulators should anticipate if they attempt to reach second
best when all modes are regulated. First, there appears to be a large
amount of information required to use the rules which are derived. Some
of this information may be difficult to obtain, particularly since cross
elasticities of demand are important. Second, the achievement of second
best may involve a departure of prices from marginal cost even for modes
which would be essentially competitive in the absence of regulation. This
means that regulators would have to carefully control conditions of entry
in markets that may not easily lend themselves to such control, such as
with motor carrier freight transportation.

These potential difficulties led to the investigation of a modified
form of second best. This form, called market-clearing second best, does
not require the direct regulation of modes which appear to be essentially
competitive. Prices are specified for a mode with economies of scale, and
these prices are designed to maximize efficiency subject to conditions
which allow that mode to break even, while the modes without increasing
returns to scale are clearing their markets. The rules derived for market-
clearing second best turn out to have the same form as the ones developed
by Baumol and Bradford for the case without intermodal competition. If
total regulation were costless and effective in achieving second best, then

second best under total regulation would be more efficient than market-
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clearing second best. However, if the former is costly to achieve (because
of large information requirements) or is otherwise difficult to reach (for
example, because of the inability to effectively control entry), then
market-clearing second best may become an attractive alternative.

We have compared both of these alternatives to a third one in which
there is no regulation of tariffs or entry on any of the modes. Again, if
regulation is costless and effective, both forms of second best will achieve
greater economic efficiency than the unregulated system, as long as the
mode with economies of scale could earn positive economic profits if it
were not regulated. However, if the level of positive profits attainable
without regulation is near zero, then the efficiency achieved without
regulation may be quite close to that reached under market-clearing second
best. Once again, the information-gathering and administrative costs
associated with partial regulation (market-clearing second best) may be
large relative to the case with no regulation. The qualitative nature of
the tradeoff between administrative costs and attainable efficiency is
clear; however a quantitative determination depends on characteristics
specific to an industry. For the case of freight transport, the quantitative

determination remains for further work.
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Footnotes

In the paper of Baumol and Bradford [1970], the authors asserted that
the form of the utility function being maximized was unspecified.
However, Mohring [1971] demonstrated that the unspecified utility
function actually had the properties of the consumer surplus measure.
For more on this measure, see Willig [1976].

One place (and there are quite probably others) in which modified
Ramsey numbers are derived for a multiproduct firm with increasing
returns to scale and interdependent demands is in Braeutigam [1976].

See the Zajac [1972] paper for some clear examples of this point.

See Pegrum [1973], p. 25.

See Pegrum [1973]. It is noted here that the exclusion of air freight
is made here primarily for simplicity. Many of the arguments developed
later on could be extended to encompass air freight simply by letting
this mode be included as one of the m modes in the model to be developed.

See Pegrum [1973], p. 43.

Moore [1975] suggests the separate regulation of oil pipelines, and
recognizes the natural monopoly characteristics of this mode.

See Katzner [1970], Chapter 3. The definition of weak gross sub-
stitutes implies that the matrix of cross partial derivatives

i3
op d for the inverse demands is an N-P matrix, and that the off-

Oty 5

diagonal elements will be non-positive.

To state the idea completely

qe  wE A
max T = G - C1 - ¥ ¥ Sleij
(x11’°"’ xlj) i=2 j=1
n i 1
subject to 3 Plel‘ -C >0
=1
and le -5t = 05 3=25:5s5 M3 J=l; mssy M

In Eq. 17, the terms dxij/dxlj are equal to the partial derivatives

axijlaxlj since the variables *, 5 ATE implicit functions of only X5



[11] Recall that [BJ] is an (m-1)x(m-1) matrix of the partial derivatives
of the inverse demands for commodity j in modes 2, ..., m. Let us
border [BJ] with the appropriate terms for product j from the inverse
demands of mode 1, and call this new matrix [A7].

. (] . .
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The inverse of [AJ] has as its upper left hand element the

(1)x(1) matrix [Q1]™, where

3 . 3 . ¥ -1
@it = { Wi - ol (5917 vd1T}

-1
1j 1j o ij
w (EBL o 3 O iyt e
X, 5 e "I ox, .
1j i=2 ij 1j

Thus, the price (not quantity) elasticity of demand for x1j is

ST 14
[ e p -

X

€lj = -
P y |
1] [Q ]x1j

From these last two equations, we have that

j R S
Q1 = e " &, v D &Pl &
1j plj 1j i=2 ij 1j

Together, this equation and Eq. 20 from the text imply Eq. 21 in the
text.

[12] The more complicated case in which all commodities transported by all
modes have interdependent demands could be approached in the same way
as for the simpler case developed in this paper, in a manner similar
to the extension of the Baumol-Bradford framework to the case of inter-



[13]

[14]

dependence as described earlier in this paper.

A regulator may also have other equity constraints it wishes to
impose on the system. In principle, these constraints could :be
appended to a model which has as its objective function the maxi-
mization of surplus to find efficient prices given these additional
constraints.

If mode 1 can just break even as it maximizes its profit without
regulation, then under market-clearing second best mode 1 would
effectively have to maximize profit in order to satisfy the break
even constraint. To further develop the point, under deregulation

mode 1 would choose (xll’ T xln) to:

i 1
max nl = % lex ; = C

(xll,...,xln) j=1

At an interior optimum, the first order conditions are of the form:

’ 1 1j 1j  dx,,
13 ocC _ d m Op ij

P7 &, ° iyl * Z o ox,. dx,. ’
1j 1j i=2 "7ij 1j

for j=1,..., n

This equation can be rewritten using the last equation of footnote
11 as

1
13 oc
P~ -5 | € 1; -1
Bxlj le

It now becomes clear that mode 1 prices will be set so that their
deviations from marginal costs will be inversely related to the price
elasticity of demand, for both the unregulated and market-clearing
second best schemes. As the maximum profit achievable by mode 1
without regulation approaches zero, then ) becomes very large at
market-clearing second best. Alternatively, 3/(1+)) - 1 in Eq. 21,
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