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ABSTRACT

The regulation of multiproduct enterprises has created some

difficult problems for regulators, particularly where common costs of

production are present and where entry may be allowed in one or more

of the markets served by the multiproduct firm. This paper concentrates

on aspects of economic efficiency in pricing with multiproduct firms and

intermodal competition. It extends the work of Baumol and Bradford on

efficient pricing with a multiproduct monopoly to the case where inter-

modal competition is present. A set of rules is developed, showing how

second best prices deviate from marginal cost when economies of scale

are present. The paper shows why these rules may be difficult to imple-

ment in some cases, with a direct application to the case of freight

transport, and then suggests a variation in the theory of second best

which may be useful given those difficulties.



 



Introduction

In recent years there has been a growing concern over certain

difficulties encountered in the regulation of multiproduct firms. Among

the major issues has been the problem of pricing. At least three factors

have contributed to the difficulty of the pricing problem in regulated

firms. First, it may be the case that when price is set equal to marginal

cost in each of the markets served by a firm, profits would be negative.

Hence, some deviation of price from marginal cost is required if the firm

is to break even. Second, there may be costs of production which are

shared by two or more services in the production process, so that it is

impossible to assign costs to services in an unambiguous manner. Finally,

there may be other firms participating in some of the markets served by

the multiproduct firm. In such a case pricing policies may affect market

structure, and the two should not be treated independently.

Some of the issues raised where there are shared costs of production

have been addressed by Faulhaber [1972] and Zajac [1972]. These papers

focus on the question of what constitutes a "fair" price for any service

when there are costs of production shared by two or more services. They

analyze the effects of some of the many possible alternative guidelines

which have been suggested to define "fair" prices. For example, it is

sometimes suggested that any price which is no lower than the marginal cost

of providing that service is a fair price for that service. Another possible

definition of a fair price is any one that generates enough revenue to at

least cover all of the costs which can unambiguously be attributed to the

provision of that service. These two definitions are generally considered

as defining lower bounds on fair prices. The papers also suggest possible
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upper bounds on fair prices. For example, one could say that a fair price
is one which does not require a service to generate more revenues than

would be necessary to cover all costs incurred if that service were the

only one being provided. More recently Faulhaber [1975] has proposed an-

other definition of fair prices for a service. Suppose that a firm is pro-

ducing services 1, 2, ..., n in quantities x^, x^, ..., x^, and that the
total cost of producing the services is denoted by C(x^,x2, ..., xr).
Then the price for the i^ service, p^", is fair as long as

P > C(x^,X2, • •.,xi,xi+l' • * • xn) ~ ^(x^,X2,...,x^_^.»0>" "xn^ "

In other words, as long as the i*"*1 service generates revenues which are

large enough to cover the difference in costs caused by the production of

that service, then p1 is a fair price.

Several observations can be made regarding these alternative defini-

tions of fair prices. First, one could view these approaches to pricing as being

based primarily on equity considerations rather than on principles of economic
t

efficiency. In judging whether prices are fair, regulators have historically

tended to allocate shared costs first, and then require that the price charged

for any service generate revenues which cover the portion of shared costs

allocated to that service plus all costs that can be unambiguously attributed

to that service. The rather lengthy proceedings of the Federal Communications

Commission in the Private Line Docket (FCC Docket 18128/18684) and of the

Interstate Commerce Commission(in ICC Docket 34013) address the manner in

which shared costs are to be allocated. Importantly, the prices set as a

result of this process may bear no direct relationship to economic efficiency.

The issues of efficient pricing for a multiproduct firm have been

examined in a classic article by Baumol and Bradford [1970]. Briefly, this
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research resulted in the development of rules for second best pricing in

a firm which would earn negative profits if price were equal to marginal

cost in each market. The pricing rules derived are those which maximize

economic efficiency (as measured by the sum of producer and consumer sur-

plus) subject to a constraint which allows the firm to break even. [1]

Suppose a firm produces n commodities in quantities x,, .... x ,1 n

and, for simplicity, that the demands for the commodities are independent

of one another. Assume also that the cost function for the production

process can be represented by C(x^, x2, ..., xr). Then the second best
prices (p\ p^, pU) are those which satisfy Eq. 1 and Eq. 2.

R1-

i be
P " 5£.

V

j bC i

HEi
L Pj j = R j v. .>J (l)

and,
n

E
i=l

p x. - C = 0,
,1

(2)

til
where gpi represents the price elasticity of demand in the i market.

Eq. 2 represents a condition in which the firm is breaking even

(total revenues equal total cost). Eq. 1 represents the well-known rule

that in each market the amount by which price deviates from marginal cost

is inversely related to the price elasticity of demand. The numbers R1
and R"' are sometimes called Ramsey numbers, based on the work of Frank

Ramsey [1927] which was suggestive of the work that Baumol and Bradford

later performed. The theory has been extended to cover the case in which

the demands are interdependent, resulting in a slightly more complicated
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form for the Ramsey numbers. [2] The basic idea remains unchanged in

characterizing second best, namely, the Ramsey numbers are equal in all

markets and the firm is earning zero profits.

It is important to note that prices which satisfy Eq. (1) and

Eq. (2) generally may not satisfy all of the possible definitions of

"fair" prices examined by Zajac and Faulhaber. [3] There is an essential

difference between the approaches to pricing taken by regulators and by

Baumol and Bradford. Regulators tend to allocate shared costs first, and

then judge prices based on that allocation as described above. In the

work of Baumol and Bradford, efficient prices are based on marginal cost

and conditions of demand. No prior allocation of shared costs is required.

(It is possible to determine how shared costs should be allocated in order

to reach second best once the efficient prices have been found, but the

allocation is done ex post instead of ex ante.)

One of the important gaps which has not been filled by the theory

of second best is its extension to the case of intermodal competition. As

developed by Baumol and Bradford, it applies only to a firm which has a

monopoly in each of its markets. Several questions may be posed in this

connection. Is the notion of Ramsey numbers useful with intermodal com-

petition? If so, what do the Ramsey numbers look like? What particular

kinds of difficulties might be expected in an application of the theory,

and what modifications in the notion of second best may be of interest

as a result of this line of investigation? We address these questions

beginning with the next section, using the regulation of surface freight

transportation to facilitate the development.

II. Second Best and Intermodal Competition

The regulation of surface freight transportation has posed per-
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plexing problems for the Interstate Commerce Commission, in large part

because of the growth of competition among the various modes of transport,

especially since about 1930. Since the regulation of freight transport

provides a convenient framework within which to discuss the concept of

second best, a brief discussion of some of the economic characteristics

of freight carriers will precede the theoretical development.

Modes of transport have often been placed in two categories on the basis

of economic traits. According to Pegrum, "railroads and pipelines have

the basic economic characteristics of public utilities and are what econo-

mists call natural monopolies; motor, water, and air transport exhibit

the features of competitive industries." [4] Freight transportation in

this country has certain distinctive features which lead us to concentrate

on the interactions among rail, motor, and water carriers. First, air

carriers primarily provide passenger service. Freight movement generates

only about one percent of air transport revenues, which represents a very

small amount compared with the freight activity of other modes. [5] Second,

pipelines "constitute a highly specialized form of transportation for the

movement of products in liquid or gaseous form." [6] Because of this special

nature of the service they provide and their apparent economies of scale,

the regulation of oil and gas pipelines could be treated separately, under

the jurisdiction of either the Interstate Commerce Commission or the

Federal Power Commission. [7].

The remaining three modes employ greatly differing technologies to

provide services which can be viewed as imperfect substitutes for one

another. It should be noted that the issue of economies of scale in rail-

roads is not a closed matter. Several empirical studies have been made to
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test for the existence of economies of scale, with results that have

generally been mixed. For example, Klein [1953] used 1936 data to find

statistically significant, though modest economies of scale. However,

studies by Borts [1950] and Griliches [1972] have concluded that even if

scale economies are present for smaller railroads, they are not prevalent

in the larger ones.

It is not the purpose of this paper to critique these empirical

studies. Rather, the intent is to examine how second best prices might

be set if one of the modes has scale economies (and railroads appear to be

the most likely candidate) and the other modes (water and motor) do not.

If none of these modes has increasing returns to scale, the basis for any

regulation at all should be examined. If any of the modes do have scale

economies, then the questions addressed in this paper are appropriate

ones to examine.

We now construct a model of intermodal competition using the follow-

ing assumptions:

1) There are m modes which provide transport services between two

points. Only one of these modes ( mode 1) is characterized by economies

of scale. In other words, if the services provided by mode 1 were all

priced at marginal cost, the profits for the firm would be negative.

2) There are many suppliers of transport service in each of the

other modes, so that each of the modes 2, ..., m is essentially competitive.

It is assumed that with free entry the supply of transport services in each

of these modes is perfectly elastic.

3) Each mode may transport any or all of n commodities. Let

i = a modal index, i = 1, ..., m
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j = a commodity index, j = i, .. ., n

x_ = the amount of commodity j transported by mode i.

4) All carriers of mode i provide identical service in the transport

of commodity j. Restated, this means that there is intramodal homogeneity

in the carriage of a particular commodity.

5) There is intermodal service differentiation. In transporting

commodity j, carriers of one mode will provide service which differs from

the service of carriers of other modes. This recognizes that motor carriers,

water carriers, and railroads may differ in the speed of transport, reli-

ability, and in other aspects of service quality.

5) For our purposes, the demand for transportation of commodity j

via any mode is independent of the demand for transportation of commodity

k (k.^j) via any mode. Formally, let

plj = plj(xlj, x2., ..., x ), i=l, ..., m; j=l, ..., n

where p1"' represents the (inverse) demand for transport of commodity j

via mode i.

In addition, let

S1^ = the price corresponding to the (perfectly elastic) supply

curve for mode i in the provision of service j, and

= C^(x^, •••) xin' factor prices) be the total cost
function for mode 1. Factor prices are assumed constant, so reference to

them is supressed throughout the rest of this paper.

Let us assume that there are zero income effects associated with

the demand functions p1J, so that a measure of the gross benefits from

the provision of (x] ^, ..., x^; x?1, ..., x?n; ...; x^, ..., x^)
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is defined by G, where,

Xlj 2j
n

G = £
j=l I w=o

^ p1"' (w, 0, ..., 0)dw + ^ p2j(x..., w, 0, 0)dw
w=o

mj

+•••■ + 5 pmJ(xij' •••> Vi,j' w)dw^w=o J
(3)

If consumers seek to maximize G when confronted by a set of prices

(p ), then they would choose x„ so that

Sg
= P1J

1J

We can now write a function, T, which measures the sum of consumer

and producer surplus associated with any level of service:

1 m n ii
T = G - C - £ £ S Jx..

i=2 j=l ij
(4)

We are now ready to examine the nature of a second best operating

point when the regulator is able to select the levels of x_ for all i and

j. We note that the question of second best is of interest, since if the

regulator attempted to reach first best, we would have:

ST lj Sc
Sx.. P " Sx,

= 0, (5)
ij lj

which means that the mode with economies of scale would be earning negative

profits. If the regulator wants to set the levels of x^ to maximize effi-
ciency while allowing the mode 1 firm to break even, then formally it would

find a solution to the following problem:
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1 m n j*
max T-G-C - £ £ S Jx..

(x,.,V. .) i=2 j=l 1Jij i,J

subject to £ P^x.. . - C* > 0
j=l J

(6)

Define L as follows, where X is the nonnegative Lagrangean associated with

the break even constraint:

L=G-C1-£ £ sl^xii + S P1^,. - C1)
i=2 j=l 1J j=l iJ

(7)

Among the first order conditions are:

dL
dx, .lj

and

dL
dx. .

ij

ij dC , ,

p STT + H
Ij

'^± x + ij . sci.
dx,. xu p aXl.

<

dL
x, . > 0, x, . ^ =0; j = 1,lj - lj dx^

P13 - slJ + x
dpiJ
dx.. Xlj

J

< o,

(8)

dL
x. . > 0, x. .

IJ - IJ ox..
IJ

= 0; i=2, ..m; j=l, (9)

Eq. 8 can be rewritten

lj dC^
dx

11

lj

dplj
Sxn X!j 1+X

; j=i, (10)

where the second term on the left hand side is the reciprocal of the quantity

elasticity of demand for x,^. One could think of the expression on the left
hand side of Eq. 10 as a modified Ramsey number which will be equal for all
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values of j, since - \/(l+\) does not vary with j.

However, Eq. 10 must also be satisfied, and here we encounter a

potential administrative nightmare. Since the demands for and x„

(i > 2) are not independent, the term

s»1J
* §r:xij

ij

is not zero. In fact, as long as x„. and x.. are weak gross substitutes
lj ij

for one another, this term will have a negative sign. [8] Hence, a second

best solution in which x.. is positive would occur only when the markets
ij

served by modes 2, ..., m do not clear! Eq. 9 tells us that price would

have to exceed marginal cost in those modes. There are two effects work-

ing against each other which make this property interesting. Heuristically,

there is some loss in efficiency which occurs in the markets served by modes

2, ..., m because price is greater than marginal cost. However, the higher

prices in modes 2, ..., m lead to increased demands (and more consumer sur-

plus) for the services provided by mode 1. Eq. 9 implies that the second

effect exceeds the first.

In principle one could calculate Ramsey numbers for modes 2, ..., m

which would equal the number - \/(l+\) from Eq. 10, although the form of

these numbers is more complex than the modified Ramsey number in that equation.

Using the assumption of zero income effects, by Hotelling's integrability

condition we have that

= Vi'j (ll>
ij ij
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From Eq. 9 and Eq. 11 it follows that

Pij-slj
Pij

x-■ 1J oXJ
1+x '

_li p"J-sJ
S*1J I plj " piJ

i=2,. . .,m; j=l, .. ., n (12)

The numerator of the left hand side represents the amount by which the price

of would exceed marginal cost, stated as a fraction of the price itself.

A similar expression appears in the second term of the denominator. The

first term of the denominator represents the cross elasticity of the inverse

demand p with respect to the quantity Xjj •
The achievement of second best would then require that

(1) Mode 1 earns zero economic profit.

(2) Prices are set so that the modified Ramsey numbers for all modes

in all markets are equal to one another. The modified Ramsey numbers for

mode 1 are defined by Eq. 10, and for all other modes are as shown in Eq. 12.

(3) Since price exceeds marginal cost in the markets served by modes

2, ..., m, the regulator would have to prevent free entry in those markets.

There can be little doubt that the regulatory scheme just outlined

represents an enormous regulatory undertaking. Some might argue that there

is a striking similarity between the outlined program and the actual kind

of regulation we observe in freight transportation presently. After all,

regulators do adjudge the reasonableness of prices (tariffs) for all regu-

lated modes, and in addition control conditions of entry through certificates

required of common carriers wishing to provide service over particular routes.

One could even argue that through a consideration of "value of service" in
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pricing, regulators attempt to require higher tariffs on commodities with

more inelastic demands, and that this is generally consistent with the

guidelines suggested by rules such as those of Eq. 10 and Eq. 12.

However, one would be hard pressed to carry the analogy much further.

It would be an understatement to say that the data requirements for the

outlined program are great. In fact, the information required on the numer-

ous cross elasticities of demand alone is enough to make the outlined pro-

gram quite unwieldy.

Unfortunately, even if we were to commit ourselves to the quest for

second best, we are likely to encounter other difficulties at least as

important as the information requirements. The case of freight transporta-

tion serves well to illustrate this point. Suppose that mode 2 represents

regulated motor carriage, and that a regulator seeks to limit entry in

order to hold price above marginal cost as discussed above. Then the pre-

sence of an unregulated sector of the motor carrier industry, as we have

in this country, may present an overwhelming problem. For example, if prices

are held above marginal costs for regulated carriers, shippers who would

otherwise have used regulated motor carriers will have incentives to buy

their own trucks for the purposes of hauling their own commodities. Such

private haulage is not regulated, and thus could not be prevented by the

regulations applying to common carriers. As a result, although the intent

of regulation is to proscribe entry, the probable effect would simply be to

change the form of entry to circumvent the regulation.

These difficulties lead us to ask if there is not some modified form

of the notion of second best which requires less information on the part

of regulators, and at the same time avoids the kinds of entry control prob-

lems described above for modes where there do not appear to be significant
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technological barriers to entry, such as economies of scale. One rather

interesting candidate for examination would be a regulatory program which

allows the modes without economies of scale (i=2, ..., m) to clear, and

which concentrates on the prices set by the mode with economies of scale.

In terms of administration, regulators would not have to set the n(m-l)

tariffs (or quantities) for the modes without increasing returns to scale,

and in addition would not concern themselves with the thorny problem of

entry control in those modes. The administration of regulation under this

scenario would be much simplified.

There are other reasons why such a program, which we will call

market-clearing second best, might be of interest. In recent years there

has been much debate over the extent to which regulation is actually needed

in freight transport. Since 1930 technological changes have made the trans-

port of freight by motor and water carriers economically viable on a large

scale. To control the interactions among modes, the hand of regulation has

been extended repeatedly. However, it is sometimes argued that the presence

of viable alternative modes may mean that with less regulation market forces

might work quite well in making many of the resource allocation decisions

now made by regulators. The market-clearing second best characterization

can be considered as one version of partial regulation (or, alternatively,

partial deregulation), since modes without economies of scale are not dir-

ectly regulated.

The information requirements and welfare properties of such a program

will be addressed in the next section.
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III. Market Clearing Second Best

There are two ways one could formalize the concept of market-

clearing second best. First, a set of market-clearing constraints for

modes 2, ..., m could be appended to the problem defined in Eq. 6. [9]

Then the optimal prices (or quantities) for mode' 1 could be determined.

The additional constraints would be

p1J - S1J = 0; i=2, ..., m; j= 1, (13)

There would be a Lagrange multiplier associated with the break even

constraint (\), and one associated with each market-clearing condition

(p1 )• Unfortunately, this approach does not easily lend itself to the

derivation of a set of expressions equal across markets and at the same

time avoiding explicit reference to the values of the Lagrange multipliers

\ and jj,1-1 . Thus an important advantage of the approach used by Baumol and
Bradford is lost.

Fortunately there is a second method which will lead us to a sur-

prisingly simple result. We proceed by using implicit functions instead

of the set of market clearing conditions. Based on the set of equalities

in Eq. 13, one could express the changes in the quantities x.. produced by

modes 2, ..., m in reaction to changes in the quantities x^ for mode 1
as follows:

dp^/dx^

dp3j/dx2.

Sp2^/Sx .

mj

. . . Sp^/dx
mj

dpm3/dx2j 5>pmj/ci

dx2j/dxlj

dx . /dx .

3 J lj

«Uj L dVi/dxUj
J — lj • • • p n,

1
-dp^/dx^
-dp^/dx^

-Dproj/Bx^j
(14)
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where all terms as are they have been defined previously. For brevity,

let the first matrix on the left hand side of Eq. 14 be denoted by [BJ],
the second matrix be denoted by [dx /dx^] and the matrix on the right
hand side be written as [-Bp1J/cix^ ].
Then

[dXij/dxlj] = (15>

j = 1, . . ., n

The market-clearing second best problem can be stated as follows:

1 m n ii
max T = G - C £ E S Jx..

(xll,"'',Xln) i=2 j=1 1J
n 11 1 *\

subject to £ p Jx1 . - C > 0 v.i°l
J-l 3

where \ will be the Lagrange multiplier associated with the break even con-

straint. All of the variables x (i > 2) are now implicit functions of

x^j. At an optimum of Eq. 16, the first order conditions are found from
the Lagrangian

A 1 m n i 1 ni-i 1
L = G - C - £ £ S Jx + \ ( E P x - C )

i=2 j=l 1J j=l 13
They are [10]

, dx. .

sr:-'11 -S7: -lj lj i=2 lj

+ \

8xij " S*lj i=2 ij d,tlJ «
< 0

and

xij ^0; xij §^T = 0 ; j=1' - n (17)

= ^pljXlj - C1 > 0; X>0;x^=0 (18)



- 16 -

Since p - S1J = 0 by the market-clearing conditions, Eq. 17

simplifies to Eq. 19.

(1+X) / ij = -

lj

m dx,

SXlj
d£_+ .E9 5x77 dx1=2 ij lj

(19)

The key to an easy interpretation of Eq. 19 lies in the meaning of

the term in brackets on the right hand side. From Eq. 15 and Eq., 19 it

follows that

d+x)|plj - |^7)= - xxL.
cLe.

lj

5x..
lj i=2 —ij

j = 1, ..., n

It can be shown that Eq. 20 implies Eq. 21. [11]

v call rEJ,-i SniiE ax.. [B ]

ij ac1
p ■ STT

Li
ij eij

= -

l+X ; j=l, ..., n

(20)

(21)

where €plj Is t'ie own price elasticity (not quantity elasticity) of demand
for service j in mode 1.

The net result of all of this is that in finding efficient prices

for the market-clearing second best problem, the following conditions must

be satisfied:

and

(2)

(1)

lj

n lj
Z P x

j=l
lj

- C =0 (22)

Sc
dx

lj
1±

r ik
p

Vj ■

5cJ
Bx

lk
lk yk (23)

for j=l, ..., n; k=l, ..., n
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The market-clearing second best prices for the case with intermodal

competition are set according to the same rules as the ones developed by

Baumol and Bradford for a multiproduct monopoly. The Ramsey numbers defined

in Eq. 23 depend only on local information on price, marginal cost, and the

price elasticity of demand for the first mode. [12]

Upon reflection, these results do have an intuitive appeal. The

pricing rules of Baumol and Bradford [1970] are conceptually appropriate

when goods or services produced by mode 1 have demands which are independent

of the demands for goods or services produced by other firms. In other

words, the multiproduct firm must monopolize all of its markets. However,

suppose there are other products whose demands interact with the outputs

of mode 1. Then one could describe second best for the whole set of these

products, as we have done earlier. The results say that if one mode has

economics of scale, it may be efficient (second best) to alter the market-

clearing outcomes for other modes, even if those modes serve markets which

are potentially quite competitive.

There are several reasons why a regulator may not even attempt to

specify a program of total regulation leading to second best. Regulators

may perceive the interactions among the demands for products of mode 1 and

other modes to be small, or they may simply be unaware of the interaction.

They may also recognize the potentially very large information and admin-

istrative requirements for such a program, or the difficulties in controlling

entry as effectively as would be required. There may be other reasons for

which regulators may explicitly decide to let the markets clear for those

modes which are essentially competitive. [13] In any one of these cases

an interesting candidate for efficient pricing becomes market-clearing

second best.
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Suppose that a regulator mistakenly thinks that the multiproduct

firm has a monopoly in its markets. Then it might determine second best

prices by the rules of Baumol and Bradford. However, this is equivalent

to a situation in which the regulator explicitly recognizes the inter-

dependence of mode 1 products with the outputs of other (competitive)

modes, but decides to allow the markets for other modes to clear. Thus,

the connection between market-clearing second best and the rules of

Baumol and Bradford is drawn more clearly.

IV. A Comparison of Welfare Properties

To illustrate the basic properties of several interesting operating

points with intermodal competition, it is useful to consider a special case

for which a graphical exposition is possible. Assume that there are only

two modes, mode 1 with economies of scale (as before), and mode 2 which

lacks scale economies. Only one basic kind of service is provided by each

mode. The service provided by mode 1 is differentiated from the service

of mode 2. However, all firms in mode 2 provide a homogeneous service.

We have retained the assumption of intermodal service differentiation and

intramodal service homogeneity. For the purpose of the illustration, we

will characterize mode 2 as having a supply schedule which may or may not

be perfectly elastic. In other words, the supply schedule can be written
2 2

as S , where S represents the price at which x^ units of service would
be provided by producers in mode 2. As long as the mode 2 market clears,

we have

(24)

which implies that

dx

dx,2

1

dx2 dx2
(25)
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The property that dx2/dx^ < 0 holds when x^ and x^ are weak gross sub-
stitutes and when the demand for X2 is more negatively sloped than the
supply curve. Since x^ and x^ are assumed to be weak gross substitutes
(as throughout this paper), and since mode 2 is assumed not to have in-

creasing returns to scale, the inequality in Eq. 25 is implied. A locus

of points satisfying Eq. 24 is represented in Fig. 1 by the curve AE.

Point A corresponds to the point at which only mode 2 serves the market.

The negative slope of AE follows from Eq. 25.

We may also represent the sum of consumer and producer surplus by T,

c1 c2 *2
T = J p1(w,0)dw + ^ p2(x1,w)dw - C1(x1) - ^ S2(w)dw (26)

w=o w=o w=o

As a result, isosurplus curves will have the slope

I
dx. p - dx.

^ "" T-^
Note that along the curve AE the isosurplus curves are vertical, since

2 2
p - S =0. Also, T increases along AE as x^ increases up to a level of
output at which p* equals the marginal cost of producing x^, where T
reaches its maximum. Thus, along AE

dT= lpl " l^]dxl+ (p2 " s2)dx2 = ( pl " dx1 (28)

Let point E represent the level of output at which price equals

marginal cost for mode 1 along AE. Since T is maximized here, E represents
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a first best operating point. The isoprofit curves around E shown in

Fig. 1 will have values such that T > T > T > T .ill U Kj d

The profit for Mode 1 can be expressed as II''", where

II1 = p1(x1, x2) - C1(x1) (29)
The isoprofit curves for Mode 1 will have the slope

1
. Sp1 Sc1> +

dx2 chc^ Sx^
5^ / a -1*

5X2 X1

Since x^ and x2 are weak gross substitutes, the sign of the slope will
be positive when the marginal revenue for x^ exceeds the marginal cost of
x^ (for levels of output less than the profit maximizing level, given x2),
and negative when the converse is true. The shapes of these isoprofit

curves are shown in Fig. 1. The ordering of the profit levels can be seen

by noting that given any level of x^, the profit of mode 1 will increase
when x2 decreases, i.e.,

s,1" i^xi< 0 <3°>
Let us now put all of this together. Fig. 1 is drawn to reflect the case

in which it is possible for mode 1 to at least break even for some operating

points when the market for x2 clears. Suppose both modes were unregulated,
and that mode 1 chooses the highest isoprofit curve it can attain given that

mode 2 will clear. Then this point of no regulation is shown at B.

If a regulator wants to maximize efficiency while allowing mode 2 to

clear and mode 1 to just break even, it would choose point C. Point C thus

represents market-clearing second best as described in Eq. 22 and Eq. 23.
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Figure 1: Mode 1 Could Be Profitable When Mode 2 Clears
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If a regulator chooses to maximize efficiency while allowing mode 1 to

breakeven, and is willing to undertake the control of quantities (or tariffs)

and entry in mode 2, then it would strive to reach the totally regulated

second best point, D. At D, the isosurplus curve, Tp, is tangent to the
zero isoprofit curve for mode 1. Since the slope of the isoprofit curve

for mode 1 is not vertical at that point, D must be located below the curve

AE. This points out that at a totally regulated second best solution, the

market for mode 2 will not be clearing, and entry control will be necessary.

The relationships between the isoprofit curves for mode 1 and the

market-clearing locus, AE, could be other than as depicted in Fig. 1. For

example, if mode 1 can not break even at any market clearing price in mode

2, then Fig. 2 is appropriate. There exists no market-clearing second best

(point C in Fig. 1) and no totally unregulated point where mode 1 is profit-

able (such as point B in Fig.l). Mode 1 can only break even (in the absence of a

subsidy) when mode 2 is prevented from clearing its market,, and the most

efficient point of operation where mode 1 breaks even is the second best

point, D.

In between the situations shown in Fig. 1 and Fig. 2 is the one in

which an unregulated mode 1 would just barely be able to breakeven, such

as in Fig. 3. If mode 1 could just earn zero profit in this case, then the

market-clearing second best point (C) and totally unregulated point (B)

would coincide. In this case the Ramsey numbers of Eq. 23 would be a minus

one. [14] This suggests that if it is expected that without any regulation

only small economic proftis would be earned by the mode with economies of

scale, then an unregulated system would achieve nearly the same efficiency

as market-clearing second best, and without incurring the administrative

costs of the latter.
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V. Conelusions

This paper has shown how the theory of second best can be extended

from the work of Baumol and Bradford [1970] to a case in which intermodal

competition exists. We have derived rules characterizing second best under
a form of intermodal competition which may resemble what we observe in

freight transportation in this country. There are at least two major pro-

blems which regulators should anticipate if they attempt to reach second

best when all modes are regulated. First, there appears to be a large

amount of information required to use the rules which are derived. Some

of this information may be difficult to obtain, particularly since cross

elasticities of demand are important. Second, the achievement of second

best may involve a departure of prices from marginal cost even for modes

which would be essentially competitive in the absence of regulation. This

means that regulators would have to carefully control conditions of entry

in markets that may not easily lend themselves to such control, such as

with motor carrier freight transportation.

These potential difficulties led to the investigation of a modified

form of second best. This form, called market-clearing second best, does

not require the direct regulation of modes which appear to be essentially

competitive. Prices are specified for a mode with economies of scale, and

these prices are designed to maximize efficiency subject to conditions

which allow that mode to break even, while the modes without increasing

returns to scale are clearing their markets. The rules derived for market-

clearing second best turn out to have the same form as the ones developed

by Baumol and Bradford for the case without intermodal competition. If

total regulation were costless and effective in achieving second best, then

second best under total regulation would be more efficient than market-
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clearing second best. However, if the former is costly to achieve (because

of large information requirements) or is otherwise difficult to reach (for

example, because of the inability to effectively control entry), then

market-clearing second best may become an attractive alternative.

We have compared both of these alternatives to a third one in which

there is no regulation of tariffs or entry on any of the modes. Again, if

regulation is costless and effective, both forms of second best will achieve

greater economic efficiency than the unregulated system, as long as the

mode with economies of scale could earn positive economic profits if it

were not regulated. However, if the level of positive profits attainable

without regulation is near zero, then the efficiency achieved without

regulation may be quite close to that reached under market-clearing second

best. Once again, the information-gathering and administrative costs

associated with partial regulation (market-clearing second best) may be

large relative to the case with no regulation. The qualitative nature of

the tradeoff between administrative costs and attainable efficiency is

clear; however a quantitative determination depends on characteristics

specific to an industry. For the case of freight transport, the quantitative

determination remains for further work.



 



Footnotes

[1] In the paper of Baumol and Bradford [1970], the authors asserted that
the form of the utility function being maximized was unspecified.
However, Mohring [1971] demonstrated that the unspecified utility
function actually had the properties of the consumer surplus measure.
For more on this measure, see Willig [1976].

[2] One place (and there are quite probably others) in which modified
Ramsey numbers are derived for a multiproduct firm with increasing
returns to scale and interdependent demands is in Braeutigam [1976].

[3] See the Zajac [1972] paper for some clear examples of this point.

[4] See Pegrum [1973], p. 25.

[5] See Pegrum [1973]. It is noted here that the exclusion of air freight
is made here primarily for simplicity. Many of the arguments developed
later on could be extended to encompass air freight simply by letting
this mode be included as one of the m modes in the model to be developed.

[6] See Pegrum [1973], p. 43.

[7] Moore [1975] suggests the separate regulation of oil pipelines, and
recognizes the natural monopoly characteristics of this mode.

[8] See Katzner [1970], Chapter 3. The definition of weak gross sub-
stitutes implies that the matrix of cross partial derivatives

i£_ij for the inverse demands is an N-P matrix, and that the off-

^*kj
diagonal elements will be non-positive.

[9] To state the idea completely

1 m n ii
max T = G - C - £ £ SiJx. .

(xn,..., xlj) i=2 j=l 1J
nli 1

subject to £ p x . - C >0
j=l 3

and p1J - S1"1 = 0; i=2, ..., m; j=l, ..., n

[10] In Eq. 17, the terms dx /dx^ are equal to the partial derivatives
c)x../Sx.. since the variables x.. are implicit functions of only x...

ij lj iJ lj



[11] Recall that [BJ] is an (m-l)x(m-l) matrix of the partial derivatives
of the inverse demands for commodity j in modes 2, ..m. Let us
border [B"'] with the appropriate terms for product j from the inverse
demands of mode 1, and call this new matrix [A-* ].

Sx, .lj Sx2j
. .

5̂x .

mj

[A3] & ox. .

lj

3p2j
5X2.

. . sP23
Bx .

mj

■&Tlj
aPmj .

&x2.
. . Spmj

Sx .

mJ

[Wj] .[Vj]

[Vj]T '[Bj]
I

The inverse of [A ] has as its upper left hand element the

(l)x(l) matrix [Q^] \ where

[Q- 'r1 = {twj ] - [VJ] [Bj]_1[vj]T}
-1

r
m t?^ iBh"1 is

klj
e £>x..

1=2 ij
Bx- .

lj

-1

Thus, the price (not quantity) elasticity of demand for x^ is

V3 "
mJi 'V3

Xlj

lj

[QJ]x.

From these last two equations, we have that

[Q ] =

lj cipii + ?} r BJ i-1
Sxij A Sxij 8xij

Together, this equation and Eq. 20 from the text imply Eq. 21 in the
text.

[12] The more complicated case in which all commodities transported by all
modes have interdependent demands could be approached in the same way
as for the simpler case developed in this paper, in a manner similar
to the extension of the Baumol-Bradford framework to the case of inter-



dependence as described earlier in this paper.

[13] A regulator may also have other equity constraints it wishes to
impose on the system. In principle, these constraints could be
appended to a model which has as its objective function the maxi-
mization of surplus to find efficient prices given these additional
constraints.

[14] If mode 1 can just break even as it maximizes its profit without
regulation, then under market-clearing second best mode 1 would
effectively have to maximize profit in order to satisfy the break
even constraint. To further develop the point, under deregulation
mode 1 would choose (x,,, ..., x ) to:11 ' In

1 n lj 1
max n = E P x " C

(xn, ...,xln) j=l

At an interior optimum, the first order conditions are of the form:

lj dC
dx, .lj

-X, 1^-

This equation can
11 as

for j = 1, . . ., n

be rewritten using the last equation of footnote

lj ^
dx, .lj lj

It now becomes clear that mode 1 prices will be set so that their
deviations from marginal costs will be inversely related to the price
elasticity of demand, for both the unregulated and market-clearing
second best schemes. As the maximum profit achievable by mode 1
without regulation approaches zero, then \ becomes very large at
market-clearing second best. Alternatively, \/(l+\) - 1 in Eq. 21.
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