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ABSTRACT

Essays on the Science of Science and Innovation

Yian Yin

The increasing availability of large-scale scholarly datasets offers an unprecedented

opportunity to understand the fundamental predictability, uncertainty, and dynamics of

science and innovation. In this dissertation, I present some of my contributions to the

science of science and innovation in three distinct but related settings, through a combi-

nation of canonical social science theories, large-scale datasets of science and technology,

and mathematical modeling tools. First, I study the quantitative patterns of repeated

attempts by NIH investigators, business innovators, and terrorist organizations to build

a simple mechanistic model of failure dynamics. The model highlights a novel phase

transition that separates failure dynamics into regions of stagnation or progression, pre-

dicting that near a tipping point, agents who share similar characteristics and learning

strategies may experience fundamentally different outcomes following failures. The model

further makes several empirically testable predictions about the failure dynamics, all of

which are systematically verified across all three datasets. Second, I use COVID-19 as an
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example to study how policy and science respond to global emergencies. I find close co-

evolution between COVID-19-related science and policy, where many policy documents in

the COVID-19 pandemic substantially access recent, peer-reviewed, and high-impact sci-

ence, and policy documents that cite science are especially highly cited within the policy

domain. Yet at the same time, there is heterogeneity across policy-making institutions,

where the tendency for policy documents to cite science appears mostly concentrated

within intergovernmental organizations and much less so in national governments. Lastly,

I study the public use and funding of science, by linking tens of millions of scientific publi-

cations from all scientific fields to their upstream funding support and downstream public

uses across three public domains—government documents, news media, and marketplace

invention. I find public uses of science present a rich landscape of specialized consump-

tion, yet, collectively, what the public uses and what scientists themselves use are closely

consistent, and the funding of science closely tracks quantifiable public use, highlighting

a remarkable alignment between scientific use, public use and funding.



5

Acknowledgements

I would like to express my deep gratitude to my advisor, Prof. Dashun Wang, for

accepting me into his lab, offering me with his endless support, and helping me to grow

both professionally and personally. Dashun is not only a perfect mentor who has offered

me numerous guidance and opportunities for my research and career, but also a perfect

role model who I can always look up to. I have learned so much from his enthusiasm,

ambition, optimism, vision, and diligence, and feel so fortunate to have him as my advisor

along this amazing journey. I am also grateful for my co-advisor, Prof. Noshir Contractor,

for his insightful advice and suggestions since the first day of my graduate school. He is

always willing to offer his help generously whenever needed, teaching me how to become

an independent scholar. I would also like to thank Prof. Jorge Nocedal for serving on

my prospectus and thesis committees. I have benefited from many exciting conversations

with him.

The dissertation would not be possible without many wonderful collaborations with

my coauthors and collaborators: Jichao Li, Santo Fortunato, Yang Wang, James Evans,

Jian Gao, Ben Jones, Yuxiao Dong, Kuansan Wang, Kyle Myers, Wei Yang Tham, Karim

Lakhani, Nina Cohodes, Jerry Thursby, Marie Thursby, Peter Schiffer, Joseph Walsh,

Ryan Hill, and Carolyn Stein. I would especially thank James Evans and Ben Jones.

They have taught me how to think like a social scientist and offered immense support

in my career growth. Yang has provided a lot of help when I first joined the group.



6

All three studies presented in this work have improved tremendously thanks to external

reviewers during the journal submission process, including Henry Sauermann, Shlomo

Havlin, Carolin Haeussler, Paula Stephan, and many other anonymous ones.

I am proud to be a member of Northwestern Institute on Complex Systems and Kellogg

Center for Science of Science and Innovation. I am grateful for the many past and current

members of the family, especially Prof. Brian Uzzi, Prof. Hyejin Youn, Prof. Adam

Pah, Ching Jin, Lu Liu, Zhongyang He, Wooseong Jo, Suman Maity, Nima Dehmamy,

Yi Bu, Meijun Liu, Giorgio Tripodi, Minsu Park, Kariyushi Rao, Zander Furnas, Diego
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CHAPTER 1

Introduction

The recent explosion of large-scale datasets in science and technology has offered an

unprecedented opportunity to capture the entirety of scientific enterprise at a level of

scale and detail that was previously unimaginable [1, 2]. This increasing availability of

scholarly big data has further given rise to the emergence of the science of science and

innovation, an interdisciplinary paradigm that leverages computational tools in complex

systems and artificial intelligence to understand the precursors of impactful science and

innovation. Building on canonical large-scale datasets such as Web of Science and Sco-

pus, recent advances in this area has yielded a rich set of highly reproducible patterns

underlying knowledge, careers, and collaboration, ranging from novel discoveries to scien-

tific disciplines, from individual careers to team assemblies to environmental effects, from

innovation policy to hiring and promotion to the assignment of prizes.

At the same time, the bulk of current research mostly builds on publication and

citation databases, focusing on the ecosystem of scientific publications that got published.

Yet science functions as a multidimensional complex adaptive system that extends beyond

the published papers themselves. For example, while the existing insights from papers

that got published are mostly limited to ideas, individuals, or teams that have succeeded in

the first place, most innovations fail, sometimes in a speculative manner. This highlights

one critical missing chapter in the field – failures. Indeed, given the widespread risk

and uncertainty in scientific discoveries and technological inventions, our quantitative
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understanding of achievements and progress may be substantially biased and distorted

unless we systematically look into failures. At the same time, as an integral part of

modern society, science does not evolve on its own. Rather, it has long been described

as a social institution that interacts with many other aspects of human society, which

affects our ability to confront some of today’s biggest challenges – from the pandemic to

climate change, from fake news to privacy and security. Hence there is an urgent need to

understand the role and impact of science outside science – in the halls of government,

public perceptions, marketplace applications, and more.

Comprehensive investigations of these questions are only possible recently, thanks

to the rapid development of novel approaches to data collection, linkage, and analysis.

Building on these recent advances, in this dissertation I present how an interdisciplinary

combination of (i) canonical theories from fields as diverse as history, sociology, psychol-

ogy, and economics; (ii) large-scale datasets tracing various aspects and phases of science

and innovation; and (iii) system modeling techniques rooted from complexity and network

sciences can shed new light on these questions. Using millions of data on scientific pub-

lications, USPTO patents, funded research projects, policy documents, and mainstream

news articles, these explorations not only uncover how various interconnected factors con-

tribute to the progress and advancement in science, the fundamental engine of growth

and prosperity, but also hold important implications for entrepreneurship and sustainable

technological and business innovation.

The rest of this dissertation is organized as follows.

Chapter 2 presents an initial yet critical step towards our quantitative understanding

of failures [3], the essential prerequisite to eventual success. To quantify the dynamics of
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failure, we have developed a simple one-parameter stochastic model to mimic how future

attempts build on previous failures. The model makes four different empirically testable

predictions, including one that is particularly surprising: Those who eventually succeed

following failures and those who do not may be initially similar but are characterized

by fundamentally distinct efficiency and quality trajectories, discernible long before the

eventual outcome becomes apparent. We test the four predictions from datasets across

science, startups, and security, finding broadly consistent empirical support across all

three domains, which systematically verifies each prediction of our model. Together,

these findings unveil identifiable yet previously unknown early signals that allow us to

identify failure dynamics that will lead to ultimate success or failure.

Chapter 3 examines the coevolution between science and policy during the COVID-19

pandemic, asking a timely and important question: is our policy understanding closely

linked to, or largely separated from, the evolving scientific understanding of the pan-

demic? Our analysis combines two largescale databases to capture policy, science, and

their interactions and shows that policy documents in the pandemic substantially access

recent, peer-reviewed, and high-impact science. At the same time, policy documents that

cite science have especially high impact within the policy domain. Together, the close

coevolution indicates a key link between policy and science is operating, which offers an

important message for the scientific community, as scientists, journals, and funders work

expeditiously to advance new research.

Building on these results, Chapter 4 develops a comprehensive framework to study

how science is consumed in public domains. In particular, we e examine public use and

public funding of science by linking tens of millions of scientific publications from all
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scientific fields to their upstream funding support and downstream public uses across

three public domains—government documents, news media, and marketplace invention.

We find that different public domains draw from various scientific fields in specialized

ways, showing diverse patterns of use. Yet, amidst these differences, we find universal

alignment between what the public consumes and what is highly impactful within science.

Further, a field’s public funding is strikingly aligned with the field’s collective public use.

Overall, public uses of science present a rich landscape of specialized consumption, yet,

collectively, science and society interface with remarkable alignment between scientific

use, public use, and funding.
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CHAPTER 2

Quantifying the dynamics of failure

Henry Ford went bankrupt five times before founding the Ford Motor; J.K. Rowling

was rejected by twelve publishers before introducing Harry Potter to the world; Yet neither

came close to Thomas Edison, who famously failed more than one thousand times before

identifying the carbon filament for light bulb. Human achievements are often preceded

by repeated attempts that fail, yet little is known about the mechanisms governing the

dynamics of failure, due to lack of empirical data sources as well as theoretical foundations

for systematic quantification of failures. Indeed, Thomas Edison once said, ‘Many of

life’s failures are people who did not realize how close they were to success when they gave

up.’ Yet as we show in this chapter, by modeling the process of repeated failures as a

stochastic complex system, there are rich identifiable early signals that can help us predict

the eventual outcome to which failures lead.

2.1. Data description

One important empirical challenge in understanding and modeling failures is the lack

of ground-truth information that contains unbiased records for both successful and failed

attempts. To understand the dynamics of failure, we collected three large-scale datasets.

Here we compiled a comprehensive database consisting of three large-scale datasets

across three different domains: Dataset D1 contains submission histories of individual sci-

entists in the US National Institutes of Health (NIH) grant system. D2 contains profiles
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of innovators together with their startup ventures recorded in the VentureXpert invest-

ment database. D3 records terrorist organizations and attacks retrieved from the Global

Terrorism Database.

2.1.1. NIH grant application dataset

The first dataset (D1) contains all R01 grant applications (776,721 in total) that have been

ever submitted by 139,091 scientists to NIH from 1985 to 2015. For each grant application,

we obtained its evaluation score (if reviewed on a panel), a unique identifier for the PI,

PI name and the application outcome (funded/not funded), allowing us to reconstruct

individual application histories and their repeated attempts to obtain funding.

The NIH grant application dataset represents an excellent setting to study dynamics of

failure for several reasons. First, it contains ground-truth information for both successes

and failures. Second, as the world’s largest public funder for biomedical research, NIH

is the dominant funding source for biomedical scientists in the US [4, 5]. Indeed we

tracked funding acknowledgment information cited within biomedical research papers,

finding among all PubMed papers published in the US (2008 to 2015), NIH represents

the majority of funding sources (81% out of top 10 agencies). R01 is the most common

research funding mechanism within the NIH [4, 6, 7], accounting for the majority of

the total funding. To compare the dynamical pattern between R01 and other granting

mechanisms, we downloaded successful NIH grants from other mechanisms from NIH

Research Portfolio Online Reporting Tools (RePORT), finding R01 grants are uniformly

distributed within all NIH grants one obtains throughout a career. Here we extract all

new grant applications (excluding renewals, revisions and resubmissions) to reconstruct
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sequences of attempts. We truncate each sequence if (i) the individual gets one grant

(successful group); or (ii) the individual has been inactive for a long period (unsuccessful

group).

2.1.2. VentureXpert investment dataset

Our second dataset (D2) traces start-up investment records from the VentureXpert (SDC

Platinum) database, including 58,111 startup companies and 163,106 investment rounds

from 1970 to 2016. Tracing every startup in which VCs invested, D2 allows us to recon-

struct individual career histories counting successive ventures in which they were involved.

For each investment we obtained information on investment amount, funding date, com-

pany name and a full list of innovators involved. We then link these records with company

information on Initial Public Offering and Merger & Acquisitions as outcome variables.

Following the entrepreneurship literature [8–10], we match individual entrepreneurs and

startup ventures by linking each company with people listed as executives or board mem-

bers at the first funding round. One advantage of this dataset is that 98.7% records have

complete information of first and last names rather than initials, allowing us to construct

career trajectories of 253,579 innovators.

Among the existing datasets capturing startups, the VentureXpert database, the offi-

cial database of the National Venture Capital Association is among the most comprehen-

sive and authoritative databases [11]. To further explore the coverage of the database, we

compare the number of IPOs within our data versus US total counts, finding our dataset

captures a significant fractions of IPOs, with the ratio between the two statistics remain-

ing stable over time, documenting the reliability of this dataset. We also cross-validated
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individual entrepreneurs coverage with Crunchbase. We select top 1000 serial executives

and board members ranked by the number of different jobs in Crunchbase, finding more

than 70% of the profiles are included in VentureXpert.

Another challenge in modeling dynamics of failure in startup datasets is the ambiguity

of ‘failures’ [12], which could include bankruptcy, termination to prevent future losses, and

deviation from desired results. Recognizing the complexity of this issue, here we closely

follow existing literature on venture capital and serial entrepreneurship [9, 10]. We focus

on all portfolio companies that have received at least one round of funding, and define

those who went public or got acquired or merged at high values (percentile as compared

with all M&As in the same year) as successes. We performed different measurement

variations by changing the percentile threshold (1% and 5%) and also by only including

IPOs. We find our results remain the same. If a company obtained its first investment

but did not succeed within a certain period, this venture is marked as a failure. In this

dataset we treat each new venture as an attempt, starting at the date of first round

investment. Similar to D1, sequences of attempts by each individual are collected into a

sequence, where the stopping criterion is defined by either (i) the individual is involved in

one company that eventually achieved IPO or high-value M&As (successful group); or (ii)

the individual has been inactive for a long period without success (unsuccessful group).

2.1.3. GTD terrorism attack dataset

Going beyond traditional innovation domains, we collected our third dataset (D3). D3

contains 170,350 terrorist attacks by 3,178 organizations from 1970 to 2017, collected by

the Global Terrorism Database, one of the most systematic databases on domestic and
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transnational terrorist events [13]. For each attack we obtain information on its date,

type, location, and consequences in terms of the number of people killed and wounded.

Some records in this corpus are based on speculation or dubious claims of responsibility,

which are discarded in our analysis to ensure the data quality.

There lacks a clear definition of ‘success’ for terrorist attacks, partly due to their

diverse intents and consequences. To be consistent with our empirical steps in D1 and

D2, here we treat an attack as successful if it killed at least one victim. To this end, we

collected sequences of attacks of each terrorist organization, and classify the samples as

(i) the organization killed at least one people (successful group); or (ii) the organization

has been inactive for a long period without success (unsuccessful group).

One potential concern with this definition is that goals of terrorist attacks differ, and

not all attacks are aimed at killing victims. This concern is somewhat alleviated since (1)

84.7% the attacks were targeted at human beings (i.e. assassination, bombing/explosion

and assault) and (2) human-targeted attacks were uniformly distributed within full attack

history of terrorist organizations. To rule out the possibility that samples in unsuccessful

group are simply those who do not aim for killing victims, we further remove samples

from the unsuccessful group if more than half of the events in this sample are not human-

targeted. We also performed robustness checks by performing the same operation on

successful group or using the full sample in unsuccessful group, finding our results remain

robust. Although these checks do not necessarily account for the diverse goals of terrorist

attacks, they do consistently show no evidence of systematic bias.
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2.2. Modeling the dynamics of failure

Building on the rich literature about innovation [1, 14–19], human dynamics [20–23]

and learning [24–29], we develop a simple one-parameter model that mimics how successful

future attempts build on those past.

2.2.1. Mechanisms of chance and learning

Chance and learning [25, 28] are two primary mechanisms explaining how failures may

lead to success. If each attempt has a certain likelihood of success, the probability that

multiple attempts all lead to failure decreases exponentially with each trial. The chance

model therefore emphasizes the role of luck, suggesting that success eventually arises

from an accumulation of independent trials. To test this, we systematically compare the

performance of the first and penultimate attempt within failure streaks, measured by NIH

percentile score for a grant application (D1), investment size by VCs to a company (D2),

and number of wounded individuals by an attack (D3), as detailed below.

For the NIH grant application dataset, we make use of the percentile scores assigned

by NIH review panels. NIH uses a two-step peer review mechanism: Roughly half of

the proposals are selected for the second round discussion, where each proposal is given

a percentile score based on their percentile ranking among its peers. Percentile score

has been widely used to measure the quality of R01 grant applications [7, 30], reflecting

judgment of expert reviewers. Although reviewers score are necessarily imperfect, there is

growing evidence for strong correlations between percentile score and subsequent successes

of the project [5, 31]. One disadvantage of using the percentile score is that undiscussed

proposals (those get rejected in the first round) do not have such scores. Moreover, since
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there exist differences concerning the discussion rate, applications lying on the boundary

of discussion can have either marginal scores or no scores. Indeed, here we calculate the

proportion of having a percentile score around 57% and plot the score distribution. We

find as score exceeds 50, there are much fewer samples, since many proposals at this rank

did not even get discussed and assigned a score. To avoid discrimination across study

sections, here we take score below 50 and regard the remaining proposals as undiscussed.

We also vary the threshold to 55, finding results remain the same. Lower percentile scores

indicate better performance. To be consistent with other measures (higher the better) we

rescale the percentile scores using 1-0.01×original score, so the values reported in main

text are bigger the better.

To measure the performance in startup ventures, we leverage the investment amount

in the first funding round as a proxy. Although there are a series of firm-level statistics

that could potentially measure the quality of a venture, investment amount stands out as

a preferred choice of representing investor evaluations. This definition does not account

for geographical and industrial factors, as such information is not available to us, but it

serves as a reasonable index of startup companies potentials in achieving their eventual

goals (IPO or high-value M&As).

Similar to other frequently used measures in economics, investment amount follows

a fat-tailed distribution and exhibits time-dependent properties. To address the two

challenges, we take logarithmic of the investment amount and calculate z-score within

each year. Denoting the amount of all investments made in year t as {st1, · · · , stn}, here
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we rescale the values into the performance score z through

zti =
log(sti)− E[log(st)]√

Var[log(st)]

Once rescaled, we find zti approximately follow the standard normal distribution N(0, 1)

independent from t, allowing us to directly compare attempts made in different years. We

then compare first-round investment amounts for successful and failed attempts, finding

the two samples are clearly separated.

Similarly, for terrorist attacks, one measure for performance is the number of indi-

viduals wounded, which is reported for more than 91% of the attacks recorded in the

database. To this end, we collect wound statistics as our performance measure. Indeed,

fatal (successful) attacks also lead to a higher number of wounded individuals than oth-

ers, validating the effectiveness of using wounded statistics as performance measurements.

Related studies of terrorist attacks suggest the outcome of attacks follow a power law dis-

tribution, which is also confirmed in our dataset. To this end, we rescale the original

values by log(wounded+ 1) in our analysis.

Note that although the overall coverage of performance measures is high (94% for

D2 and 91% for D3), in both datasets there are missing values. To ensure that they do

not affect our results, we also label these missing values as NA and exclude them as we

analyze performance dynamics. Analyses that do not require performance information

are measured on the full data sample.

We find that across all three datasets, the penultimate attempt shows systematically

better performance than the initial attempt (Figs. 2.1c-e). These results reject that suc-

cess is simply driven by chance (Fig. 2.1a) but lend support to the learning mechanism
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(Fig. 2.1b), which suggests that failure may teach valuable lessons difficult to learn oth-

erwise [24, 25, 28]. As such, learning reduces the number of failures required to achieve

success, and predicts that failure streaks should follow a narrower length distribution

(Fig. 2.1g) than the exponential one predicted by chance (Fig. 2.1f).

To this end, we empirically measure the distribution of failure streak length, defined

as the number of failures before success. Across all three domains, failure streak length

follows a fat-tailed distribution (Figs. 2.1h-j), indicating that despite performance im-

provement, failures are characterized by longer-than-expected streaks prior to the onset

of success. To further test these results, we perform two randomization processes. We

performed our first randomization operation, by keeping the timing and outcome of each

attempt but changing the individual/organization associated with the attempt via ran-

dom selection. The null model leads to exponentially distributed failure streaks. We then

performed a second randomization procedure by taking the samples used in Fig. 2.1 and

shuffling the success/failure label from each attempt. This operation keeps constant both

the overall success rate and the total number of attempts for each individual (Fig. 2.7c-e).

The two versions of randomization both lead to exponential like distributions, showing

clear deviation from data.

Together, these observations demonstrate that neither chance nor learning alone can

explain the empirical patterns underlying failures, suggesting that more complex dynamics

may be at work.

Note that Fig. 2.1h-j and 2.4a-c only show results for less than 21 consecutive failures

prior to the eventual outcome, accounting for 99.99%, 100%, 99.35% for the successful
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Figure 2.1. Mechanisms of chance and learning.

We compare theoretical predictions and empirical measurements for performance changes
(a-e) as well as the length distribution of failure streaks (f-j). The chance model predicts
no performance change (a), with failure streak length following an exponential distribution
(f). The learning hypothesis predicts improved performance (b), with shorter failure
streaks than expected by the chance model, corresponding to a faster-than-exponential
distribution (g). Both hypotheses are contested by empirical patterns observed across
the three datasets. To ensure that performance metrics are comparable across data and
models, we standardized performance measures according to their underlying distribution.
We find that failures in real data are associated with improved performance between the
first and penultimate attempt. Yet at the same time, failure streaks are characterized
by a fat-tailed length distribution, indicating that failure streaks in real data are longer
than expected by chance (h-j). For clarity, here we show results for failure streaks whose
length is less than 21. We further construct a randomized sequence of successes and
failures by assigning each attempt to agents at random. We find that failure streak length
in randomized sequence follows an exponential like distribution, showing clear deviations
from data.

group and 99.99%, 100%, 99.60% for the unsuccessful group. All statistical tests are

performed on the full data (100%).

2.2.2. The k model

In order to formulate a new attempt, the individual needs to go through every component,

and decide what to do next. For a past attempt j, each component i is characterized by

an evaluation score x
(i)
j , which falls between 0 and 1. The agent can either create a new
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version (with probability p), or with probability 1−p reuse an old one by choosing among

past versions. The main cost of creating a new version is time. Here we assume each new

version takes one unit of time, and upon creation takes up an evaluation score, drawn

randomly from a fixed distribution ρ(x). Real systems are likely to differ in their specific

score distributions. Here for simplicity, we assume ρ(x) follows a uniform distribution on

[0, 1], approximating the percentile of any underlying score distributions real systems may

follow. One difference between our model and canonical learning curve models [32] is that

one has little information on the new versions until it gets implemented and evaluated,

hence new versions are not guaranteed to increase or decrease their score.

Of the many factors that may influence p, one key factor is the quality of existing

versions. Denoting with x∗ the best score among past versions, we expect p to be a

function of x∗. Indeed, consider the two extreme cases. If x∗ → 0, existing versions of

this component have among the worst scores hence a high potential to be improved upon

with a new version. Therefore the likelihood of creating a new version is high, i.e., p → 1.

On the other hand, x∗ → 1 indicates an already excellent version, corresponding to a

decreased incentive to create a new one (p → 0). Reusing the existing best version allows

the particular component to retain its score x∗ and also avoids incurring additional time

cost the individual can avoid spending time working on. To this end, considering P (x ≥

x∗) = 1 − x∗ as the potential to improve on existing versions, we assume p = (1 − x∗)α,

where α > 0 characterizes an individual’s propensity to create new versions given the

quality of existing versions. The higher this potential, the more likely one may create a

new version [33].
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The dynamics of quality score, xn, can be captured by a higher-order Markov process

of memory length k, following

(2.1) x∗
n = max{xn−k, · · · , xn−1}

(2.2) xn ∼


U [0, 1], w.p. (1− x∗

n)
α

δ(x− x∗
n), w.p. 1− (1− x∗

n)
α

where we assume xn = 0 for all n < 0.
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(Caption next page.)
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(Previous page.) (a) We treat each attempt as a combination of many independent
components. For attempt j, each component i is characterized by an evaluation score

x
(i)
j . The score for a new version is often unknown until attempted, hence a new version

is assigned a score, drawn randomly from [0, 1]. (b) To formulate a new attempt, one
can either create a new version (with probability p, green arrow), or reuse an existing
version by choosing the best one among past versions x∗ (with probability 1 − p, red
arrow). Indeed, P (x ≥ x∗) = 1− x∗ captures the potential to improve on prior versions,
prompting us to assume p = (1− x∗)α. (c) Analytical solution of the model reveals that
the system is separated into three regimes by two critical points k∗ and k∗ + 1. The
solid line shows an extended solution space of our analytical results. (d-i) Simulation
results from the model (α = 0.6) for quality (d-f) and efficiency (g-i) trajectories for
different k parameters, showing distinct dynamical behavior in different regimes. All
results are based on simulations averaged over 104 times. (j,k) Phase transition around
k∗ predicts the coexistence of two groups that fall in the stagnation and progression
regimes, respectively.

The parameter k in our model can be viewed as approximating the ‘memory’ of past

versions. The rationale of using k for the model is rooted in the learning literature,

showing that the general notion of ‘forgetting’ takes multiple forms, often representing

a combination of individual, organizational and environmental factors. Indeed, several

relevant factors may be at play, which can generate patterns similar to ‘forgetting’. For

example, in rapidly shifting innovation domains, not all past failures remain useful over

time, and some become obsolete. Consider the concept of ‘knowledge depreciation’ [34],

which could also apply in our settings as environments (scientific knowledge/capital mar-

kets/security situations) evolve over time, such that past experience could become useless

even if memorized. For example, an NIH proposal four failures ago may become irrele-

vant as the ideas proposed have been dispositively proven wrong, or published by the PI

or another research group [35, 36]. Similarly, startup ideas from the dot com era may

be irrelevant in the era of AI and Blockchain [9]. Terrorist tactics can also depreciate

over time, as past strategies attracted media coverage and gave rise to tighter security
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measures defending against them [37]. This line of reasoning supports the idea that re-

cent attempts are most relevant. It is also consistent with the learning literature, which

suggests knowledge ‘forgetting’ can happen in distinct ways, either voluntarily or involun-

tarily [38]. Motivated by these reasons, here we select a single parameter k to encapsulate

a variety of potential contributing factors.

2.2.3. Two extremes of the model

Next, we start with two extreme cases of the model. k = 0 means each attempt is

independent from those past. In this case, one creates a new version every time, hence

for all n we have

(2.3) xn ∼ U [0, 1]

and

(2.4) tn ≡ 1

Here our model recovers the chance model, predicting that as n increases, both ⟨xn⟩ and

⟨tn⟩ remain constant (Fig. 2.3ad). That is, without considering past experience, failure

does not lead to quality improvement. Nor is it more efficient to try again.

The other extreme (k → ∞) considers all past attempts. e can rewrite the process as

(2.5) x∗
n = max{x0, · · · , xn−1}
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(2.6) xn ∼


U [0, 1], w.p. (1− x∗

n)
α

δ(x− x∗
n), w.p. 1− (1− x∗

n)
α

Here we focus on the dynamics of x∗, obtaining

(2.7) x∗
n+1 ∼


U [x∗

n, 1], w.p. (1− x∗
n)

α+1

δ(x− x∗
n), w.p. 1− (1− x∗

n)
α+1

where x∗
1 ∼ U [0, 1]. To this end, let us denote fn as the probability density function of

x∗
n, obtaining

(2.8) fn+1(x) = fn(x)(1− (1− x)α+1) +

∫ x

0

fn(y)(1− y)αdy

with f1(x) ≡ 1 for x ∈ [0, 1]. By induction we obtain

(2.9) fn(x) ∼ [1− (1− x)α+1]n−1

Therefore we have

tn =

∫ 1

0
(1− x)αfn(x)dx∫ 1

0
fn(x)dx

=
B(n, 1)

B(n, 1/(α + 1))

∼ Γ

(
1

α + 1

)−1

n− α
α+1

(2.10)
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and

1− xn =

∫ 1

0
{(1− x)[1− (1− x)α)] + (1− x)α/2}fn(x)dx∫ 1

0
fn(x)dx

=
B(n, 2/(α + 1))−B(n, 1 + 1/(α + 1)) +B(n, 1)/2

B(n, 1/(α + 1))

∼ Γ

(
1 + min{α, 1}

α + 1

)
Γ

(
1

α + 1

)−1

n−min{α,1}
α+1

(2.11)

The model therefore predicts a temporal scaling in failure dynamics. That is, the time

it takes to formulate a new attempt decays with n, asymptotically following a power law

(Fig. 2.3e):

(2.12) Tn ≡ ⟨tn⟩/⟨t1⟩ ∼ n−γ,

where γ = γ∞ = α/(α + 1) falls between 0 and 1. Besides increased efficiency, new at-

tempts also improve in quality, as the average potential for improvement decays following

⟨1− xn⟩ ∼ n−η∞ , where η∞ = min{γ∞, 1− γ∞} (Fig. 2.3b). Here the model recovers the

canonical result from the learning literature [24, 27, 39–41], commonly known as Wright’s

Law [42]. This is because, as experience accumulates, high-quality versions are preferen-

tially retained, while their lower quality counterparts are more likely to receive updates.

As fresh attempts improve in quality (Fig. 2.3b), they reduce the need to start anew, thus

increasing the efficiency of future attempts (Fig. 2.3e).

2.2.4. Solving the general model

These two limiting cases might lead one to suspect a gradual emergence of scaling behavior

as we learn from more failures. Yet, here we show that, as one increases parameter k, the
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Figure 2.3. Understanding the k model.

(Caption next page.)

scaling exponent γ follows a discontinuous pattern (Fig. 2.2c) and only varies within a

narrow interval of ⌊k∗⌋ < k < ⌈k∗⌉+ 1 (k∗ ≡ 1/α).

To solve the k-model with higher-order dependency, here we use a series of careful

approximation techniques as well as results from renewal process theories [43]. More
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(Previous page.) a-f, Simulation results from the model (α = 0.6) for the cases of k = 0
(a,d) and k → ∞ (b,e) in terms of the average quality (a-c) and efficiency (d-f) of each
attempt. k = 0 recovers the chance model, predicting a constant quality (c) and efficiency
(f). k → ∞ predicts temporal scaling that characterizes the dynamics of failure (g) with
improved quality (d), recovering predictions from learning curves and Wright’s Law. g-j,
Illustration of mapping between failure dynamics (g,h) and canonical ensembles (i,j). The
canonical system is characterized by three different states a, b, c with corresponding energy
density Ea(h), Eb(h), Ec(h). Here we assume Ea(h) = (2ϵh− 1)2, Eb(h) = (2h− 1)2, and
Ec(h) = [2ϵ(1−h)−1]2, where ϵ → 0+. The introduction of ϵ is to distinguish state a from
state c, both of which can be approximated in the limiting condition Ea(h) = Ec(h) = 0.
We map f → (2Γ− 1)2, N → lnn, h → K, and Ei(h) = [2Γi(K)− 1]2. In this case, the
two transition points k∗ and k∗ + 1 correspond to h = 0 and 1 in the canonical ensemble
systems.

specifically, we first note that

(2.13) |{n1 ≤ n ≤ n2 : xn = x∗
m}| ≤ n2 − n1 + 1

(2.14)

|{n1 ≤ n ≤ n2 : xn = x∗
m}| ≥

[(n2−n1)/k]−1∑
i=0

k−1∑
j=0

I(xn1+ki+j = x∗
n1+ki+i) ≥ [(n2 − n1)/k]

Hence to calculate the length of a sequence, we only need to estimate the number of

versions that are once baseline versions (i.e. n such that xn = x∗
m for some n+ 1 ≤ m ≤

n+ k).

Denote zm = 1− x∗
n as all such baseline scores. We now calculate for a specific zm to

be taken by a new one, the number of attempts it takes. Indeed, given a score zm and
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assuming that it has been reused as zm = zm−1, we have

(2.15) zm+1 =



zm w.p. [1−zkαm (1−zm)k](1−zαm)
1−zαm(1−zm)

∼ O(1)

U [0, zm] w.p. [1−zkαm (1−zm)k]zα+1
m

1−zαm(1−zm)
∼ O(zα+1

m )

min{U1[0, 1], · · · , Uk[0, 1]} w.p. zkαm (1− zm)
k ∼ O(zkαm )

Here we use the big-O notation to find the asymptotic case for zm → 0. This equation

shows two important insights:

(1) If we calculate the number of iterations that zm gets reused, it should be in the

order of O(z
−min{kα,α+1}
m ), leading to two cases that will be discussed in detail.

(2) There exist two different forces for the substitution of baseline versions to happen:

quality (with probability O(zkα)) and recency (with probability O(zα+1)). For kα < α+1,

the recency mechanism dominates for small z, i.e. produces a worse succeeding score.

Hence, it keeps a stable score distribution of new baseline scores as n increases. However,

once kα > α + 1, quality mechanism takes over for small z, characterizing a continuous

path of improvement.

Here, we first derive our results for the regime kα < α + 1, and then extend the

obtained results to the other regime.

2.2.4.1. Case 1: kα < α + 1. When zm+1 ̸= zm, our previous results show that with

high probability, zm is the extreme value among k i.i.d. random variables on U [0, 1], hence

the pdf of zm, f(zm) ∼ const as zm → 0. Below we offer a more rigorous proof: Take all

the different zm as z̃ and consider a limiting distribution of f(z̃). We have

(2.16) f(z̃) ∼
∫ 1

0

f(z̃′)O(1)dz̃′ +

∫ 1

z̃

f(z̃′)O(z̃′α+1−kα)/z̃′dz̃′
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Assuming f(z̃) ∼ z̃β1 and consider z̃ → 0 one gets

(2.17) β1 = min{0, 1, β1 + α + 1− kα} = min{0, β1 + α + 1− kα}

Since kα < α + 1, we get β1 = 0. Hence, as we generate a new baseline score satisfying

zm ̸= zm−1, we approximate the number of iterations it will be retained as u ∼ z−kα.

Let zm = zm+1 = · · · = zm+u. For zm+u+1 we take a new random variable from a fixed

distribution on [0, 1] whose probability density does not diverge near 0. If we consider the

change of baseline scores as a ‘jump’ and number of iterations of repeated reuse as the

length of this jump (u), we eventually arrive at a Levy flight [44].

We can define ui ≡ z−kα
i , following asymptotically power law pdf P (u) ∼ u−1/kα−1 ≡

u−µ−1, and m(N) ≡ minm{u1 + · · ·um ≥ N}. Next we solve ⟨uλ
m(N)⟩ for some λ. We first

calculate P (um(N)), which equals to

P (um(N) = u) = P (u)

∫ N

max{N−u,0}

∞∑
k=0

Pk(v)dv

= P (u)

∫ N

max{N−u,0}
G(v)dv

(2.18)

where Pk(v) ≡ P (v1 + · · · + vk = v) and G(v) ≡
∑∞

k=0 Pk(v). Pk can be obtained

analytically by induction, following

(2.19) Pk =


Pk−1 ◦ P, k ≤ 1

δ(0), k = 0
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Hence we have

(2.20) G =
∞∑
k=0

Pk = G ◦ P + δ(0)

Taking the Laplace transformation we obtain

(2.21) G̃ =
1

1− P̃

The quantity of interest, M(N) ≡ ⟨uλ
m(N)⟩, can be formulated as

M(N) =

∫ ∞

0

P (um(N) = u)uλ

=

∫ N

0

P (u)uλ

∫ N

N−u

G(v)dvdu+

∫ ∞

N

P (u)uλ

∫ N

0

G(v)dvdu

=

∫ N

0

Q(u)[H(N)−H(N − u)]du+

∫ ∞

N

Q(u)H(N)du

= H(N)

∫ ∞

0

Q(u)du−
∫ N

0

Q(u)H(N − u)du

= H(N)

∫ ∞

0

Q(u)du− (Q ◦H)(N)

(2.22)

where H(N) =
∫ N

0
G(v)dv and Q(u) = uλP (u). Performing again the Laplace transfor-

mation, we obtain

M̃ = H̃(

∫ ∞

0

Q(u)du− Q̃)

= G̃(

∫ ∞

0

Q(u)du− Q̃)/s

=

∫∞
0

Q(u)du− Q̃

s(1− P̃ )

(2.23)
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Assuming

(2.24) P (x) = µx−µ−1I(x ≥ 1)

we obtain

(2.25) P̃ (s) = µsµΓ(−µ, s)

(2.26) Q̃(s) = µsµ−λΓ(λ− µ, s)

(2.27)

∫ ∞

0

Q(u)du =
µ

µ− λ

where Γ(a, s) =
∫∞
s

ta−1e−tdt is the upper incomplete Gamma function. Inserting these

results into the previous function we arrive at

(2.28) M̃ =
µ/(µ− λ)− µsµ−λΓ(λ− µ, s)

s[1− µsµΓ(−µ, s)]

To obtain asymptotic results for M(N) as N → ∞, we approximate M̃(s) as s → 0+.

Here we use the following expansion

(2.29) Γ(a, s) = Γ(a)− sa

a
+

sa+1

a+ 1
+O(sa+2)
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The previous equation hence writes

M̃ ≈ µ/(µ− λ)− µsµ−λΓ(λ− µ) + µsµ−λsλ−µ/(λ− µ)− µsµ−λsλ−µ+1/(λ− µ+ 1)

s[1− µsµΓ(−µ) + µsµs−µ/(−µ)− µsµs−µ+1/(1− µ)]

=
−µsµ−λΓ(λ− µ)− µs/(λ− µ+ 1)

s[−µsµΓ(−µ)− µsµs−µ+1/(1− µ)]

=
sµ−λΓ(λ− µ) + s/(λ− µ+ 1)

s[sµΓ(−µ) + s/(1− µ)]
∼ smin{µ−λ,1}−min{µ,1}−1

(2.30)

Hence we obtain

(2.31) M = L−1(M̃) ∼ n−min{µ−λ,1}+min{µ,1}

Let us consider the two specifications:

Case 1: λ = −1/k, we have M ∼ nmin{1/(kα),1}−1, hence

(2.32) ⟨(1− x∗)α⟩ ≈ M =


const., kα ≤ 1

n−1+1/(kα), kα > 1

Case 2: λ = −1/(kα), we have M ∼ nmin{1/(kα),1}−min{2/(kα),1}, hence

(2.33) ⟨1− x∗⟩ ≈ M =



const., kα ≤ 1

n−1+1/(kα), 1 < kα ≤ 2

n−1/(kα), kα > 2

This eventually leads to

(2.34) ⟨1− x⟩ = ⟨z⟩ = ⟨z∗ + z∗α/2− z∗(α+1)⟩ ≈ ⟨z∗ + z∗α/2⟩ ∼ n−min{γ,1−γ}
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2.2.4.2. Case 2: kα > α + 1. As we discussed, in this regime the quality dynamics is

dominated by the second mechanism, which does not depend on k, and asymptotically

follows the same mechanism as learning from all failures model (k = ∞). Indeed, if we

expand our solution and take k → (1 + 1/α)−, we obtain γ = 1 − 1/(kα) → α/(α + 1)

and η = min{γ, 1 − γ} → min{1, α}/(α + 1), which are the same as k = ∞. Hence, the

regime lying between k = 1 + 1/α and k = ∞ should have the same scaling behaviors.

Taken together, we obtain

(2.35) γ =



0, k < k∗

1− k∗/k, k∗ ≤ k < k∗ + 1

1/(k∗ + 1), k ≥ k∗ + 1

(2.36) η = min{γ, 1− γ}

where k∗ = 1/α.

To summarize, when k is small (k < k∗), the system converges back to the same

asymptotic behavior as k = 0 (Fig. 2.2cdg). In this region, k is not large enough to retain

a good version once it appears. As a result, while performance might improve slightly in

the first few attempts, it quickly saturates. In this region, agents reject prior attempts and

thrash around for new versions, not processing enough feedback to initiate a pattern of

intelligent improvement, prompting us to call it the stagnation region. Once k passes the

critical threshold k∗, however, scaling behavior emerges (Fig. 2.2ceh), indicating that the

system enters a region of progression, where failures lead to continuous improvement in
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both quality and efficiency. Nevertheless, with a single additional experience considered,

the system quickly hits the second critical point k∗+1, beyond which the scaling exponent

γ becomes independent of k (Fig. 2.2cfi). This means that once ⌈k∗⌉+ 1 number of prior

failures are considered, the system is characterized by the same dynamical behavior as

k → ∞, indicating that ⌈k∗⌉ + 1 attempts are sufficient to recover the same rate of

improvement as considering every failure from the past.

2.2.5. Phase transitions

Importantly, the two critical points in our model can be mapped to phase transitions

within a canonical ensemble consisting of three energy levels (Fig. 2.3g-j). Phase transi-

tions indicate that small variations at the microscopic level may lead to fundamentally

different macroscopic behaviors. For example, two individuals near the critical point may

initially appear identical in their learning strategy or other characteristics, yet depending

on which region they inhabit, their outcomes following failures could differ dramatically

(Figs. 2.2jk). In the progression region (k > k∗), agents exploit rapid refinements to

improve through past feedback. By contrast, those in the stagnation region (k < k∗) do

not seem to profit from failure, as their efforts stall in efficiency and saturate in quality.

To understand the nature of two transition points of our model, here we consider a

canonical ensemble of N particles (N → ∞) and three energy states Ea(h) = 1, Eb(h) =

(2h − 1)2, and Ec(h) = 1, where h denotes the external field. We can write down the

partition function of the system Z = e−NEa(h) + e−NEb(h) + e−NEc(h), and calculate its

free energy density f = lnZ/N . In this system, it can be shown that the magnetization
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density m = df
dh

is discontinuous at the boundary of two energy states Ea(h) = Eb(h) and

Eb(h) = Ec(h), characterized by two phase transitions at h = 0 and h = 1, respectively.

We notice that the canonical ensemble considered above has a mapping to our model.

Indeed, denoting with Γ ≡ k∗γ/(1 − γ) and K ≡ k − k∗, we can rescale the system as

Γ = min{max{Γa(K),Γb(K)},Γc(K)}, where Γa(K) = 0, Γb(K) = K, and Γc(K) = 1,

allowing us to map the two systems through f → (2Γ − 1)2, N → lnn, h → K, and

Ei(h) = [2Γ2
i (K)− 1]2 (Fig. 2.3g-j).

To understand the origin of the two transition points, we can calculate the expected

life span of a high-quality version, obtaining ⟨u(x)⟩ ∼ ⟨(1 − x)−min{k/k∗,1/k∗+1}⟩. The

first critical point k∗ occurs when the first moment ⟨u⟩ diverges. Indeed, when k is small

(k < k∗), ⟨u⟩ is finite, indicating that high-quality versions can only be reused for a limited

period. Once k passes the critical point k∗, however, ⟨u⟩ diverges, offering the possibility

for a high-quality version to be retained for an unlimited period of time. The second

critical point arises due to the competition between two dynamical forces: (i) whether

the current best version becomes forgotten after k consecutive attempts in creating new

versions (dominated by the k/k∗ term); or (ii) it is substituted by an even better version

(dominated by the 1/k∗ + 1 term).

Note that while phase transitions carry exceptional importance in statistical physics,

similar phenomena and concepts are also of fundamental relevance in the social/behavioral

science literature. For example, critical thresholds have been observed and modeled in

social settings ranging from shifts in neighborhood segregation [45] to social network
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formation [46] to collective opinion change [47]. In each case, slight shifts in micro-

scale phenomena, like average preference, group size, or interaction intensity, condition a

qualitative transition in macro-scale outcomes.

2.2.6. Modeling failure streak length

To understand the fat-tailed distribution documented in Fig. 2.1, let us consider a single-

component case of our model for simplicity. We assume that q, the probability for a new

version to success, is independent of its score. We denote N as the number of failures

before success.

Assume N ≥ n, i.e. one has not achieved success in the first n attempts. For one

to succeed in the (n + 1)-th attempt, she needs to (1) create a new version at this time,

corresponding to probability tn ∼ n−γ and (2) succeed for this new version, which has

probability q. Together we obtain

(2.37) P (N = n|N ≥ n) ∼ qn−γ

Note that this form is closely related with Lindy’s law [48, 49]. Here the right hand

side of the equation is decreasing, since a long failure streak indicates the existence of an

(unsuccessful) version that has been used for a long period. Therefore, the same version

is more likely reused again in the future, reducing the chance to create a new, successful

version at the next step.

If we define the survival function S(n) = P (N ≥ n), this equation is equivalent to

(2.38) 1− S(n+ 1)/S(n) ∼ qn−γ
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Using a continuous approximation we obtain

(2.39) −dS

S
∼ qn−γdn

leading to the solution

(2.40) P (N ≥ n) = S(n) ∼ e−cn1−γ

Hence, it predicts that the length distribution follows the well-known Weibull distribution.

To further understand the Weibull form, here we recognize that it is closely related to

Heaps’ law [50] caused by the reuse mechanism. Indeed, given that one needs to create

M different versions before success, the distribution can be formulated as an exponential

model

(2.41) P (M ≥ m) = (1− q)m

However, repeated reuse leads to a sub-linear scaling between N and M , following the

Heaps’ law with exponent 1− γ:

(2.42) M(N) =
N∑

n=1

tn ∼
N∑

n=1

n−γ ∼ N1−γ

Combining the two equations one can obtain the same Weibull model

(2.43) P (N ≥ n) = S(n) ∼ e−cn1−γ
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2.3. Empirical methods

2.3.1. Length distribution of failure streaks

The length distribution of the failure streak is measured directly from data and fitted

using maximum likelihood estimation techniques [51]. We fit empirical data with discrete

version of Weibull (stretched exponential) form using maximum likelihood estimation with

parameters xmin = 2 and calculate uncertainty from bootstrapping over 100 simulations,

yielding β1 = 0.666± 0.017, β2 = 0.566± 0.086, and β3 = 0.129± 0.033. Comparing this

with γ estimated from temporal dynamics, two-sided t-tests indicate that none of the three

datasets can reject the validity of the scaling identity β+γ = 1 (P = 0.176, 0.421, 0.141).

We further compare the fitting results from alternative models, i.e. lognormal, power law,

and truncated power law using likelihood ratio test [51], finding that Weibull distribution

is consistently among the best functional forms (Table 2.1). To quantify the uncertainty

of parameter estimations, we performed bootstrapping technique (100 times) to calculate

optimal estimation for each round, and obtained standard error of parameter estimators.

We also repeated the results for xmin = 3, obtaining β1 = 0.592±0.032, β2 = 0.513±0.175,

and β3 = 0.139± 0.060, which again statistically supports β + γ = 1.

2.3.2. Measuring failure dynamics

Given the highly skewed distributions of N and tn, to measure Tn = tn/t1 we first per-

formed log transformation to calculate the mean and variance of log(Tn) from

(2.44) E[log(Tn)] = ⟨log(tn/t1)⟩
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Exponential Lognormal Power law Truncated power law
NIH grants 0.0 0.154 7.01× 10−4 2.33× 10−159

Startups 7.01× 10−5 0.723 2.48× 10−6 0.953
Terrorist attacks 0.0 0.822 0.566 0.221

Table 2.1. Comparing different functional forms of distributions with Weibull
distributions.

All P -values terms denote the degree that Weibull distribution is compared over the
other in log-likelihood ratio tests. Among all alternatives, only lognormal models show
comparable fitting performance. Yet lognormal model uses two free parameters while the
shape parameter of Weibull distribution is constrained by the scaling identity.

(2.45) Var[log(Tn)] = ⟨[log(tn/t1)]2⟩ − ⟨log(tn/t1)⟩2

where we take tn = max{tn, 1} when necessary. We have also checked the robustness of

this operation by trying to replace 1 with 0.5, finding the results remain similar. As the

number of samples decreases dramatically with n, here we focus on n ≤ 10 for D1, n ≤ 7

for D2, and n ≤ 4 for D3.

The two equations immediately give us mean E[log(Tn)] and standard error of the

mean
√

Var[log(Tn)]/sample size, as plotted in Fig. 2.4. The divergence between the two

groups can be detected as early as the second attempt. Although T1 ≡ 1 by construc-

tion, Student’s t-test rejects the hypothesis that log(T2) between success and unsuccessful

groups are the same (P = 0.000457, 0.00773, and 0.0992, respectively).

To calculate the temporal scaling exponent γ, here we run linear regressions between

log(n) and log(Tn) and take the negative slope as γ, i.e.

(2.46) log(tn/t1) = −γ log(n) + c,
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yielding γ1 = 0.361 ± 0.010, γ2 = 0.509 ± 0.036 and γ3 = 0.640 ± 0.153 for successful

group, with P < 0.001 for all three datasets. We also performed individual fixed effect

linear models using samples with at least three data points, i.e.

(2.47) log(tn,j) = −γ log(n) + cj + ϵn,j,

where j is the index for different samples and cj is the fixed effect term for each agent

j. We obtain similar results γ1 = 0.372 ± 0.017, γ2 = 0.431 ± 0.077 and γ3 = 0.685 ±

0.182. For unsuccessful group there exists no significant relationships between log(n) and

log(Tn) since the second failure (i.e. excluding T1), with P = 0.450, P = 0.884 and

P = 0.957 respectively. Together, these results offer strong empirical support for the

diverging temporal patterns predicted by our model.

2.4. Testing model predictions

As such, the phase transitions uncovered in our simple model make four distinct

predictions, which we now test directly in the contexts of science, entrepreneurship, and

security.

2.4.1. Prediction A

Not all failures lead to success

While we tend to focus on examples that eventually succeeded following failures, the stag-

nation region predicts that there exists a non-negligible fraction of cases that do not suc-

ceed following failures. We measure the number of failed cases that did not achieve even-

tual success in our three datasets, finding that members of the “non-success” group not
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Figure 2.4. Testing model predictions.

(a-c) Cumulative distribution function (CDF) of the number of consecutive failures prior
to the last attempt for the success and non-success groups. To eliminate the possibility
that agents were simply in the process of formulating their next attempt, we focus on cases
where it has been at least five years since their last failure. In each of our three datasets,
two distributions are statistically indistinguishable. For clarity, here we show results for
less than 21 failures. (Inset) The sample size of success and non-success group, showing
their size is of a similar order of magnitude. (d-f) Early temporal signals separate success
and non-success groups. For each group we measure the average inter-event time between
two failures Tn ≡ tn/t1 as a function of the number of attempts. Dots and shaded areas
show the mean and s.e.m. measured from data. All success groups manifest power law
scaling Tn ∼ n−γ. The two groups show distinguishable temporal dynamics for n = 2.
This temporal scaling is absent for non-success groups. (cont. on next page)
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(Previous page.) (g-i) Performance at first attempt appears indistinguishable between
the success and non-success groups who experienced a large number of consecutive failures
prior to the last attempt, but becomes distinguishable from the second attempt. Whereas
performance improves for the success group, this improvement is absent for the non-
success group. The center and error bar show the mean and s.e.m.

only exist, but their size is of similar order of magnitude as the success group (Figs. 2.4a-c

inset). Interestingly, the number of consecutive failures prior to the last attempt for the

non-success group follows a statistically indistinguishable distribution from those that

lead to success (Figs. 2.4a-c), suggesting that people who ultimately succeeded did not

try more or less than their non-successful counterparts.

2.4.2. Prediction B

Early dynamical signals separate the success group from the non-success group

The model predicts that the success group is characterized by power-law temporal scaling,

which is absent for the non-success group (Fig. 2.2j), predicting the two groups may

follow fundamentally different failure dynamics distinguishable at an early stage. To test

this prediction, we measure the average inter-event time between two failures Tn as a

function of the number of failures. Figures 2.2d-f unveil three important observations.

(i) For the success group, Tn decays with n across all three domains, approximately

following a power law, as captured by Eq (2.12). The scaling exponents are within a

similar range as those reported in learning curves [27], further supporting the validity of

power law scaling. Although the three datasets are among the largest in their respective

domains, agents with a large number of failures are exceedingly rare, limiting the range

of n that can be measured empirically. We therefore test if alternative functions may
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offer a better fit, finding power law to be the consistently preferred choice. (ii) Temporal

scaling disappears, however, when we measure the same quantity for the non-success

group (Figs. 2.4d-f), consistent with predictions about the stagnation region. (iii) The

two groups show distinguishable failure dynamics as early as n = 2, suggesting intriguing

early signals that separate those who eventually succeed from those who do not.

Observations uncovered in Figs. 2.4d-f are intriguing for two main reasons. First,

failures captured by the three datasets differ widely in their scope, scale, definition, and

temporal resolution, yet despite these differences, they are characterized by remarkably

similar dynamical patterns predicted by our simple model. Second, while one might

expect that the last attempt was crucial in separating the two groups, as the model

predicts, success and non-success groups each follow their respective, highly predictable

patterns, distinguishable long before the eventual outcome becomes apparent. We use a

simple logistic model to predict whether one may achieve success following N previously

failed attempts in D1, using only temporal features tn (1 ≤ n ≤ N − 1) as predictors. To

evaluate prediction accuracy, we calculate the AUC curve over 10-fold cross validation.

We find that, by observing timing of the first three failures alone, our simple temporal

feature yields high accuracy in predicting the eventual outcome with an AUC close to

0.7, significantly higher than random guessing (Mann-Whitney rank test, P < 10−180,

Fig. 2.5a). We repeated the same prediction task on D2 and D3, arriving at similar

conclusions (Fig. 2.5b,c). The predictive power from temporal features alone is somewhat

unexpected. Indeed, there are a large number of documented factors that affect the

outcome of a grant application [7, 52–55], ranging from prior success rate to publication

and citation records to race and ethnicity of the applicant. Yet here we ignore these
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Figure 2.5. Predicting ultimate success in science, startups and security.

a-c, Area Under the curve of the Receiver Operating Characteristic (AUROC) of the
prediction task. We apply two logistic regression models to predict ultimate success in
NIH grants (a), startups (b) and terrorist attacks (c). The centers and error bars of
AUROC scores denote the means and s.e.m. calculated from 10-fold cross validation over
50 randomized iterations (green: Model 1, red: Model 2). d-e, As in a but predicting
ultimate success in NIH grants for male (d) and female (e) investigators.

factors, using only features pertaining to temporal scaling as prescribed by our model.

This suggests that our predictive power represents a lower-bound, which could be further

improved and leveraged by incorporating additional factors.

To test if the observed patterns in Figs. 2.4d-f may simply reflect preexisting popula-

tion differences, we take agents who experienced a large number of failures, and measure
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performance from their first attempt. We find that for all three domains, the two popula-

tions were statistically indistinguishable in their initial performance (Figs. 2.4g-i), which

leads us to the next prediction:

2.4.3. Prediction C

Diverging patterns of performance improvement

Although the two groups may have begun with similar performance, the model predicts

they may experience different performance gains through failures (Fig. 2.2k). We com-

pared performance at first and second attempts, finding significant improvement for the

success group (Figs. 2.4g-i), which is absent for the non-success group.

One key difference between progression and stagnation regimes is the propensity to

reuse past components. From the perspective of exploration vs. exploitation [56, 57],

however, reuse helps one retain a good version when it appears, but it could also keep

one in a suboptimal position for longer, suggesting our final prediction:

2.4.4. Prediction D

The length of failure streaks follows a Weibull distribution

(2.48) P (N ≥ n) ∼ e−(n/λ)β .
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NIH grants Startups Terrorist attacks
γ 0.361± 0.010 0.509± 0.036 0.640± 0.153
β 0.666± 0.017 0.566± 0.086 0.129± 0.033
P 0.176 0.421 0.141

Table 2.2. Parameter estimates (mean±s.e.m).

γ corresponds to the temporal scaling exponent uncovered in Fig. 2.4 d-f) and β is the
shape parameter of the Weibull distribution (s.e.m. estimated from bootstrapping over
100 simulations), characterizing the length distribution of failure streaks. Two-sided t-
tests indicate that none of the three datasets can reject the validity of the scaling identity
β + γ = 1.

Moreover, the shape parameter β is connected with the temporal scaling exponent γ

through a scaling identity

(2.49) β + γ = 1.

This means that if we fit the streak length distribution in Figs. 1h-j to obtain the shape pa-

rameter β, it should relate to the temporal scaling exponent γ, obtained from Figs. 2.23d-f.

Comparing β and γ measured independently across all three datasets shows consistency

between our data and the scaling identity (Table 2.2).
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2.5. Model extensions

As a single parameter, k necessarily combines individual, organizational and environ-

mental factors in learning [10, 37]. The one-parameter model developed here represents a

minimal model, which can be extended into richer frameworks. For example, agents may

have varied incentives to improve or may differ in their confidence and ability to judge

their prior work. Such factors trace heterogeneity in the population and can be captured

by the α parameter, which quantifies individuals’ propensity to change given feedback.

This leads us to develop the k−α model, which predicts a two-dimensional phase diagram

with three distinct phases. The model can be further extended to capture fuzzy inference

from past feedback, allowing agents to not always choose the best prior versions.

2.5.1. k − α model

Agents may differ in the judgment of their own work or incentives to change given feed-

back, which can be captured by varying the α parameter in the original k-model. Of the

many influences on p, one key factor is the quality of existing versions, suggesting that p

should be a function of x∗. Consider the two extreme cases: If x∗ → 0, existing versions

of this component have among the worst scores and, hence, a high potential for improve-

ment when replaced with a new version. Indeed, the likelihood of creating a new version

is high, i.e., p → 1. On the other hand, x∗ → 1 corresponds to a near-perfect version,

yielding a decreased incentive to create a new one (p → 0). Indeed, P (x ≥ x∗) = 1 − x∗

captures the potential to improve on prior versions, prompting us to assume p = (1−x∗)α,

where α > 0 characterizes an agent’s propensity to create new versions given the quality

of existing ones. Therefore, α → 0 indicates that regardless of one’s evaluation, the agent
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Figure 2.6. Generalization of the k model.

a, The α parameter connects the potential to improve 1 − x and likelihood to create
new versions p through p = (1 − x)α. b, Phase diagram of the k − α model. The two-
dimensional parameter space is separated into three regimes, with boundaries at kα = 1
and (k − 1)α = 1. c, The impact of δ parameter on scaling exponent γ for given of
k = 1, 2, 3 and α = 0.4, 0.8, 1.2. We find δ affects the temporal scaling parameter
when it is small, but has no further impact beyond a certain point δ∗ = min(α, 1/k). d,
Phase diagram of the k− α− δ model for k = 3, with boundaries at α = δ, (k− 1)δ = 1,
(k − 1)δ + α = 1, kα = 1, and (k − 1)α = 1, respectively.

will always create a new version, whereas α → ∞ points to the other extreme where one

does not create a new version unless it is extremely bad (Fig. 2.6a). Considering α as

another tunable parameter, we arrive at a two-parameter model: the k − α model .
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To solve this model we can substitute k∗ with 1/α, and the indexes k/k∗ and 1/k∗+1

now become kα and α + 1. The extended model thus predicts the existence of three

different phases on a two-dimensional phase diagram, with the boundaries kα = 1 and

(k− 1)α = 1 that separate the three phases (Fig. 2.6b). The k−α model reduces back to

the two critical points in the original k model when we fix α. The two parameters jointly

define an ‘effective’ K ≡ k − k∗ = k − 1/α. The critical boundaries therefore reduce into

two simple equations: K = 0 and K = 1. Note that the assumed relationship between p

and (1 − x∗) is not limited to a power law but can be relaxed into its asymptotic form.

Indeed, we show that as long as the function satisfies ln p
ln(1−x∗)

→ α as x∗ → 1, the model

offers the same predictions [41].

2.5.2. k − α− δ model

Agents may have fuzzy inference of past feedback, hence may not always choose the

version with the highest quality. We can model the choice between different versions

in a probabilistic fashion, by introducing a δ parameter to the k − α model. Here the

probability to choose the i-th version as a baseline follows

P (i) =
1

Z
(1− xi)

−δ1n−k≤i≤n−1,

where Z is the normalization factor, Z ≡
∑n−1

i=n−k(1 − xi)
−δ. δ = 0 means one cannot

differentiate quality between past versions and selects randomly among different versions,

whereas δ → ∞ indicates that one always chooses the prior version with the highest

quality, converging back to our original k model or the k−α model. Incorporating δ leads

to the k − α− δ model (Fig. 2.6cd).
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Analytically solving the model reveals interesting scaling behaviors based on δ. Indeed,

we find the scaling behavior of the system follows

γ(k, α, δ) = 1− {max[min(α + (k − 1)min{1, α, δ}, α+ 1), 1]}−1,

revealing rich mathematical properties. When δ → ∞, the new solutions converge back

to the original solution for the k−α model. With δ the three-parameter model is charac-

terized by four different phases. Three of the regimes are generalizations of those found in

the k−α model, where the scaling exponent γ does not depend on δ in the limit of δ → ∞,

i.e., γ(k, α, δ) = γ(k, α,∞). The fourth one, however, is a new phase and only exists for

small δ. The intuition is that, in this regime, the inability to select a high-quality version

(small δ) dominates the scaling behavior, with exponent γ(k, α, δ) = 1− [(k− 1)δ+α]−1.

Together, these extensions offer further support for the predictions of our original model,

while demonstrating the model’s theoretical potential by enriching its mathematical prop-

erties with more realistic interpretations. They also point to promising future research

that explores the interplay between different perspectives of learning.

2.6. Additional empirical observations

2.6.1. Quantifying component dynamics

In our modeling attempts, we treat components as purely abstract properties of a grant

proposal, fledgling company, or terrorist campaign. Here we further consider if we can

empirically measure or approximate components, thereby better estimating and under-

standing their dynamics and validating the descriptive power of our model. The difficulty

of this measurement stems from the fact that the existing datasets obtained above, while
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extensive, are nevertheless inadequate in this respect. Indeed, unlike scientific papers,

which have reference information that can approximate the units of knowledge they piece

together, grant proposals are largely isolated documents, making it difficult to infer the

‘substance’ of each proposal. Furthermore, while some metadata are associated with each

proposal, such as funding institute and PI affiliation, these data are typically constant for

each individual applicant and hence useless for evaluating the dynamics of components

across different attempts by the same individual.

To tackle these challenges, we acquired a new data corpus from the NIH that con-

tains abstract information for all R01 proposals submitted after 2008 (both funded and

unfunded). Since the abstract data is only available after 2008, and the definition of the

unsuccessful group requires five years of inactivity, so there’s not enough data for us to

measure the unsuccessful group. Nevertheless, the new data does offer a possibility for us

to empirically measure the component dynamics for the successful group.

Our hypothesis here is that if we can perform content analysis on abstracts, it may

allow us to measure components embedded in each new attempts. To achieve this, we

applied a natural language processing (NLP) technique to NIH abstracts that estimated

MeSH (Medical Subject Headings) terms associated with each proposal. Note that MeSH

terms are one of the most commonly used classification codes for biomedical research [58],

and this operation is only possible thanks to recent advances in NLP classification, allow-

ing us to automatically and accurately infer MeSH terms from abstract texts. Specifically,

we applied NLM Medical Text Indexer, an official protocol developed by US National Li-

brary of Medicine Indexing Initiative, to extract a list of MeSH terms given abstract

texts.
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While the obtained MeSH terms are necessarily imperfect and may not directly cor-

respond to distinct components of the proposal, they capture information that reflects

different facets of the proposal, including methods and experimental techniques (e.g., ge-

nomic screens), objects of analysis (e.g., breast cancer), research design (e.g., genome-wide

association study), and physical phenomena (e.g., estradiol). Here we approximate the

creation of new versions by the number of new MeSH terms (terms that did not appear

in the previous k submissions), defined as mn. For example, to measure the dynamics

under k = 1, we count mn as the number of Mesh terms that appear in the n-th at-

tempt but not in the (n − 1)-th attempt. More generally, if we define Sn as the set of

all Mesh terms associated with the n-th attempt, our definition can be formulated as

mn ≡ |Sn − (Sn−1 ∪ · · · ∪ Sn−k)|, where |A| denotes the size of a set A (Fig. 2.7a).

According to our model, the time cost comes from creating new versions, traced by the

introduction of additional components. Hence, our model suggests that given k, we can

use Mn ≡ ⟨mn⟩/⟨m1⟩ to mimic the temporal dynamics of Tn ≡ ⟨tn⟩/⟨t1⟩. More precisely,

for the successful group, we should expect to observe that for large k (k > k∗), Mn and Tn

should be similar. Yet for small k (k < k∗), the two quantities should be quite different.

This means that in the same way faster resubmissions (Tn) predict ultimate success, so

do shrinking sets of new components (Mn).

We set out to test this new prediction by calculating Mn for different k. We find that

the two curves follow different dynamics (k ≤ 3). Yet the dynamics of Mn and Tn cannot

be statistically distinguished for k > 3 (from 4 to ∞), both following a power law with

γ ∼ 0.35 (Fig. 2.7b). Both findings appear consistent with model predictions. Given
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that Mesh terms are merely a rough estimate of idea combination in NIH proposals, this

degree of agreement seems unexpected.

2.6.2. Learning by organizational vs. individual

One aspect of our paper is that here we study learning processes at three different lev-

els, ranging from individual attempts (PIs) to individuals in teams (entrepreneurs) to

larger-scale organizations (terrorist groups). The patterns we uncovered reveal that all

three levels follow similar statistical patterns governing failure dynamics. But beyond

the universality, what differences should we expect across different levels? To answer this

question, we contextualize our paper in the literature it builds upon.

The organizational learning literature has identified several factors for the emergence

of learning within organizations, with some arguing that individual learning is just one

factor in how and why organizations may learn. For example, knowledge gained from past

experience can be embedded within both individual habits and organizational routines (in-

cluding the idea of transactive memory) [24, 59, 60]. These suggest that organization-level

learning, compared with individual learning, should be characterized by higher learning

rate on average. There is also evidence that organizational learning tends to be con-

servative due to inflexible routines. For example, given versions with the same quality,

organizations may have higher probability to reuse rather than create a new one.

Together, these theories predict that of the three domains studied, those closer to

organizational learning (such as terrorists) should correspondingly have higher learning

rates than those closer to individual learning (such as NIH PIs). We can test this hypoth-

esis by calculating the average learning rate for our samples. We find that our estimations
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Figure 2.7. Model validations.

a, An illustration for component dynamics. We extract all MeSH terms associated with
the n-th attempt, Sn, and calculate the number of new terms mn, defined as |Sn− (Sn−1∪
· · ·∪Sn−k)|. b, Testing component dynamics in NIH grant applications. We calculate the
dynamics of Mn = ⟨mn⟩/⟨m1⟩ using different k and compare it with Tn. The centers and
error bars of Mn show the means and s.e.m. for different k. The shaded area shows mean
± s.e.m. of Tn measured on the same subset. All k > 3 lead to similar trends between Mn

and Tn. c–e, Length of failure streak after randomization in science (c), entrepreneurship
(d) and security (e). We take the samples used in Fig. 2.1 and shuffle the success/failure
label from each attempt. This operation keeps both the overall success rate and the total
number of attempts for each individual constant. f–h, Temporal scaling patterns within
the successful group in science (f), entrepreneurship (g) and security (h). We separated
the successful group into two subgroups (narrow winners and clear winners) based on
eventual performance (0.9 in evaluation score for D1, 0.5 in investment amount for D2

and 1 in wounded individuals for D3).
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appear consistent with the hypotheses outlined above: For NIH PIs, the average learning

rate γ is around ∼ 0.361; The learning rate for the entrepreneurship case is higher, around

∼ 0.509, and terrorist groups have the highest rate on average ∼ 0.640. While these dif-

ferences could be due to inherent domain-specific differences, they do show consistency

with the theories from the organizational learning literature.

2.6.3. Scientific achievements and learning rate

Existing literature has also highlighted a series of factors related to why one learns more

than others [61], including individual ability, motivation and opportunity to learn. These

factors may play a role, manifested in the k parameter. One empirical challenge here is

that it remains unclear how to infer k directly from data. But we also realize we can

relax the assumption to infer a weak form of the parameters by inferring γ, and correlate

individual characteristics (y) with γ. Indeed, according to our model, if y correlates with

k, it may not correlate with γ (if it’s in the third phase (k > k∗ + 1)), but if y correlates

with γ, then it must correlate with k.

High achieving scientists are more visible, better recognized, and have access to more

resources (Matthew effect in science) [62–64], suggesting that individual prior achievement

may manifest in a higher learning rate [61]. Here we test this hypothesis from our data,

by collecting additional datasets that allow us to identify individual characteristics and

achievements.

Here we extend our analysis of individual characteristics by linking NIH data to the

Web of Science citation database. This procedure involved systematic effort in paper

matching and author name disambiguation. Here we began from a list of NIH supported
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publications in PubMed and selected those authored by the same PI. Then we use a

WoS-PubMed crosswalk file to locate these papers in WoS and treated them as ‘seed’

papers. We then expand this initial set to other publications by the same-name author

in WoS by tracing the citation relationships and following standard name disambiguation

procedures [17, 65]: If a paper was contributed by an author with the same name and had

citation/reference/co-reference relationships with the initial set, we included it into the

PI publication list as well. Implementing this method iteratively allowed us to construct

a comprehensive publication list for each PI in our sample.

We then calculated the learning rate γ by regression for all samples with at least three

failures before eventual success (i.e., more than two inter-event time periods). Based on

the learning literature, we hypothesize that the learning rate may be related to experi-

ences both within and outside the task of producing an NIH proposal [24]. To this end,

we calculated the total number of citations of a PI for all his/her papers published before

the first failure (logged), approximating his/her overall ‘status’ and accomplishments. We

find that it is significantly, positively correlated with the learning rate γ (P < 0.001, after

controlling for the first inter-event time). We further test this correlation by including the

number of prior successes and application year as control variables, finding that although

past funding success is also correlated with higher learning rate (P < 0.001), the relation-

ship between citations and γ remains robust (P = 0.014). Although it may seem intuitive

that citations and grant applications are correlated, note that the samples studied here

include PIs who all failed at least three times before eventually being awarded the grant

(i.e., similar success rate). In this respect, it is somewhat unexpected to observe that

the speed with which scientists learn from failures can be anticipated by measuring prior
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achievements. This is consistent with the hypothesis that prior attention and success may

provide scientists with greater confidence and resources that allow them to persist and

refine rather than abandon and replace the components from an initial, failed proposal.

2.6.4. Gender and learning rate

The results presented above offer support for the notion that individual characteristics

can indeed affect learning. Here we further anchor other individual characteristics that

may distinguish learning. The literature suggests gender could be a potential robust

factor that applies across domains, especially in science and entrepreneurship, which are

characterized by persistent gender inequality [66–70]. It thus suggests that, if we can

separate individuals by gender, we may detect differential learning rates as well.

To test this relationship in our data, we use a gender detector algorithm to infer gender

information from person’s first name. We find that gender indeed plays an important role,

after we control for all other factors. Our regression analysis shows significant correlation

between gender and learning rate. All other factors being equal, the learning rate γ of a

male PI in NIH system exceeds that of a female PI by 0.14 (P = 0.001). That is, male

PIs fail faster than their female colleagues. This difference appears substantial, consid-

ering that the average learning rate is centered around 0.35. Note that here we do not

essentialize these gender differences, and recognize that they may flow from institutional

as well as individual causes, such as a culture that discourages women from persistence

and encourages oversensitivity to feedback. Furthermore, such correlations cannot fully

account for the discovered signals, as a substantial amount of predictive power by our

model remains (AUC higher than 0.7) after we separate our samples by gender.
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We further test this relationship on startup dataset, finding a similar gap of 0.10 in the

same direction between male and female innovators, though the result is not significant,

possibly due to a smaller sample size. These insights are consistent with existing literature

on gender inequality in science and entrepreneurship [66–69]. They also highlight the fact

that our paper offers a new theoretical framework to systematically study learning, failures

and the factors that may influence them.

2.7. Related works

2.7.1. Learning literature

This work is closely related to the rich literature on learning and failures. Canonical

frameworks in understanding how people react to failures [12, 25, 71–75] have identified

several key factors that could impact learning, including individual characteristics and

organizational structures and strategies. These findings have also prompted quantitative

studies using failure records across different industries, ranging from entrepreneurship

[9, 10] to commercial banking [76], from healthcare [77] to coal mining [78] to trains [79],

and airlines [80] to orbital launch vehicles [81].

Another relevant line of inquiry is in psychology and organization behavior, which

concerns learning curves from both theoretical [24–27, 32, 37, 41, 75, 82–89] and empir-

ical [24, 27, 39, 42, 75, 82, 90] perspectives, quantifying how performance and efficiency

improve with experience. One key result is the famous Wright’s law [42], i.e. the power

law form of cost reduction.

Next we review a series of major models and compare key predictions with our em-

pirical results. We summarize all these models in Table 2.3.
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Category Reference Time Performance Power law Coexistence

Adaptation
Crossman[91] ✓ ✗ ✗ ✗

Kauffman & Levin[92] ✗ ✓ ✗ ✗
Denrell & March[33] ✗ ✓ ✗ ✗

Search
Roberts[86] ✗ ✓ ✓ ✗
Muth[41] ✗ ✓ ✓ ✗

Mcnerney et al[32] ✗ ✓ ✓ ✗

Individual learning
Newell et al[39] ✓ ✗ ✓ ✗
Anderson[40] ✓ ✗ ✓ ✗

Urn
Simon[93] ✗ ✗ ✓ ✗

Tria et al[94] ✓ ✗ ✓ ✓
Iacopini et al[95] ✓ ✗ ✓ ✓

Other

Levy[82] ✗ ✓ ✗ ✗
Shrager et al[87] ✗ ✓ ✗ ✗

Sahal[85] ✓ ✗ ✓ ✗
Johnson et al[37] ✓ ✗ ✓ ✗

Clauset & Gleditsch[88] ✓ ✗ ✓ ✗

Table 2.3. Literature review of relevant models.

We test whether the models listed can predict (1) Time: time reduction; (2) Performance:
performance improvement (or reduction in any cost other than time); (3) Power law:
analytical form of power law scaling; (4) Coexistence: coexistence of two groups with
different dynamics (success and unsuccessful groups in this paper). We find that none of
the existing models can predict all the observations in our paper.

2.7.2. Stochastic models with memory

One school of thought can be viewed as modeling the dependence structure among failures.

Indeed, the failure of the chance model suggests that non-trivial dependence may be

essential for modeling the fat-tailed length distribution of failure streaks, which raises

an important question: Could other stochastic processes (Markov process, random walk,

autoregressive model, etc.) account for our observations? Indeed, if we consider a general

framework of fixed dependence as follows

(2.50) Sn = fn(S1, S2, · · · , Sn−1),
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where Sn denotes the performance at the n-th attempt and fn can be a deterministic or

stochastic non-decreasing mapping. This framework covers a wide range of stochastic pro-

cesses, e.g. fn(S1, · · · , Sn−1) = fn(Sn−1) for a discrete space of Sn leads to Markov process,

fn(S1, · · · , Sn−1) = Sn−1 + ϵn leads to random walk, fn(S1, · · · , Sn−1) =
∑p

i=1 ϕiSn−i + ϵn

leads to autoregressive model. We note that if this is true, we can obtain

(2.51) Sn = fn(S1, f1(S1), · · · , fn−1(S1, f1(S1), · · · )) ≡ gn(f1, · · · , fn)(S1)

Hence, Sn can be formulated as a non-decreasing function of S1, indicating that there

should be detectable ‘fitness’ differences in the first attempt. Indeed, these results in-

dicate that if there exists no difference in the dependency structure fn, the differences

in outcomes should be at least partly contributed by performance at the first attempt,

which contradicts with our data. This hypothesis also cannot explain the fat-tail length

distribution of failure streaks (S3.8).

2.7.3. Adaptation models

The evolutionary perspective for individual and organizational learning assumes that the

agent improves through updating information and belief on different alternatives. Here

we discuss three representative models, each assuming a finite pool of available options.

2.7.3.1. Crossman’s model. Crossman’s model, first proposed in [91], aims to explain

the temporal dynamics observed in individual tasks. The model suggests a process from

r methods Mi (1 ≤ i ≤ r), each with a time cost ti. The individual improves opera-

tion strategy through changing probabilities for using different methods, i.e. pi where
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∑r
i=1 pi = 1. At the n-th trial, the expected time cost can be formulated as

(2.52) T (n) =
r∑

i=1

tipi(n)

The change of probability for choosing methodMi is proportional to the difference between

its time cost and current average time cost, i.e.

(2.53) pi(n+ 1)− pi(n) = −k(ti − T (n))

Therefore, the time cost decays as

(2.54) T (n+ 1) = T (n)− k
r∑

i=1

pi(ti − T (n))2

2.7.3.2. NK model. NK model, initially proposed by Kauffman [92] is a canonical

model in organizational learning [96]. Consider a rugged fitness space of N dimensions

X = (x1, · · · , xN), where xi ∈ {0, 1}. The fitness score of each possibility is the summation

of interaction among K adjacent dimensions, that writes

(2.55) ϕ(x) =
N∑
i=1

ϕi(xi, · · · , xi+K)

One heuristic searching strategy in this rugged landscape concerns two options:

(1) Local search, i.e., walk to a neighbor, y, which satisfies |y − x| = 1.

(2) Global search, i.e., jump to a new node randomly.

2.7.3.3. Denrell and March’s model. Denrell and March proposed a simple adapta-

tion model to understand the interplay between information and adaptation, explaining

why people have bias against novel and risky choices [33]. In this model, Pt, defined as
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the probability for the first option to be chosen at time t, depends on its past probability

Pt−1 and current performance. If the option leads to better outcome compared with the

other, one updates

(2.56) Pt+1 = Pt + a(1− Pt)

otherwise,

(2.57) Pt+1 = (1− a)Pt

All three models presented here can mimic specific performance or efficiency trajectory

as one tries repeatedly. The main issue with these models is that they all base on a finite

space of possible options, which leads to a limit in performance and efficiency improvement

that one cannot overcome, which contradicts with our data.

2.7.4. Search models

Search models assume an iterative process, where one decides whether to use existing

components or try new ones based on component quality. Such models are often charac-

terized by an improvement in the objective performance function because of the extreme

values theory, i.e. as one always selects the best version from experimentation, she will

eventually arrive at the version that is reasonably good.

2.7.4.1. Roberts’ model. Robert proposed a model based on greedy algorithms [86].

To understand the universal learning process, the model assumes production efficiency p
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as lognormal, following

(2.58) x = b ln p

where x follows the standard normal distribution N(0, 1). Each time the agent randomly

selects a sample x′ and compares it with current efficiency x, adopting the new method

when x′ < x− a. The model predicts

(2.59) ln p ∼ lnN/ab

2.7.4.2. Muth’s model. Muth’s model [41] builds on a simple assumption: the indi-

vidual tries a new method at each trial and uses the new method if it costs less. The

model further assumes appropriate regularity conditions for the cumulative distribution

function (CDF) of cost F , e.g.

(2.60) lim
x→x0

F (x)

(x− x0)k
= c

where x0 is the limiting cost of production. The model predicts the expected cost E[Xn]

of the n-th production as

(2.61) E[Xn] = x0 + Γ(1 + 1/k)(cn)−1/k

Muth’s model is an elegant model explaining the emergence of power law scaling and can

be extended to dependent component cases.

2.7.4.3. McNerney’s model. McNerney et al further extended Muth’s model by as-

suming a power law distribution of costs of each component (f(ci) ∼ xγ−1
i ) and using
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design structure matrix to characterize the dependency among different components [32].

The model predicts the cost y decreases as a function of productions n following

(2.62) y(n) ∼ n−1/γd∗

where d∗ is the design complexity and equals to 1 when all components are independent.

Search models successfully explain the emergence of power-law scaling in repeated

attempts and serve as the basis of our frameworks (e.g. k → ∞ limit). Yet they cannot

account for the co-existence of two groups and their diverging patterns.

2.7.5. Individual learning models

There has also been an active line of inquiry in explaining practice curves in individual

tasks [39, 40, 97, 98]. These models use psychology models as well as cognitive theories

to explain ‘practice makes perfect’.

2.7.5.1. Newell and Rosenbloom’s chunking model. To explain the power-law scal-

ing observed in human task performance, e.g. inverted text reading and ten-finger game,

Newell and Rosenbloom modeled the learning process using chunking theory [39]. In this

model, there is a tree structure for goal hierarchies of height H and the speed-up of task

completing is due to the emergence of higher-order chunks. The current highest order of

chunk is denoted as η, leading to

(2.63)
dT

dN
=

dT

dη

dη

dN

The model further assumes each non-terminal goal has β non-terminal subgoals and ω

terminal subgoals. As one constructs chunks of higher levels, the corresponding time to
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perform a new attempt decreases exponentially following

(2.64)
dT

dη
∼ βH−η

If we also assume the chunking rate is linear with respect to time and the birth of a single

level-h chunk requires time s(h), we have

(2.65)
dη

dN
∼ βη−H

s(η)
T

Therefore, if s(η), the number of possible states for goals at level η (complexity at this

level), takes an exponential form as s(η) ∼ eαη, which is consistent with the tree structure,

we have

(2.66)
dT

dN
∼ (T + E)−x

T

which follows a power law scaling. Hence, by combining two exponential forms in a tree

structure, the model successfully derives the power law scaling.

2.7.5.2. Anderson’s model. Based on ACT’s strengthening process, Anderson devel-

oped a model explaining cost decay [40]. The model assumes the amount of practice as

S and the production execution in ACT takes the form

(2.67) T = c+ aS−1

The amount of past practice also decays as a power law of practice time:

(2.68) S =
P−1∑
i=0

s(i, P ) ∼
P∑
i=1

i−d ∼ P 1−d
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Therefore, we have

(2.69) T = C ′ + A′P d−1

The two models are very relevant to our settings and can predict power law temporal

scaling in the successful group. They represent two fundamental classes of cognitive

architectures in related studies: ACT and Soar (and their variants) [99], highlighting the

role of memory and chunks in learning process. Yet such mechanisms are more appropriate

for modeling simple tasks rather than complex innovative ones and cannot account for

the co-emergence of success and unsuccessful groups.

2.7.6. Urn models

Urn model and its variants are among the canonical models in social physics as well as

innovation process [100]. This model family is closely related to the famous Heaps’ law

[50], originally predicting that the number of distinct words S in a paragraph of length n

scales as

(2.70) S(n) ∼ nβ, 0 < β ≤ 1

Note that if we assume generating a new word costs unit time, we know the expected

time spent on the n-th ‘word’ follows

(2.71) tn ∼ nβ−1 ≡ n−γ, 0 < γ ≤ 1
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which recovers our empirical findings. Here we review several generative models explaining

this scaling.

2.7.6.1. Simon’s model. Simon’s model is among the earliest frameworks modeling

‘cumulative advantages’ [93]. It assumes that (1) There is always constant probability p

for an agent to take a new word for the next element; (2) Otherwise (with probability

1− p) the agent reuses past words based on frequency, i.e. randomly select a word from

the past sequence. This model predicts a linear scaling between S and n i.e. β = 1, which

can only explain the emergence of the unsuccessful group.

2.7.6.2. Tria’s model. By extending studies on urn model, Tria et al [94] assume an

urn U of ideas and a sequence of S to generate. Every time an element is sampled from

U to S, ρ copies are put back to U . Further, if this sampled idea is new in S, it triggers ν

adjacent new ideas, hence the number of different ideas in a sequence follows the master

equation

(2.72)
dD

dt
≈ νD

ρt+ (ν + 1)D

The solution reveals that D grows linearly with t for ν > ρ, but follows Heaps’ law

D ∼ tν/ρ for ν < ρ. These predictions are similar to the first phase transition point k∗ in

our model.

2.7.6.3. Iacopini’s model. To further document the impact of past transition sequence

in innovative attempts, a recent paper [95] proposed a network-based model, where ideas

are represented as nodes, and one can travel from one idea to another when they are linked
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by a weight. The process is set to be a weighted random walk on networks, following

(2.73) P t(i → j) =
wt

ij∑
k w

t
ik

When a specific path i → j is traveled, the weight of this edge is updated

(2.74) wt+1
ij = wt

ij + δw

Depending on different network structures, the model can lead to scaling S ∼ nβ with

varying β.

While this class of models does not capture the performance dynamics underlying

failures, they are highly relevant to our study in that their predictions are consistent with

the temporal patterns observed in our data.

2.7.7. Other models

2.7.7.1. Levy’s model. Levy modeled the improvement of productivity based on the

limited range of output denoted as P [82]. Given the current rate of production after

producing q items, Q(q), the improvement of production rate is proportional to the amount

that the process can improve, i.e.

(2.75)
dQ(q)

dq
= µ[P −Q(q)]

leading to

(2.76) Q(q) = P [1− ea+µq]
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Levy’s model captures a kind of production process where the final plateau part is signif-

icant, but it fails to predict the power-law form of productivity improvement.

2.7.7.2. Shrager’s model. By collecting and analyzing data of path length in the bit

game, Shrager et al developed a graph-dynamic model for route-finding in ER networks

G(n, p) [87]. The authors proposed a strategy where the individual randomly selects an

edge after deleting the ones moving away from the destination with probability r. The

number of trials increases the network density p linearly and the cost is the path length

of the whole process s. For r near 0, the model predicts

(2.77) s ∼ 2

p
(1− r)lnn/ ln(np)

while for r near 1, the model predicts

(2.78) s ∼ lnn/ ln(np)

2.7.7.3. Sahal’s model. Sahal explains the progress function in industry productions

through probabilistic and deterministic models [85]. The model assumes different man-

power levels and X(s, t) to be the number of product quantities requiring s amount of

manpower at time t. If we assume the improvement across u manpower levels does not

depend on the current level and can be formulated as p(u), yielding

(2.79) X(s, t+ 1) =
1∑

u=−n

X(s− u, t)p(u)

If we define X(s) = limt→∞X(s, t), the solution of this equation can be formulated as

(2.80) X(s) = bs, 0 < b < 1
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The model further assumes levels manpower are distributed on a logarithmic scale with

width h, obtaining

(2.81) F (Y ) ∼ Y − log b/h

where F (Y ) is the number of product quantities requiring manpower greater than Y .

2.7.7.4. Johnson’s model. Johnson et al reported a similar scaling from the time in-

terval of terrorist attacks and other human confrontations [37]. An illustrative model

for this scenario considers confrontation between ‘Red Queen’ and ‘Blue King’, and the

advantage of Red Queen after n events, R(n), can be formulated as

(2.82) R(n) =
n∑

i=1

xi

where xi takes value +d or −d with probability 1/2. Depending on the auto-correlation

of xi, one can get

(2.83) R(n) ∼ nbd, 0 ≤ b ≤ 1

Taking the inverse of the advantage, we get the attack rate scales as a negative power law

of n, i.e.

(2.84) τn ∼ n−b, 0 ≤ b ≤ 1

2.7.7.5. Clauset’s model. Clauset’s model [88] also predicts the temporal pattern of

terrorist attacks, but in a very different way from Johnson’s model [37]. Indeed, if we
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assume that the size of terrorism organizations scales linearly with its past attacks, i.e.

(2.85) s(n+ 1) = s(n) + η

The model further assumes a new takes time as the inverse of organization size, i.e.

(2.86) ∆t ∼ 1/s

Taken together, we have

(2.87) ∆t ∼ 1/n

This model successfully links group size to temporal dynamics, predicting a power law

scaling. Yet it only applies to group dynamics and the exponent of power law in the

original linear assumption is restricted to be -1.

One commonality among these models is that they lack predictions of the interplay

between performance and time. By contrast, our data show that the temporal scaling

cannot be simply explained by agents optimizing time cost tn since the performance also

improves for the successful group. These models also cannot explain the co-existence of

success and unsuccessful groups observed in our data.

2.7.8. Summary of contributions

As we will show in this chapter, despite the ubiquity of power laws across a wide variety of

settings [20–22, 51, 101, 102] and the foundational literature on learning curves [26, 32, 39–

42, 84, 97], none of the existing models, to our knowledge, anticipated the existence of
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the early signals documented in the paper (Table 2.3). As such, the paper makes several

contributions which we next summarize in terms of its empirical measurements, theoretical

contributions, and predictive signals:

(1) Empirical contributions: Our quantitative understanding of the dynamics of fail-

ure is important, but has remained limited, due to difficulties in collecting large-

scale datasets that capture failures. This highlights the first contribution of our

paper – to be able to assemble large datasets from three disparate domains that

contain records of both success and failure cases.

(2) Theoretical contributions: These new datasets allow us to derive among the

first empirical evidence about the dynamics of failure to test existing models.

In particular, the simplicity of measurements in Figure 2.1 highlights the funda-

mental tension with existing modeling framework and the paucity of quantitative

approaches thus far to model failures. In this paper, By establishing a new the-

oretical basis for understanding failures, our paper not only explains empirical

patterns that existing models cannot capture, but also predict new patterns that

existing models did not anticipate (Fig. 2.4). As such, the model is unique in

its ability to (i) predict two fundamentally different behaviors simultaneously at

two extremes (e.g., k = 0 and k = ∞), hence serving as the first model to unify

existing paradigms; and (ii) reveal a highly discontinuous pattern between pro-

gression and stagnation regimes. This further leads to four new predictions, all of

which are tested and validated across our three datasets. This was only possible

thanks to the new theoretical insights, and in particular the novel predictions

that our model offers.
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(3) Predictive signals: Our findings unveil identifiable yet previously unknown early

signals that allow us to distinguish failure dynamics that will lead to ultimate

victory or defeat. Traditionally the primary distinction between ultimate victory

and defeat has been attributed to differences in luck, learning strategies or indi-

vidual characteristics, but here our model offers an important new explanation

with crucial implications: Even in the absence of distinguishing initial charac-

teristics, agents may experience fundamentally different outcomes. As such, our

model shows that the success and unsuccessful groups may be initially similar,

but each follows their respective, highly predictable patterns, distinguishable long

before the eventual outcome becomes apparent. Specifically, we show that ob-

serving the timing of each attempt alone can help us identify those more likely

to succeed. Considering the myriad factors related to success in a grant propos-

al/startup company/terrorist attack, this level of predictive power achieved by a

singular, simple predictor is somewhat unexpected.

2.8. Concluding remarks

Together, these results support the hypothesis that if future attempts systematically

build on past failures, the dynamics of repeated failures may reveal statistical signatures

discernible at an early stage. Traditionally the main distinction between ultimate success

and failure following repeated attempts has been attributed to differences in luck, learn-

ing strategies or individual characteristics, but here our model offers an important new

explanation with crucial implications: Even in the absence of distinguishing initial char-

acteristics, agents may still experience fundamentally different outcomes. These results
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not only deepen our understanding of the complex dynamics beneath failure, they also

hold lessons for individuals and organizations that experience failure and the institutions

that aim to facilitate or hinder their eventual breakthrough.
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CHAPTER 3

Coevolution between policy and science during the pandemic

Disconnects between science and policy, where important scientific insights may be

missed by policymakers and bad scientific advice may infect decision making, are a long-

standing concern [103–109]. Yet our systematic understanding of the use of science in

policy remains limited [103, 106–108], partly due to the difficulty in reliably tracing the

co-evolution of policy and science at a large, global scale [105]. Today, the world faces

a common emergency in the COVID-19 pandemic, which presents a dynamic, uncertain,

yet extraordinarily consequential policy environment across the globe. Here we combine

two large-scale databases capturing policy and science and their interactions, allowing

us to examine the co-evolution of policy and science during the pandemic. Our analysis

suggests that many policy documents in the COVID-19 pandemic substantially access

recent, peer-reviewed, and high-impact science. And policy documents that cite science

are especially highly cited within the policy domain. At the same time, there is notable

heterogeneity in the use of science across policy-making institutions. The tendency for

policy documents to cite science appears mostly concentrated within intergovernmental

organizations (IGOs), such as the World Health Organization (WHO), and much less so in

national governments, which consume science largely indirectly through the IGOs. This

close co-evolution between policy and science offers a useful indication that a key link

is operating, but it has not been a sufficient condition for effectiveness in containing the

pandemic.
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The rapid production of new science during COVID-19 raises key questions about its

use in policy during the pandemic. There is long-standing skepticism over connections

between science and policy, which are often thought to be highly disconnected spheres.

For example, the “two communities” theory in knowledge utilization [109] highlights a

substantial gap between scientists and policy makers, disconnecting research from the

policy process. Related viewpoints suggest that policy makers may not be able to dis-

tinguish relatively robust scientific ideas from less established ones [104]. Particularly in

the pandemic setting, there is substantial concern that policy may take up non-vetted

and potentially incorrect scientific results. For example, preprint servers have played an

outsize role in disseminating COVID-19 related research [110]. While open science greatly

facilitates the sharing of data and research [110] and allows the wider community to check

and interrogate the results and claims, publicly releasing science before it passes peer

review may undermine the rigor of scientific evidence accessible to the public [111]. In the

age of misinformation, this may create enduring harms if the evidence presented turns out

to be less robust. Such concerns are further heightened by examples of widely-reported

and then retracted results regarding COVID-19 [112].

To explore COVID-19 science and policy, we harness a novel, large-scale database,

Overton, which records policy documents sourced globally from government agencies,

think tanks, and IGOs. For each policy document, we then match scientific references to

our second dataset, Dimensions, a large-scale publication and citation database, offering

a unique opportunity to examine the role of science in the global policy response to

COVID-19.
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3.1. Data Description

3.1.1. Overton policy data

To understand the global policy response to the COVID-19 pandemic, we leverage a novel

dataset provided by Overton (https://www.overton.io). Overton data captures among

the world’s largest collection of policy documents [113]. Policy documents are broadly

defined as documents written primarily for or by policymakers, and include documents

from government agencies, think tanks as well as intergovernmental organizations (IGOs)

[113]. The data is updated weekly, allowing us to trace how policy responses evolve in

nearly real time. By the time of our data collection, the Overton database had captured

over 43,000 policy documents from 114 countries in 2020, collecting documents from more

than 1,200 different sources worldwide.

In this paper, we use the full set of policy documents published from January 1st 2020

to May 26th 2020. We use an API to obtain policy documents from each policy source

separately. For each document, we have information on its title, original URL, publication

date, document type, policy source, and subject classification codes.

To identify COVID-19 related policy documents, we leverage Overton’s technical ca-

pabilities which combine translation of policy documents into English with keyword-based

search for COVID-19 related keywords across multiple languages [114]. While the data

cover a large number of countries, there are notable exceptions. First is mainland China.

Although China experienced the COVID-19 outbreak early on in 2020, policy documents

from mainland China are missing in the Overton database for 2020. Personal correspon-

dence with the Overton team has not pinpointed the reason for this missing data, but it
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may have to do with web crawling issues on Chinese government websites [115]. Second

is the Netherlands. Our access to the API only allows for at most 2,000 results per query,

and the Netherlands exceeded this limit with over 4,000 documents. We therefore exclude

Netherlands from our analysis to avoid potential bias.

We focus on policy documents published by (i) governmental agencies and think tanks

in country members of the United Nations, and (ii) intergovernmental organizations (de-

fined by “IGO” and “EU” source labels in the Overton data). For the temporal coverage,

we froze our data on May 26th, 2020. We noticed that there is an unusual number of doc-

uments published on January 1st 2020 (1,036 documents, about 4 times of a normal day),

possibly due to default classification to this date. We further excluded these documents

from our analyses to avoid including policy documents that have inaccurate publication

dates. Lastly, since our main focus is on policy documents, we follow Overton’s suggestion

[115] and further filter on the document type by using only “publications” (95% of the

total documents), removing other types such as “working papers”, “transcripts”, “blog

posts”, and “clinical guides”.1

In total, we analyzed 7,730 COVID-19 documents out of 37,725 documents published

across 114 countries (including 402 think tanks) and 55 IGOs (including 4 in EU). The

world map of the policy data coverage is shown in Fig. 3.1.

1Note that some World Health Organization (WHO) documents (under the “publications” category)
can be characterized as “interim guidance” documents, but it seems they are not the same kind of
clinical guidelines as commonly defined in PubMed. Indeed, the WHO website describes their guidance
on COVID-19 as “meant for health decision makers who adapt the information for their country and
context”. Upon closer inspection, we find that these documents differ significantly from the formal
clinical guidelines in repositories like PubMed, and are characterized by shorter length, more general
recommendations, and fewer scientific figures/tables. While these documents may not be aimed at all
public policymakers, they tend to be directly consumed by policymakers such as the CDC. For these
reasons, in this paper we consider these documents as policy documents, as they seem relevant not only
for health workers but also policymakers in public health.
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Figure 3.1. World map of policy data coverage.

(A) Number of policy documents published in 2020 in our data. (B) Number of COVID-
19 policy documents. We visualize (#docs+1) for the logarithmic color scale.

3.1.2. Dimensions publication data

We further link the scientific references cited within the policy documents to a database

of scientific publications. For this database, we use Dimensions [116], a data product by
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Digital Science. Dimensions is one of the largest citation databases, including over 100

million publications accessible from journals, conference proceedings, books and chap-

ters, and preprint servers. Publication data are updated on a daily basis and accessible

from API, allowing us to collect reference information in a timely manner. Each sci-

entific reference from Overton has a unique DOI (Digital Object Identifier), one of the

most commonly used identifiers for scientific publications. We retrieve papers from the

Dimensions API using the DOI information. We find that the vast majority of the ref-

erences can be matched to Dimensions records (79,669 out of 84,964 papers, or 93.8% of

the scientific references). For each paper we obtain information on its title, author list,

affiliation(s), publishing venue, publication date, fields of study, references and citations

received. Among the papers we analyzed, 79 of the 79,669 are matched to more than one

record in Dimensions; hence to avoid duplications we keep the single item with the most

complete records, as determined by the number of references and citations.

We also constructed another set of COVID-19 related scientific publications by search-

ing for papers published in 2020 with the following query suggested by Dimensions:

“2019-nCoV” OR “COVID-19” OR “SARS-CoV-2” OR “HCoV-2019” OR “hcov”

OR “NCOVID-19” OR “severe acute respiratory syndrome coronavirus 2” OR “se-

vere acute respiratory syndrome corona virus 2” OR ((“coronavirus” OR “corona

virus”) AND (Wuhan OR China OR novel)),

yielding in total 40,732 papers published in 2020 out of all articles indexed by Dimen-

sions with unique DOIs, among which 2.3% (933 papers) have been cited by COVID-19

policy documents.
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3.1.3. COVID-19 case and death tracking data

We use country-level daily statistics for COVID-19 confirmed cases and deaths from the

COVID-19 Data Repository that is maintained by the Center for Systems Science and

Engineering (CSSE) at Johns Hopkins University [117]. The data has been extensively

used in COVID-19 related studies. We froze the data of cases and deaths on May 30th

2020, and the data used in our analysis covers a period from January 22nd to May 26th

2020.

3.1.4. Comparing data coverage between Overton and Altmetric

Tracking how science is cited in policy is important for a large variety of issues in science

and science policy, but it remains a long-standing challenge [105, 118–122]. There have

been several initial attempts at collecting this data, most notably by Altmetric, a company

under Digital Science’s portfolio. Prior studies on policy-science citations have examined

the overall coverage and reliability of the Altmetric data. For example, Haunschild and

Bornmann [105] offered an early systematic study of Altmetric data, recommending fur-

ther improvements on policy-related sites tracked by Altmetric and cautions on the use

of this data for a systematic analysis of policy-science linkages. Later, Tattersall and

Carroll [119] also pointed out several data quality issues, including false attribution of

authors and affiliations as well as unclear identification of policy documents. Recently,

Yu et al. [120] performed a manual validation on 2,079 records from the Altmetric data,

arguing that errors on policy citation to science may be “relatively minor” but reasons

for such errors “remain to be further investigated”. Researchers have also used Altmetric

data to quantify the mentions of scientific publications by policy across different fields
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[105, 123] and research institutions [119, 124]. Recent studies have also highlighted the

fact that policy to science citations could serve as an important indicator for societal

impact [123, 125]. For a more detailed overview of the Altmetrics literature, readers may

refer to the recent review paper by Tahamtan and Bornmann [126].

Motivated by the Altmetrics literature, we next systematically compare the data cov-

erage of Overton with Altmetric. Here we further supplement the Altmetric data with

Dimensions, a sister company under the same portfolio company Digital Science. We

combine both Altmetric and Dimensions as the expanded Altmetric data, and compare

it with our Overton data. First, we find that there are fundamental differences in data

coverage between Overton and the expanded Altmetric data:

(i) Overton sources from an order of magnitude more policy sources: Altmetric tracks pol-

icy documents from 131 sources, while Overton tracks over 1,200 various policy sources, in-

cluding many unique yet important governmental institutions (e.g., the US White House,

the House Committees, Australian Government Department of Health, India National

Centre for Disease Control, and many national/state governments) and think tanks (e.g.,

the RAND corporation, and the Heritage Foundation).

(ii) Overton tracks multiple times more policy documents and their linkages with science:

Overton covers 6.5 times more policy documents than Altmetric/Dimensions (e.g., 2.94M

in Overton vs. 452K in Altmetric by the end of 2019). As a result, Overton covers more

than twice as many policy-science linkages than Altmetric (e.g., the Altmetric dataset

includes 1.28M scientific papers cited by policy documents, whereas Overton currently

includes 2.84M).
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Figure 3.2. Policy citation counts in Overton and Altmetric for 5,000 COVID-
19 papers.

Overton covers an order of magnitude more citation linkages than Altmetric.

(iii) Beyond the differences in sheer counts, there’s a categorical difference in data cover-

age between Overton and other existing datasets. For example, compared with Altmetric,

Dimensions, and PlumX, Overton is, to the best of our knowledge, the only set that in-

cludes policy-to-policy citation information, which enables many of our analyses in the

main text.

Next, we show Overton data appears to represent a qualitative leap from the state-of-

the-art datasets in quantifying science-policy linkages.

(1) There is a fundamental difference in counting policy-science linkages. To provide

a direct comparison, here we randomly select 5,000 COVID-19 papers and track their
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Figure 3.3. Relationship between the share of COVID-19 policy documents
among all policy documents and the number of total confirmed cases.

(A) Overton data shows a much higher goodness of fit (0.705) with total confirmed cases
than (B) Altmetric data (0.231) does, as measured by the cross-correlation of the two
time-series and as can be seen visually. Throughout the figures, the black vertical dashed
line marks the date of the WHO’s pandemic declaration.

policy citations in the Overton and Altmetric databases using their API access. The two

distributions shown in Fig. 3.2 suggest that Overton covers an order of magnitude more

citation linkages than Altmetric.

(2) There is a qualitative difference in how well the data corresponds to facts on

the ground. To show this, we use our expanded Altmetric/Dimensions data to repeat our

main findings – to understand to what degree the evolution of COVID-19 policy documents

corresponds to the reality of the pandemic. We use the date information contained in the

Dimensions database to construct the temporal evolution of policy documents. While in

the Overton data, the number of COVID policy documents closely tracks the course of

the pandemic (Fig. 3.3A), the numbers recorded in Altmetric/Dimensions data are only

weakly related (Fig. 3.3B), if at all to the case counts.
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Together these results indicate that Overton represents the state-of-the-art dataset

capturing policy documents and scientific references at a new level of scale and com-

prehensiveness. The remarkable consistency between COVID policy attention and case

counts documented in this paper offers additional assurance, showing Overton data’s

unique ability to capture up-to-date information in a way that is consistent with facts on

the ground.

3.1.5. Independent validations of the Overton data

As should become clear in our analysis above, the difficulty in validating the Overton data

lies in the fundamental limitations of other existing datasets, which are not adequate to

assess the coverage and reliability of our data. Nonetheless, here we proceed with two

types of analyses. First, we bring in a novel, large-scale dataset to independently validate

the Overton data, and show close consistencies across the two datasets. Second, we repeat

the analyses that can be performed on the Altmetric data to cross-validate our findings,

and show that they uncover consistent patterns. Here we describe our first analysis, and

we present the second analysis together with other robustness checks in the following

sections.

We bring in a novel, large-scale dataset that contains an independent collection of pol-

icy documents and their citations to scientific publications, which were all collected using

completely different methodologies. More specifically, we partnered with Microsoft to

leverage the Microsoft Bing search engine to collect over 6 million government documents

available online across all branches of the U.S. government. We developed a machine

reading technology to systematically identify academic publications that are referenced
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in these government documents, using the technologies at the Microsoft Academic Graph

(MAG), and matching these references to the MAG, which is one of the largest biblio-

metric databases in the world. This novel pipeline allows us to collect a large dataset on

how government documents consume scientific knowledge within the United States.

To systematically compare the science-policy linkages, we performed two different

measurements for papers published across all scientific fields recorded in the MAG: (i) We

first measure the relative chance, by MAG field, for papers to be cited by US government

documents, and compare each field across the two datasets. (ii) We measure the probabil-

ity for a policy-cited paper to be a hit paper within science, defined as being in the top 1%

of scientific citations within the same field and year, and compare this quantity between

the two datasets, to understand if they cover a similar proportion of high-quality science.

We find that, although the two datasets are collected for different purposes using different

approaches and technologies, the measurements carried out independently across the two

datasets show remarkable consistencies (Fig. 3.4). These results further cross-validated

the reliability of the Overton data.

3.1.6. Data examples and discussions

To illustrate how science is used by the policy documents recorded in our data, here we

provide a few examples of COVID-19 policy documents in Overton and their citations to

science as case studies. For illustration purposes, we sampled policy documents with both

high and low policy citations. We find that while policy may use science for a variety

of purposes, a majority of these uses recorded in our data seem to show substantial
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Figure 3.4. Comparing Overton data with Bing data.

(A) For 294 level-1 fields, we measure the relative chance for papers in a MAG field to be
cited by US government documents. (B) For 19 level-0 fields, we measure the probability
for a policy-cited paper to be a hit paper, defined as a paper in the top 1% of scientific
citations within the same field and year. For both quantities, measurements carried out
independently across the two datasets show substantial consistency.

consistency between the topics of policy and their scientific references. These examples

are illustrated below:
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Policy document Example 1: Infection prevention and control during health care

when novel coronavirus (nCoV) infection is suspected.

• Source: World Health Organization [Type: IGO, 76 citations from COVID-19

policy documents]

• Excerpt: [Some aerosol generating procedures have been associated with increased

risk of transmission of coronaviruses (SARS-CoV and MERS-CoV) such as tra-

cheal intubation, non-invasive ventilation, tracheotomy, cardiopulmonary resus-

citation, manual ventilation before intubation and bronchoscopy 7. . . . Environ-

mental and engineering controls . . . . Both controls can help reduce the spread of

many pathogens during health care 10.]

• Science referenced:

[7] Hui, D. S. (2017). Epidemic and emerging coronaviruses (severe acute respiratory

syndrome and Middle East respiratory syndrome). Clinics in Chest Medicine, 38,

71-86.

[10] Jefferson T, Del Mar CB, Dooley L et al. Physical interventions to interrupt or

reduce the spread of respiratory viruses. Cochrane Database of Systematic Reviews,

2011, 7:CD006207.
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Policy document Example 2: Modes of transmission of virus causing COVID-19:

implications for IPC precaution recommendations: scientific brief, 27 March 2020.

• Source: World Health Organization [Type: IGO, 8 citations from COVID-19

policy documents]

• Excerpt: [There are reports from settings where symptomatic COVID-19 pa-

tients have been admitted and in which no COVID-19 RNA was detected in air

samples.10-11 In addition, it is important to note that the detection of RNA in

environmental samples based on PCR-based assays is not indicative of viable virus

that could be transmissible.]

• Science referenced:

[10] Cheng, V. C., Wong, S. C., Chen, J. H., Yip, C. C., Chuang, V. W., Tsang, O.

T., ... & Yuen, K. Y. (2020). Escalating infection control response to the rapidly

evolving epidemiology of the Coronavirus disease 2019 (COVID-19) due to SARS-

CoV-2 in Hong Kong. Infection Control & Hospital Epidemiology, 41(5), 493-498.

[11] Ong, S. W. X., Tan, Y. K., Chia, P. Y., Lee, T. H., Ng, O. T., Wong, M.

S. Y., & Marimuthu, K. (2020). Air, surface environmental, and personal protec-

tive equipment contamination by severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) from a symptomatic patient. JAMA, 323(16), 1610-1612.
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Policy document Example 3: Rapid Risk Assessment: Coronavirus disease 2019

(COVID-19) in the EU/EEA and the UK– ninth update.

• Source: European Centre for Disease Prevention and Control [Type: IGO, 2

citations from COVID-19 policy documents]

• Excerpt: [In an analysis of data from a cohort of patients with COVID-19 and a

metaanalysis of findings from publications, viral RNA was detected in stool sam-

ples from 48.1% (95% CI, 38.3%–57.9%) of the patients—even in stool collected

after the respiratory samples tested negative [37]. It should be noted that detection

of viral RNA by PCR does not equate with infectivity.]

• Science referenced:

[37] Cheung, K. S., Hung, I. F., Chan, P. P., Lung, K. C., Tso, E., Liu, R., ... &

Yip, C. C. (2020). Gastrointestinal manifestations of SARS-CoV-2 infection and

virus load in fecal samples from the Hong Kong cohort and systematic review and

meta-analysis. Gastroenterology. 59(1):81-95.
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Policy document Example 4: COVID-19 in racial and ethnic minority groups.

• Source: Centers for Disease Control and Prevention, USA [Type: government, 1

citation from COVID-19 policy documents]

• Excerpt: [Research also suggests that racial residential segregation is a funda-

mental cause of health disparities. For example, racial residential segregation

residential segregation is linked with a variety of adverse health outcomes and

underlying health conditions 2-5 ].

• Science referenced:

[2] Bravo MA, Anthopolos R, Kimbro RT, Miranda ML. Residential racial isolation

and spatial patterning of type 2 diabetes mellitus in Durham, North Carolina. Am

J Epidemiol 2018;187(7):1467–7.

[3] Anthopolos R, James SA, Gelfand AE, Miranda ML. A spatial measure of neigh-

borhood level racial isolation applied to low birthweight, preterm birth, and birth-

weight in North Carolina. Spat Spatio-Temporal Epidemiol 2011;2(4):235–46.

[4] Hearst MO, Oakes JM, Johnson PJ. The effect of racial residential segregation

on black infant mortality. Am J Epidemiol 2008;168(11):1247–54.

[5] Jackson SA, Anderson RT, Johnson NJ, Sorlie PD. The relation of residential

segregation to all-cause mortality: a study in black and white. Am J Public Health

2000;90(4):615–7.
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Policy document Example 5: Symptom-Based Strategy to Discontinue Isolation for

Persons with COVID-19: decision memo.

• Source: Centers for Disease Control and Prevention, USA [Type: government, 0

citations from COVID-19 policy documents]

• Excerpt: [Viral burden measured in upper respiratory specimens declines after

onset of illness (CDC unpublished data, Midgely 2020, Young 2020, Zou 2020,

Wölfel 2020).]

• Science referenced:

Midgley CM, Kujawski SA, Wong KK, Collins, JP, Epstein., Killerby ME et al.

(2020). Clinical and Virologic Characteristics of the First 12 Patients with Coron-

avirus Disease 2019 (COVID-19) in the United States. Nature Medicine, in print.

Young BE, Ong SWX, Kalimuddin S, Low JG, Ta, SY, Loh J, et al. (2020).

Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-

2 in Singapore. JAMA.

Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. (2020). SARS-CoV-2

Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med,

382(12), 1177-1179.

Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al.

(2020). Virological assessment of hospitalized patients with COVID-2019. Nature.
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Policy document Example 6: PHLN statement on use of saliva as an alternative

specimen for the diagnosis of SARS-COV-2.

• Source: Australian Government Department of Health, Australia [Type: govern-

ment, 0 citations from COVID-19 policy documents]

• Excerpt: [PHLN continues to monitor the emerging literature with regard to the

performance of saliva collection as alternative specimen for use in PCR testing.

Some early validation studies have been conducted both internationally and in

Australia, which indicate promising results.1-2 ]. Notes: Public Health Laboratory

Network (PHLN).

• Science referenced:

[1] Khurshid, Z., Zohaib, S., Joshi, C., Moin, S. F., Zafar, M. S., & Speicher, D.

J. (2020). Saliva as a non-invasive sample for the detection of SARS-CoV-2: a

systematic review. medRxiv.

[2] Azzi, L., Carcano, G., Gianfagna, F., Grossi, P., Dalla Gasperina, D., Genoni,

A., ... & Maurino, V. (2020). Saliva is a reliable tool to detect SARS-CoV-2.

Journal of Infection. 81(1), e45-e50.
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Policy document Example 7: Guidelines for disinfection of quarantine facility (for

COVID-19).

• Source: National Centre for Disease Control, India [Type: government, 0 citations

from COVID-19 policy documents]

• Excerpt: [According to studies assessing the environmental stability of other coro-

naviruses, the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) is

estimated to survive several days in the environment and the Middle East Res-

piratory Syndrome-related coronavirus (MERS-CoV) more than 48 hours at an

average room temperature (20°C) on different surfaces [1-3] ]

• Science referenced:

[1] Van Doremalen, N., Bushmaker, T., & Munster, V. J. (2013). Stability of Middle

East respiratory syndrome coronavirus (MERS-CoV) under different environmental

conditions. Eurosurveillance, 18(38), 20590.

[2] Otter, J. A., Donskey, C., Yezli, S., Douthwaite, S., Goldenberg, S., & Weber,

D. J. (2016). Transmission of SARS and MERS coronaviruses and influenza virus

in healthcare settings: the possible role of dry surface contamination. Journal of

Hospital Infection, 92(3), 235-250.
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Policy document Example 8: Lineamiento para la prevención y mitigación de

COVID-19 en la atención del embarazo [Guidelines for the prevention and miti-

gation of COVID-19 in the care of pregnancy]

• Source: Government of Mexico, Mexico [Type: government, 0 citations from

COVID-19 policy documents]

• Excerpt: [No se ha confirmado la transmisión vertical toda vez que las muestras

de ĺıquido amniótico, tejido placentario, sangre de cordón umbilical y exudado

faŕıngeo en los recién nacidos fueron negativas en las series de casos publicadas

hasta ahora (Chen et al, 2020; Zhu et al, 2020;Schwartz, 2020)]

Machine translation to English [Vertical transmission has not been confirmed since

the samples of amniotic fluid, placental tissue, umbilical cord blood and pharyngeal

exudate in newborns were negative in the case series published so far (Chen et al,

2020;Zhu et al, 2020;Schwartz, 2020)]

• Science referenced:

Chen, H. et al (2020) Clinical characteristics and intrauterine vertical transmission

potential of COVID-19 infection in nine pregnant women: a retrospective review of

medical records. Lancet 2020;395: 809–15.

Zhu, H. et al (2020) Clinical analysis of 10 neonates born to mothers with 2019-

nCoV Pneumonia. Transl Pediatr 2020;9(1):51-60

Schwartz, D. (2020) An Analysis of 38 Pregnant Women with COVID-19, Their

Newborn Infants, and Maternal-Fetal Transmission of SARS-CoV-2: Maternal

Coronavirus Infections and Pregnancy Outcomes. Archives of Pathology & Labo-

ratory Medicine.
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Policy document Example 9: Public health principles for a phased reopening during

COVID-19: Guidance for governors - AEI.

• Source: American Enterprise Institute [Type: think tank, 0 citations from

COVID-19 policy documents]

• Excerpt: [Other studies that attempt to reconstruct transmission chains among

confirmed cases have also found that prolonged close contact is the source of most

new infections. Some special settings have also been identified.]

• Science referenced:

Pung, R., Chiew, C. J., Young, B. E., Chin, S., Chen, M. I., Clapham, H. E.,

... & Low, M. (2020). Investigation of three clusters of COVID-19 in Singapore:

implications for surveillance and response measures. Lancet. 395(10229), 1039-

1046.

Note that policy-science citations may occur for different reasons [108, 127], including

(i) instrumental uses (knowledge directly applied to solve problems); (ii) conceptual uses

(research influences or informs the way policymakers think); (iii) tactical uses (citing

research to support or challenge an idea) among others, suggesting the need to understand

the semantics of the policy-science citations. While our dataset offers among the largest

collection of policy documents and their linkages with science, it is not yet possible to

evaluate the semantics behind these citations at scale, as also pointed out in the NAS

report [103] and other studies [128]. Nevertheless, we find many of the science citations in

Overton policy documents can be quite relevant. For example, we discover a high degree

of consistency between the topics of the policy documents and the science they cited,
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Figure 3.5. The evolution of policy during the COVID-19 pandemic.

(A) Policy documents mirror the case dynamics, showing a synchrony between the share
of COVID-19 policy documents among all policy documents and the number of total
confirmed cases. (B) The share of COVID-19 policy documents across three broad subject
categories (21-day moving average). (C) The share of COVID-19 policy documents across
topics (21-day moving average). Color blue and red marks health- and economy-related
topics, respectively. (D-E) Word clouds of all topics in COVID-19 policy documents
published before (D) and after (E) the WHO’s pandemic declaration (March 11, 2020).
Throughout the figures, the black dashed line marks the date of the WHO’s pandemic
declaration.

consistent with the idea that policy uses the science it cites. Meanwhile, we find that the

science cited by policy documents tend to be of high quality, and policy documents that

cite science also turn out to be highly cited within the policy domain, showing a nexus

between impactful scientific research and policy work. The following sections document

more details about these findings.



112

3.2. Quantifying COVID-19 policy landscape

3.2.1. Synchrony between pandemic and policy

As a first look at the policy data and its practical relevance, we examine how the evolution

of COVID-19 policy documents corresponds to facts on the ground. To this end, we

compare the share of COVID-19 policy attention and total confirmed deaths from COVID-

19 over time. The policy documents mirror the case dynamics (Fig. 3.5A), showing a

remarkable synchrony between the share of COVID-19 policy documents among all policy

documents and the number of total confirmed cases.

We further compare the share of COVID-19 policy attention and total confirmed

deaths from COVID-19 over time, finding a high degree of similarity between the two tra-

jectories (Fig. 3.6A). To test if there are systematic delays between the share of COVID-19

policy attention and the pandemic progress (both cases and deaths), we further calcu-

late the cross-correlation between the two time-series. To account for the approximate

exponential growth of both curves, we take the first-order difference of logarithm trans-

formation, defined as

(3.1) Yt = log10Xt+1 − log10Xt,

where Xt is the original time series. Then, we calculate a normalized cross-correlation

function. Specifically, given two transformed series Yt and Zt, the function is defined as

(3.2) Corr(∆t) = PCC(Yt , Zt+∆t),
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Figure 3.6. Share of COVID-19 policy docs and the pandemic response.

(A) Same as Fig. 3.5A, but for number of deaths. (B) Pearson correlation between the
shifted COVID-19 share curve and the total cases curve. (C) Pearson correlation between
the shifted COVID-19 share curve and the total deaths curve. The offset is positive when
shifting the COVID-19 share curve forward.

where PCC is the Pearson correlation coefficient. The correlations between the trans-

formed series suggest that the relationship between the time series is closest when the time

offset, ∆t = 0, between the share of COVID-19 policy documents and COVID-19 deaths

is close to 0 (Fig. 3.6BC). In particular, when the offset ∆t = 0, the cross-correlation

is 0.705 for cases and 0.682 for deaths, respectively. These results suggest a high degree
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of synchronicity between the share of COVID-19 policy attention and how the pandemic

evolves.

3.2.2. Field and topic evolution of COVID-19 policy documents

We further examine the content of the COVID-19 policy documents, by leveraging field

and topic classifications from Overton and Dimensions to determine the primary focus of

each policy document (Fig. 3.5). Overton uses machine learning approaches to assign fields

and topics to policy documents. The Overton policy field classification is primarily based

on the International Press Telecommunications Council (IPTC) Subject Codes taxonomy,

the global standards body of the news media. In our analysis, we use 18 top-level fields

in Overton and further group them into three major field categories:

Science & Health: “health”, “science and technology”.

Economy & Labour: “economy, business and finance”, “labour”, “prices”.

Society & Others: “arts, culture and entertainment”, “conflicts, war and peace”,

“crime, law and justice”, “disaster, accident and emergency incident”, “education”,

“environment”, “human interest”, “lifestyle and leisure”, “politics”, “religion and

belief”, “society”, “sport”, “weather”.

We first group COVID-19 related policy documents into three major field categories

and observe clear shifts in policy attention related to the pandemic (Fig. 3.5B). In the

early stage of the outbreak (January and February 2020), about 90% of COVID-19 policies

belong to the health and science category, showing a clear, initial focus on medical and

public health issues. The policy priorities show a visible shift, however, since the WHO
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declared COVID-19 a pandemic on March 11th, 2020, with a notable rise in attention

to issues around the economy and society, suggesting a growing policy balance between

health and socio-economic implications of the pandemic.

The Overton policy categorization also implements a more fine-grained classification

system. Here, we leverage this classification scheme to further examine the content of the

COVID-19 policy documents. At the narrower topic level, here we show the top 10 topics

by volume (Fig. 3.5C), after excluding one generic topic (“coronavirus disease 2019”).

We find a clear decrease in the share of health-related topics and an increase of topics

related to the policies, human activities and society since early March 2020. We also show

the word clouds of topics pre- and post-pandemic declaration by the WHO respectively

(Fig. 3.5DE), which further illustrates the evolution from public health toward social and

economic issues.

We further test the robustness of these observations by looking into the data by month

and for individual fields. We find similar shifts in topics of COVID-19 policy documents

around March 2020 (Fig. 3.7A), with January and February primarily focusing on public

health and medicine while April and May showing more expansive subject orientations

and increased focus on social and economic issues. Further, we calculate the share of

COVID-19 policy documents by each field and plot the results for the top 10 fields ranked

by total COVID-19 policy documents (Fig. 3.7B), finding similar shifts in COVID-19

policy attention from health to economy and society.

Figure 3.7B features “politics” and “crime, law and justice” as the top two fields

under our “society and others” category. We further break down the high-level category

of “society” into more fine-grained levels (Fig. 3.7B inset). As Overton implements a
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Figure 3.7. Field evolution of COVID-19 policy documents.

(A) Word cloud of topics, by month, of COVID-19 policy documents published in the
first five months of 2020. The size of a topic corresponds to the share of the topic among
all topics in the documents. (B) The share of total COVID-19 policy documents across
time by fields (21-day moving average).

hierarchical classification system, we find that most society-related policy documents are

classified into subcategories of “values” and “demographics”. Upon closer inspection of

our data, we find that “values” subcategory includes specific discussions on death and

ethics, which is relevant in the context of the COVID-19 pandemic. At the same time,

many “demographics” policy documents are about immigration and international travel,

which also represent an important policy focus in this pandemic.
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Notably these shifts are observed in COVID-19 policy documents only. As we repeat

our analyses on the evolution of fields for other (i.e., non-COVID-19) policy documents

published in the same period. We find that the shares of policy documents by three

major field categories (Fig. 3.8A) and individual fields (Fig. 3.8B) stay relatively stable

over time, suggesting that the shifts are observed in COVID-19 policy documents only.

3.3. Quantifying uses of science in COVID-19 policy documents

Much like the global policy frontier, the scientific understanding of COVID-19 also

evolved rapidly, as exemplified by the strong response from the global research enterprise.

According to Dimensions data, more than 40,000 papers on coronavirus research were

published from 1 January through 30 May 2020. Here, we uncover close connections

between the evolving COVID-19 policy frontier and the evolving scientific frontier.

3.3.1. Close connection between science and policy

We calculate the fraction of COVID-19 policy documents that cite at least one scientific

paper, finding it fluctuates in early 2020 but then features a steady increase with time,

especially after the WHO’s pandemic declaration (Fig. 3.9A). This observation indicates

the close connections between the evolving COVID-19 policy frontier and the evolving

scientific. In addition to a binary variable for whether a policy document cites science, we

also alternatively consider the count of scientific references in a given policy document.

Specifically, we plot the average number of scientific references in policy documents over

time (Fig. 3.9C).
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Figure 3.8. Topic and field shifts of all other policy docs.

(A) The share of total non-COVID-19 policy documents across time by three field cate-
gories (21-day moving average). (B) The share of total non-COVID-19 policy documents
across time by fields (21-day moving average). Only the top 10 fields are presented.

Further, COVID-19 policies are disproportionately centered on the latest scientific

frontier (Fig. 3.10A). Indeed, out of all scientific references drawn upon by COVID-19

policy documents, 19.9% of the scientific papers were published in 2020. This rate of

utilizing the newest science is highly unusual, more than ten times larger than seen for



119

0 1 2 > 2
# scientific references

0.0

0.5

1.0
# 

av
g 

po
lic

y 
ci

ta
tio

ns

01/01 02/01 03/01 04/01 05/01 06/01
Date of policy publication

0

1

2

3

# 
sc

ie
nt

ifi
c 

re
fe

re
nc

es

C D

01/01 02/01 03/01 04/01 05/01 06/01
Date of policy publication

0.0

0.1

0.3

Pr
ob

 (c
ite

 s
ci

en
ce

)
A

0.2

# 
av

g 
po

lic
y 

ci
ta

tio
ns

B

No Yes
Scientific references

0.0

0.3

0.6

0.9

Figure 3.9. Policy citations to science.

(A) Probability of citing scientific references for COVID-19 policy documents published
in 2020 (21-day moving average). The black dashed line marks the date of the WHO’s
pandemic declaration. (B) COVID-19 policy documents that cite scientific papers are
much more likely to be cited by other COVID-19 policy documents. Error bars represent
standard error of the mean. (C) Average number of science references cited for COVID-
19 policy documents published in 2020 (21-day moving average). (D) Average policy
citations as a function of number of scientific references cited. Here samples with more
than 2 scientific references are combined so that each bin has comparable sample sizes.
Error bars represent standard error of the mean.(A) The share of total non-COVID-19
policy documents across time by three field categories (21-day moving average). (B)
The share of total non-COVID-19 policy documents across time by fields (21-day moving
average). Only the top 10 fields are presented.
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Figure 3.10. Science use in policy documents.

(A) Distribution of publication years of scientific papers (published from 1980 to 2020)
cited by policy documents. The unusual spike in citing papers published in 2020 indicates
that COVID-19 policy documents draw heavily on recent scientific evidence. (B) COVID-
19 scientific papers that are cited by policy documents have greater citation impact within
science. (C) For different journals and preprint servers, we measured the number of
COVID-19 related papers (x axis) and the average number of citations from COVID-19
policy documents to these papers (y axis) in 2020. Shown here are the top 50 publication
outlets based on the total number of citations from COVID-19 policy documents. The
black dashed line indicates the average number of citations measured on all COVID-19
papers. MMWR, Morbidity and Mortality Weekly Report; NEJM, The New England
Journal of Medicine; JAMA, The Journal of the American Medical Association

other policy documents. Not surprisingly, the latest science cited is primarily related to

COVID-19 (88.4%). The close connection between science and policy is also reflected in

the fields of science that COVID-19 policy documents cite, showing a clear shift from draw-

ing primarily upon the biomedical literature to citing economics, society, and other fields

of study, consistent with overall shifts in policy focus. Indeed, Dimensions implements

the Fields of Research (FOR) classification for scientific papers. The FOR is a component

of the Australian and New Zealand Standard Research Classification (ANZSRC) system,

which follows a three-level hierarchy (divisions, groups and fields) and covers a broad set



121

of research fields from the sciences and engineering, social sciences, and arts and humani-

ties. In our analysis, we use 22 top-level divisions as the research fields of scientific papers.

Analogously, as we do for policy documents, we further group 22 top-level divisions into

the same three major field categories (Fig. 3.11A):

Science & Health: “Agricultural and Veterinary Sciences”, “Biological Sciences”,

“Chemical Sciences”, “Earth Sciences”, “Engineering”, “Environmental Sciences”,

“Information and Computing Sciences”, “Mathematical Sciences”, “Medical and

Health Sciences”, “Physical Sciences”, “Psychology and Cognitive Sciences”, “Tech-

nology”.

Economy & Labour: “Commerce, Management, Tourism and Services”, “Econom-

ics”.

Society & Others: “Built Environment and Design”, “Education”, “History and

Archaeology”, “Language, Communication and Culture”, “Law and Legal Stud-

ies”, “Philosophy and Religious Studies”, “Studies in Creative Arts and Writing”,

“Studies in Human Society”.

Researchers have evaluated the reliability of field classification systems. For example,

Ref. [129] empirically assessed the reliability of the Dimensions data. The Dimensions

team subsequently followed up with a reply in Ref. [130], reporting further improvement

based on more training data and better algorithms. Therefore, the current version of

Dimensions data has two columns for the Field of Research (FOR) classification: “FOR”

and “category FOR.” Both columns are based on the same classification scheme but use

different algorithms: “FOR”, as used in Ref. [129], is the more basic version, whereas
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Figure 3.11. Share of scientific papers cited by COVID-19 policy documents
across three broad field categories (21-day moving average).

We show the evolution using (A) the paper’s field and (B) the journal’s field. Throughout
the figures, the black vertical dashed line marks the date of the WHO’s pandemic decla-
ration.

“category FOR” is the improved version and the one that is officially recommended by

Dimensions. In our analysis, we used “category FOR” for field classification (i.e., the

improved version).

As we further consider the share of scientific papers cited by COVID-19 policy docu-

ments for individual Fields of Research (category FOR), we find a clear shift of COVID-19

policy documents from drawing primarily upon biomedical literature to citing economics,

society, and other FOR. We further perform a set of robustness checks by calculating

a major field of study for each venue (journal/preprint server) as an independent way

of validating Dimension’s field classification. This step, similar to the idea of assigning

fields of study based on journals in Web of Science and Scopus, would reduce errors at

the individual paper level and offer a more stable characterization. We find that results
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under the new field assignment (Fig. 3.11B) are consistent with the results in Fig. 3.11A,

further documenting the robustness of our results.

Together, these results suggest that despite the extremely recent development in

COVID-19 related research, new scientific work has rapidly found its way into policy

documents.

3.3.2. Scientific impact and policy impact

The close relationship between science and policy prompts us to examine the quality of

scientific evidence that informs policy.

Here we examine the quality of science appears in policy documents along two dimen-

sions. First, we separate COVID-19 related papers into two groups based on whether

or not they are referenced by COVID-19 policy documents, and measure each paper’s

scientific impact within the science community, approximated by the number of citations

the paper receives from other scientific papers. We find a dramatic difference between

the two groups (Fig. 3.10B): papers referenced in policy documents garner on average

40 times higher citations than those not referenced in policy (average citations: 67.72 vs

1.67).

Note that, citations are known to be dynamic over time [131]. Hence, when comparing

or evaluating citations of papers, one should always take into account their publication

year, as older papers tend to collect more citations. As we compared the citation distri-

bution of COVID-19 papers, which are all published in 2020, grouping them by whether

they have been cited by at least one policy document. Therefore, given the standard

practice in citation analysis -- normalizing citation counts based on publication year – we
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[]

Variables
Dependent variable

log10(Scientific citations + 1)
(1) (2)

D cited policy
0.957*** 0.949***
(0.012) (0.012)

Paper date
-0.00045***
(0.000033)

Constant
0.149*** 0.196***
(0.0018) (0.0039)

Obs. 40732 40732
Adj. R2 0.144 0.148
F statistic 6848.4 3533.6

Table 3.1. Regressions after controlling for publication date.

The difference in citations counts from other scientific papers, comparing papers that
are cited by policy documents with papers that are not. Standard errors in parentheses.
*P < 0.1; **P < 0.05; ***P < 0.01.

did not control for publication time in Fig. 3.10B. Here we go one step further and run

an additional regression that controls for the publication date (i.e., accounting for within

year differences) of a paper. We find that the difference in citation distribution between

the two groups remains large and significant (Table 3.1). Overall, this result shows that

the coronavirus research used by policymakers aligns with what scientists heavily engage

themselves.

Further, we break down the policy coverage of COVID-19 research based on pub-

lication venues (Fig. 3.10C). We find that different venues differ widely in publication

volume, with preprint servers such as medRxiv, bioRxiv, and SSRN publishing an order

of magnitude more COVID-19 related papers than peer-reviewed journals. Yet, despite

the volume of preprints, their impact in policy is rather limited, as these preprint servers

show consistently fewer policy citations than average. By contrast, COVID-19 policy doc-

uments disproportionately reference peer-reviewed insights, drawing especially heavily on
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top medical journals, both general (e.g., Lancet) and specialized (e.g., Clinical Infectious

Diseases). Though peer review does not necessarily guarantee high-quality science [111],

amid growing concerns over the quality and abundancy of coronavirus research posted

on preprint servers, these results nevertheless show that during this crisis, peer-reviewed

journals continue to remain a crucial institution in supplying scientific evidence for policy

making.

We also approximate scientific “quality” using a citation-independent measure. Here

we focus on COVID-19 related papers published on preprint servers, testing the possible

relationship between being cited by policy documents and getting published in peer-

reviewed journals. One technical challenge here is that it is generally not easy to link

preprint publications to their peer-reviewed versions, given that papers may undergo sig-

nificant changes during the review process. To overcome this challenge, here we leverage

a novel data source from the NIH’s Preprint Pilot database. We downloaded paper infor-

mation for all preprint publications from multiple sources (medRxiv, bioRxiv, ChemRxiv,

SSRN and Research Square) in NIH’s iSearch COVID-19 Portfolio. One unique advantage

of this dataset is its linkage between the preprint and published version of the same pa-

per. After merging with our dataset of COVID-19 papers, we are left with 5,993 preprints,

among which 1,344 papers (22.4%) can be linked to their peer-reviewed versions.

Our first analysis directly compares the number of policy citations between the two

groups, finding that those preprint papers that have been published in peer-reviewed jour-

nals receive 2.7 times as many policy citations as those that have not (0.0558 vs 0.0204).

We further run linear and negative binomial regressions that control for publication date

and include preprint server fixed effects, finding the advantage of published papers remains
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[]

Model (1) (2) (3) (4)
VARIABLES VARIABLES

D published
0.0354*** 0.0237***

D published
1.005*** 0.524**

(0.0083) (0.0084) (0.259) (0.251)

Paper date
-0.00133***

Paper date
-0.0431***

(0.00014) (0.0050)
Fixed effect for

Yes
Fixed effect for

Yes
preprint server preprint server

Intercept
0.0204*** 0.145***

Intercept
-3.891*** -19.688

(0.0039) (0.024) (0.142) (9484.75)
Obs. 5993 5993 Obs. 5993 5993
Adj. R2 0.003 0.021 Pseudo R2 0.012 0.121
F Statistic 18.26 22.80 loglikelihood -628.34 -558.84

Table 3.2. Regressions comparing among COVID-19 related preprints.

Here we consider COVID-19 related preprints, comparing policy citations to these pa-
pers depending on whether the preprint has been published in a peer-reviewed journal.
Columns (1-2) are based on an ordinary least squares (OLS) model, while columns (3-
4) are based on a negative-binomial model. Standard errors in parentheses. *P < 0.1;
**P < 0.05; ***P < 0.01.

robust (Table 3.2). Note that, these differences likely reflect a conservative estimate of

the overall difference in policy impact between the two groups, as preprints that have not

passed peer review may be published at a later date, suggesting the counterfactual group

(i.e., those that never pass peer review) may have an even lower policy impact. Overall,

these results further strengthen the findings that policy documents are more likely to be

grounded in peer-reviewed science.

Overall, the COVID-19 policy frontier appears deeply grounded in extremely recent,

peer-reviewed scientific insights, and science directly drawn upon by this policy frontier

appears especially impactful within the research community itself. Moreover, policy doc-

uments that are grounded in the scientific frontier also tend to garner substantially more
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citations within the global policy network. Specifically, separating COVID-19 policy doc-

uments by whether they cite science or not, we find that COVID-19 policy with policies

that reference science receiving 0.436 additional policy citations on average, more than

doubling the baseline rate (Fig. 3.9). As a robustness check, we further calculate average

number of policy citations received by a policy document as a function of scientific refer-

ences cited (Fig. 3.9D). We find a positive relationship between science used and policy

citation impact, further supporting our main conclusions.

To test if this difference in use can be explained by other covariates, we further test

the robustness of this result using a linear regression model (Table 3.3) that controls

for the publication date of the document as well as fixed effects for the country and

type of institution. We find that all else being equal, COVID-19 policy documents that

cite scientific papers are associated with 0.322 more policy citations than those that do

not (P < 0.001). We also separate the citations they receive into citations from the same

institution or different policy institutions, finding additional citations for both types (0.184

more policy citations from the same institution and 0.137 more policy citations from the

other institutions). We repeat the above regression analysis using a negative-binomial

regression model (Table 3.4), finding our results remain largely robust.

Together, these results show that, despite the rapidly evolving nature of the pandemic,

the policy and scientific frontier of COVID-19 are closely interlinked, with documents and

articles directly along the policy-science interface (i.e., policy documents that cite science

and the cited science itself) being notably more impactful within their own domains.
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Model
(1) (2) (3) (4) (5)

total same inst different inst
VARIABLES

D cites science
0.436*** 0.516*** 0.322*** 0.184*** 0.137***
(0.053) (0.052) (0.054) (0.042) (0.023)

Policy date
-0.010*** -0.011*** -0.007*** -0.004***
(0.001) (0.001) (0.001) (0.000)

Inst type Yes Yes Yes
Inst country Yes Yes Yes

Constant
0.297*** 1.302*** 1.097* 0.732* 0.365
(0.240) (0.078) 0.585 (0.431) (0.250)

Obs. 7730 7730 7730 7730 7731
Adj. R2 0.009 0.032 0.065 0.045 0.055
F statistic 68.84 125.61 9.48 6.83 8.09

Table 3.3. The ordinary least squares (OLS) regressions including the policy
document publication date, country, and type of institution.

Columns (4-5) show the results using citations from the same/different institutional
sources only. Standard errors in parentheses. *P < 0.1; **P < 0.05; ***P < 0.01.

[]

Model
(1) (2) (3) (4) (5)

total same inst different inst
VARIABLES

D cites science
0.905*** 0.742*** 0.43*** 0.320*** 0.517***
(0.095) (0.091) (0.091) (0.103) (0.013)

Policy date
-0.025*** -0.026*** -0.024*** -0.028***
(0.002) (0.002) (0.002) (0.002)

Inst type Yes Yes Yes
Inst country Yes Yes Yes

Constant
-1.216*** 1.113*** -19.516 -19.769 -16.781
(0.046) (0.161) (16925.42) (18910.6) (4040.64)

Obs. 7730 7730 7730 7730 7730
Pseudo R2 0.010 0.036 0.092 0.083 0.137
loglikelihood -5016.59 -4884.06 -4602.05 -3726.35 -1977.36

Table 3.4. The negative-binomial regressions including the policy document
publication date, country, and type of institution.

Columns (4-5) show the results using citations from the same/different institutional
sources only. Standard errors in parentheses. *P < 0.1; **P < 0.05; ***P < 0.01.
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Figure 3.12. The COVID-19 policy citation network.

(A) Number of COVID-19 policy documents published by institution type. (B) Probabil-
ity of citing science by institution type. Inset: Probability of indirectly citing science by
institution type (citing other COVID-19 policy documents that in turn cite science). (C)
Network visualization for the COVID-19 policy document citation network. Each node
corresponds to a COVID19 policy document, colored by the institution type to which
it belongs. For visualization purposes, only nodes with at least one link are shown in
this network. A link between documents is colored by a mixture between colors of the
source and target nodes. The size of each node is proportional to the number of citations
it receives from other COVID-19 policy documents. A node border (in black) indicates
policy documents that draw on scientific papers.
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3.3.3. The role of policy institutions

What policy institutions contribute most strongly to the policy-science interface? Our

final analysis visualizes the policy citation network among COVID-19 policy documents

(Fig. 3.12). This network conveys three key insights. First, hubs in this policy network

disproportionately cite science. Second, although government agencies produced the most

COVID-19 policy documents among the three types of institutions Fig. 3.12A), they are

the least likely to cite science (Fig. 3.12B), and their positions in the network are largely

peripheral, sometimes even separated from the main cluster.

By contrast, policies that are central to the network, and especially those grounded in

science, are disproportionately produced by IGOs, especially by the WHO (Fig. 3.12BC).

These differences in the use of science persist when we compare the indirect use of science

(i.e., citing other policy documents that cite science), showing that IGOs again draw

disproportionately more on the policy-science interface (Fig. 3.12B inset). Many have

argued that nations work best together through international institutions, especially in a

crisis like COVID-19 [132]. These results suggest a key role of the WHO and other IGOs

in the global policy response to COVID-19, acting as central conduits that link policy to

science.

3.4. Concluding Remarks

Taken together, our results show that policy documents in the COVID-19 pandemic

substantially access recent, peer-reviewed, and high-impact science. At the same time, our

reference-based measures are but a proxy for the uses of science in policy [103] and policies

may cite science for different reasons [108]. Policy-relevant science may be interpreted
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differently depending on one’s specific interests [106] and may even be distorted during

the dissemination process [107]. Further, although our data captures among the largest

collection of policy documents, there could be potential biases in data sample and coverage

that future research may help to further elucidate. Also, our data capture science-policy

interactions up to May 26th, 2020, and the observed patterns may continue to evolve as

the pandemic unfolds worldwide. Nevertheless, our results suggest that COVID-19 policy

documents appear neither isolated from scientific advances nor reliant on dubious science.

These findings appear encouraging for the scientific community, as scientists, journals,

and funders work expeditiously to advance and validate new research, with the hope that

their work might impact the course of the pandemic.

Ultimately, although scientific advances provide a global public good, and IGOs can

help coordinate global action, national policy approaches and death rates have varied

dramatically [133]. While some countries have been quite successful in containing the

outbreak [134], some have been actively antagonistic to IGOs and scientific advice [132,

135]. In the current picture, science is breaking through, and scientific results are being

heard, but they are not being heard everywhere.
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CHAPTER 4

Science as a public good: Public use and public funding of

science

Science is often seen to provide substantial impacts beyond the community of scientists

themselves — for technological progress, government function, basic human curiosity, and

more [1, 2, 136–142]. Given the potential benefits, many nations have built institutional

architectures to support science through public investment, following the logic of public

goods [143–145]. Like a public park, which is funded by the government and can be visited

for free, scientific research is substantially funded by governments with its results placed

in the public domain. This institutional design seeks to enable broad use of scientific

ideas and avoid underinvestment by private actors. Yet in turning to public funding, this

approach relies on the idea that public investment in science can match the public interest

in science.

Although public investment in science is a central feature of the scientific ecosystem

[144–146], empirically examining the varied public uses of science and testing whether

there is alignment between public funding and public use has remained elusive, mainly

due to the difficulty in collecting systematic data. Moreover, the lack of measurement

has invited substantial skepticism. Indeed, many observers view scientific research as a

cloistered or ‘ivory tower’ activity that rarely corresponds to the public interest [147–151].

For example, the “two communities” and “two cultures” theories highlight substantial
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knowledge and interest gaps between scientists and policymakers, disconnecting scientific

research from policy insights [103, 109, 152, 153] and suggesting little relationship between

the quality of research and its public usage [104, 152, 154]. Meanwhile, scientists may

have peculiar interests, with little exposure to real world problems or incentives to tackle

them [141, 155]. These potential gaps further animate root concerns over the public

funding of science and its proper allocation [156–159]. For example, policymakers have

long criticized the National Science Foundation (NSF) for funding frivolous research and

have called for greater transparency around the relevance of science [156, 157]. Some

prominent academics and commentators, including Nobel-Prize winner Milton Friedman,

have taken the position that the government should not fund science, favoring purely

private sector research instead [158, 159].

4.1. Related works

4.1.1. Policy uses of science

There is long-standing interest in understanding uses of science in policy and decision-

making over many decades [103, 104], offering a rich set of conceptual models capturing

policy uses of science, ranging from (a) two communities theory [109, 152] that suggest

little common language and interest between scientists and policymakers, to (b) supply-

side and demand-side models that highlight knowledge production on the science side [160]

or problem solving on the policy side [108] as the primary driver of research utilization

in policy, to (c) interaction models that depicts an iterative process where science and

policy co-evolve [103, 161, 162]. Some works along this line have also examined different

types of policy uses, arguing that policy-science citations may occur for various reasons
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[106, 107], including (i) instrumental uses (knowledge directly applied to solve problems);

(ii) conceptual uses (research that influences or informs the way policymakers think); (iii)

tactical uses (citing research to support or challenge an idea), among others, suggesting

value in understanding the semantics of the policy-science citations. Yet at the same time,

it has also been recognized that distinguishing these uses at scale remains a challenging

task [103]. Here we develop a scaled approach based on citation links and leave analysis

of how specifically the science is being used to further investigation.

4.1.2. Altmetrics literature

Altmetrics studies alternative or complementary indicators related to scientific publica-

tions [126, 163, 164] . This field leverages databases such as Altmetric and PlumX and

has grown rapidly in the last decade, deepening our empirical understanding [126] of

how science is covered across different online platforms, including social media platforms,

mainstream media news, policy documents, Wikipedia and other sources. For example,

several prior studies in this literature have examined the overall coverage and reliability

of such datasets [165–167]. Based on these datasets, researchers have also examined how

scientific papers from different fields receive attention beyond citations [168], as well as

the relationship between citation metrics and altmetrics indexes [163, 164]. For a more

detailed overview of the Altmetrics literature, readers may refer to two recent reviews

[126, 169].
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4.1.3. Scientific non-patent references

Scientific non-patent references have also been studied in the recent innovation literature,

partly due to the increasing availability of approaches and data sources for large-scale

matching between patent references and scientific publications. Recent systematic linkage

efforts have connected USPTO patents to Web of Science [170] and Microsoft Academic

Graph [171]. Existing literature has examined meanings of such citations, suggesting

these linkages as a useful signal for association between science and technology [172, 173].

Furthermore, scientific non-patent references have been leveraged to construct higher-

order indirect links between patenting and science [174, 175].

4.1.4. Science as a public good

The outputs of scientific research are often described as a form of public good [107, 145].

In economics, public goods are formally characterized by two properties: non-rivalry and

non-excludability. Non-rivalry means that a good’s use by one party does not constrain

its use by another party. For example, the use of algebra, a machine learning algorithm,

or polymerase chain reaction by one party does not make it unavailable to another party.

Indeed, a remarkable thing about ideas is that the same idea can be used by large numbers

of people at the same time. This feature points to the potential wide social benefits from

the creation of new ideas. It also stands in contrast to more ordinary properties of

“rival” goods (e.g., a chair, a computer, a car) where the use by one party prevents the

simultaneous use by another party.

The second feature of public goods is non-excludability. Excludability refers to whether

one can prevent others from using the good. Note that, whereas non-rivalry is an innate
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property of ideas and the outputs of research, non-excludability is in part a policy choice.

For example, patent law allows inventors to take a new idea and turn it into a private

good (the patent allows the inventor to exclude others from using it) rather than a public

good. Treating scientific research as a public good is then in part a policy choice. That is,

the science system usually seeks to make new insights widely available. Other examples

of public goods include the national defense or a public park, which can be enjoyed by

many people at once and where excluding certain groups from the national defense or a

public park is either difficult or non-desirable.

A key implication of public goods is that markets will underprovide them. In partic-

ular, due to non-excludability, consumers can make use of a public good without com-

pensating the creator. Since the creation of a public good (a research result, a public

park, the national defense) is costly and the investor will have difficulty recovering these

costs from users, the private incentive to invest in public goods is weak. With markets

under-providing public goods, we therefore turn to public policy to support investment

in public goods. In practice, governments often cover the investment costs by investing

directly in public goods. For example, governments invest up-front in scientific research

projects (rather than seeking ex-post compensation as in the patent system) and makes

the insights from these projects publicly available, thus embracing the non-rival nature

of ideas and extending access widely to maximize the benefits of new insights. In step-

ping away from a market mechanism, however, this institutional approach presumes that

the scientific apparatus, and the public investments in it, are in fact aligned with public

use. For a detailed discussion of the properties of public goods, with applications to the

under-provision of scientific research, see sources such as [107, 145, 176].
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This paper advances a measurement framework to study public uses of science, the

public funding of science, and how public use and public funding relate. Building on prior

research that considers the use of science within a given public domain [163, 164, 171,

174, 175, 177], here we integrate five large-scale datasets that link scientific publications

from all scientific fields to their upstream funding support and downstream public uses

across three public domains.

4.2. Data description

4.2.1. Microsoft Academic Graph

The publication and citation data are primarily obtained from Microsoft Academic Graph

(MAG, accessed Oct 2018) [178, 179]. MAG is among the largest open-source citation

databases to date and contains records of 209 million documents. We inter-linked different

data tables to obtain the author, affiliation, year, publication venue and field information

for each paper. MAG includes a variety of document types. To focus on scientific articles,

we consider publications under the categories of journal papers, conferences papers, books

and book chapters, and papers with DOI information. In other words, two kinds of

publications are excluded in our analysis: patents and papers with neither category nor

DOI information. We further focus on papers published in a 10-year period from 2005 to

2014, leading to a subset of 36 million papers in total.

MAG uses a non-mutually exclusive hierarchy for research topic (field of study) mined

by semantic analysis tools. To explore major research fields, the analysis considers the

level-0 (19 fields) and level-1 (294 fields) categorizations (Fig. 4.1a). Figure 4.1b and 4.1c
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Figure 4.1. An overview of MAG field classification.

(a) Number of papers belonging to each of the 19 level-0 fields. (b-c) Distribution of
field numbers that connect to a paper at level 0 (b) and 1 (c).

show the number of level-0 and level-1 fields that each paper is connected to, indicating

both quantities are narrowly distributed.

4.2.2. US Government Documents

To quantify references to scientific articles in the government domain, one needs to con-

struct a large-scale dataset of government documents that can be linked to the scientific
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papers. The task has been difficult in part because government documents are spread

across many sources. Despite recent efforts like govinfo [180] to digitalize and standardize

government publication information, most existing sources have relatively low coverage,

especially for the executive branch. Furthermore, although a significant fraction of such

documents may cite scientific literature, such citations do not follow a common structure.

To tackle both challenges, here we develop a novel pipeline to construct the dataset.

Our data collection starts with a list of URLs under the .gov domain, which is the

domain name for government agencies and contains the vast majority of U.S. government

entities. Given the huge number of such pages, here we use a PageRank-like assessment

system provided by the Microsoft Bing search engine, which assigns each URL with a

tiered index of importance. In this study, we focus on Tier 0 (the most important) pages

to construct the sample, which contains approximately 6 million URLs within the .gov

domain. We downloaded these pages using an automatic crawler and focused on all PDF

files in this set (˜28% among the corpus). We also notice that a small proportion of these

documents are themselves research papers, as their urls can be linked to MAG papers

though MAG paper url table, and exclude these documents from our analysis.

To extract the references cited in these files we use Science-Parse [181], an open-

source tool for reference string extraction developed by the Allen Institute for Artificial

Intelligence. Science-Parse is a state-of-art framework that scans PDF files and returns

a list of all reference-like strings. We then matched this list to the MAG. Since the

PDF reference extraction may contain minor errors, exact title matching of paper items

may not be the optimal approach. Specifically, we indexed the full MAG to compile a

search engine-like system using title, journal, author, and publication year information.
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By leveraging the Okapi BM25 measure [182], one of the core algorithms used by modern

full-text search engines, we query each string to obtain a list of the top 2 candidate paper

items, each accompanied by a score representing the degree of agreement. To find the

score threshold for determining if a string is successfully matched, here we use scores of the

2nd matched paper as a null model for score distributions (Fig. 4.2a). Indeed, assuming

the score is a reasonable quantification, one would expect the difference of 1st and 2nd

matched paper to be significant if and only if the 1st ranked paper is a true match of

the string. To this end, for each string we first calculate the score distribution of all 2nd

matched scores of the similar query word length as a baseline. The string is considered to

be matched to the 1st ranked paper when the score is significantly higher than a right tail

cutoff of the baseline distribution (one-sided P = 0.05, or equivalently, Z = 1.65). We

further test this algorithm by comparing its predictions with manual validations on 100

randomly selected papers through two evaluations: (1) For a binary classification based

on whether a reference string can be matched to a MAG paper, we calculate the F1 score;

and (2) conditional on being classified as positive in (1), we measure the accuracy of the

matched MAG document ID. We find high consistency between the results returned by

the algorithm and our manual validations (Fig. 4.2b). See also Chapter 3 for additional

validation analysis using the Overton data.

4.2.3. Altmetric dataset

To study references to scientific publications in the news media, we use a dataset offered

by Altmetric [163, 164, 183]. This dataset records approximately 26.2 million papers with

at least one news media or social media mention. We then merge paper information with
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Figure 4.2. Matching raw reference strings to MAG.

(a) The distribution of normalized score for papers with the first and second highest
matching score. The normalization is obtained by calculating the z-score of the raw score
for the second-best matched papers for strings of similar word length. The normalized
score for second-best matched papers approximately follows a standard Gaussian distri-
bution, yet that for first-best matched papers show another mode that is larger than
Z = 1.65, indicating a large proportion of matchings are significantly more accurate than
expected. (b) We tuned the threshold and evaluated matching performance on a manu-
ally validated subset using two step measures: (1) Whether a string can be matched into
a MAG paper (binary classification problem), measured by F1 score, and (2) Conditional
on the string successfully matching into MAG both automatically and manually, to what
extent are the two matched IDs consistent (label problem), measured by overall accuracy.

MAG. A vast majority (22.1M million) of such publications in the Altmetric database have

unique digital object identifiers (DOI), allowing us to connect this with DOI information

in MAG. We find that 17.2 million (78%) of the DOIs can be matched to records in MAG.

4.2.4. USPTO patent database

To study references to scientific publications in patents, we build on prior work and use a

high-scale mapping from United States Patent and Trademark Office (USPTO) patents to
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MAG papers, which includes approximately 31.7 million citation pairs between patents

and papers [171, 184], from both the front page and full text of the patents. To clas-

sify patents into technology classes, we use the Cooperative Patent Classification (CPC)

system, drawn from PatentsView, a data platform based on USPTO bulk data [185].

Combining the two files provides technology class information for 97.5% of patents that

reference scientific articles. The small share of missing technology class cases corresponds

to patents recently granted, which have not been updated in our data.

4.2.5. Dimensions scientific funding data

To understand how research funding from various sources is allocated into different scien-

tific fields, we leverage research funding data from Dimensions [116, 186], which includes

approximately 5 million research projects supported by over 400 funding agencies world-

wide. To be consistent with our publication analysis, we focus on projects funded during

the same ten-year period (2005-2014). One challenge in our estimation here is that some

projects are supported both within and outside the ten-year period (for example, in years

2014, 2015 and 2016), while only the total funding amount is available. Here we estimate

funding amount in the ten-period by multiplying the total amount with the fraction of

time within the ten-year period, which equals to 1/3 in this example. We further focus

on projects that have funding amount information and are funded by US agencies.

A unique opportunity provided by Dimensions is a linkage table between supporting

grants and resulting publications, which allows us to categorize the field of each grant

according to its resulting publications. More than 90% of the publications have DOI

information which can be further matched to items in our paper database. Here we use
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this table and focus on projects that can be linked to at least one MAG paper (which allows

us to estimate the research field for over 74% of U.S. research funding in this period). We

then create a list of level-1 fields by combining the fields of resulting publications supported

by each grant, and evenly split the funding amount of a project to each field in this list.

For example, if a grant of $15,000 supports three publications, two in quantum physics

and one in mathematical physics respectively, we assign $10,000 to quantum physics and

$5,000 to mathematical physics. Together we link 292,875 funded projects with at least

one publication.

4.2.6. Data limitations

Our data are not without limitations. First, our datasets only represent a subset of all

possible government documents and media news in the world, and there could be het-

erogeneity within documents published by different agencies or news covered by different

media. Second, the linkage strategy between science and public uses and funding is based

on automatic algorithms and may contain some errors. While our validations in Sup-

plementary Note 2 and robustness checks in Supplementary Note 5 have not uncovered

any potential biases, readers should keep in mind of the existence of these factors. In

addition, our analysis is primarily focused on PDF documents. The focus on PDF files

is consistent with common practices in commercial products such as Altmetrics, partly

due to the fact that PDF documents are more likely to cite scientific literatures. Extract-

ing scientific references from unstructured documents at scale has remained a significant

technical challenge. The machine reading and reference extraction technologies for PDF
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documents we developed in this paper, adapted from the pipeline for constructing Mi-

crosoft Academic Graph, are among the state-of-the-art in their kind. To the best of our

knowledge, there is no similar approach to extract scientific references from HTML pages.

Nevertheless, despite these potential limitations, it is important to note that these

data sources are among the largest in their respective domains, and approaches for data

linkages are also among the most advanced of their kind, hence representing the state-

of-art empirical basis to understand the interaction between science and public domains.

For government documents, we further conduct additional validation exercises using the

Overton data, a large-scale database of policy documents (see Supplementary Note 2.1

below). As another kind of validation analysis, we also observe the RCI at the sub-agency

level and find for example that the U.S. Department of Treasury draws especially on

economics and business research, while the U.S. Department of Energy draws especially

on geology and engineering. Examining the sub-agencies produces rich patterns that

appear to have substantial face validity, where the scientific areas drawn upon are closely

related to the agencies’ missions, and further suggests the substance of the linkages our

analysis uncovers.

There are also additional channels of knowledge flows beyond those we trace through

references. Collecting large-scale empirical records of these alternative channels remains a

challenging task – especially given the fact that large-scale empirical data on the industrial

use of science and social science is often harder to assemble than governmental and media

use in the public space. As one example within our data, we further leverage the media

use in our D3 and focus on a general management magazine – Harvard Business Review

(HBR). By tracking all citations from HBR articles to scientific publications we calculate



145

Psychology Economics Business Sociology Political Science
1

3

5

7

9

11

R
C

I H
ar

va
rd

 B
us

in
es

s 
R

ev
ie

w

Figure 4.3. Relative consumption index in Harvard Business Review articles
for five L0 fields.

the relative consumption index for this management-oriented outlet. We find that the

top RCI fields in HBR are psychology, economic, business, sociology, and political science

(Fig. 4.3), indicating management orientations that extend private sector interests beyond

the research areas that are prevalent in the patenting sphere. More generally, addressing

additional avenues will require new data approaches that go beyond our orientation on

reference linkages in publicly available data.

4.3. Independent data validation

4.3.1. Overton policy documents

Policy documents extracted from the Bing search engine and their associated references

provides a novel dataset that is only possible with recent advances in information re-

trieval and machine learning. Given the novelty of such applications (reference parsing in

policy documents), we lack systematic baseline methods for comparison. Here we lever-

age another novel dataset, Overton, which has just become available during the writing

of this manuscript and provides an independent validation case. Overton is among the
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world’s largest searchable index of policy documents, including about 3M policy-related

documents from thousands of sources (including government agencies, think tanks and

intergovernmental organizations). Overton also extracts scientific references in documents

and maps them into DOIs. Here we retrieve all policy documents published by U.S. gov-

ernmental agencies indexed by Overton, looking at all scientific references (published in

the same ten-year period) they have ever cited, and use the DOI to connect these papers

into MAG. Chapter 3 documents the consistency between the two datasets. We further

use Overton data to repeat our main results (see Appendix for details).

4.3.2. RePORTER funding dataset

The Dimensions data (D5) is a state-of-art database linking funding and associated publi-

cations, using information from funding agencies as well as text mining from the acknowl-

edgement section of publications. As an alternative, we further leverage funding-paper

linkage information from two major funding sources in the U.S. – the National Science

Foundation (NSF) and National Institutes of Health (NIH). These two agencies are the

largest federal funders for scientific research and together account for more than half of

overall federal research funding [187]. Information on all projects funded by NIH over

the last several decades and resulting publications are available through NIH RePORT

(Research Portfolio Online Reporting Tools), an open data source developed since 2008

[188]. Bulk data for NSF grants in a similar format are available as part of Federal Re-

PORTER, a federal effort to “create a repository of data and tools that will be useful to

assess the impact of federal R&D investments” [189].
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To test our data coverage, we calculated the number of publications supported by each

grant active in the ten-year period (2005-2014) from both RePORTER and Dimensions

data. We find in both NSF and NIH, the number of publications supported by each

grant is highly correlated, showing a high degree of consistency between the two data

sources (Fig. 4.4bd). Further, we find that Dimensions reports more resulting publications

on average (fig. 4.4ac). The superiority of Dimensions may be explained by multiple

reasons, including an incomplete coverage of data in early years from Federal RePORTER

and the fact that more complete paper-grant linkages can be found through publication

acknowledgements. Regardless, these results suggest Dimensions is the preferred source

for linking papers and grants for this study.

4.4. Empirical results

Our main results focus on papers published between 2005 and 2014, a common period

covered by all three datasets, resulting in 128,465, 275,536, and 1,296,922 papers cited in

government, news, and patent documents, respectively.

4.4.1. Diversity in public use

Our first analyses measure the usage of scientific research in the three public domains.

To conduct this analysis, we first leverage the MAG’s classification of papers across 19

top-level fields. To account for cross-field differences in publication volume, we define

a Relative Consumption Index, RCI. For a given public domain (d) and field (f ), RCI

measures the fraction of papers in the field consumed by that public domain, normalized

by the same fraction calculated on all fields for that domain. That is,
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Figure 4.4. Comparing papers supported by NSF and NIH grants based on
RePORTER and Dimensions data.

(a) The distribution of number of papers matched ton = 169, 086 NSF grants. (b)
Number of papers matched to each NSF grant reported by Dimensions and RePORTER
data. Dimensions have more papers covered on average. Data are presented as mean
values +/- SEM. (c,d) Same as (a,b) but for n = 190, 335 NIH grants.

(4.1) RCIfd =
# papers in field f consumed by domain d/ # papers in f

Total # papers consumed by domain d / Total # papers
.



149

We find that the public uses of science are diverse, with many fields showing substan-

tially specialized usage in public domains (Fig. 4.5d). Computer science, materials science,

mathematics, and engineering (Fig. 4.5d, i-j) present substantially larger RCI values for

patents than for government or news. By contrast, environmental science and geology

(Fig. 4.5f,h) contribute relatively strongly in government and media documents compared

to patents. Finally, physics, chemistry, medicine, and biology present a broader range of

use (Fig. 4.5b-c, k-l). Among all fields, biology is the only one over-represented across

all three channels, demonstrating a uniquely general relevance to these broad domains

beyond science.

Social sciences, by contrast, exhibit a visibly different pattern of public use. The social

sciences are strongly consumed in government and media domains while showing system-

atically low usage in patents (Fig. 4.5m-q). Economics sees especially strong government

use, while psychology, sociology, and political science see relatively strong media use. Arts

and humanities (philosophy, art and history, Fig. 4.5r-t) are relatively under-represented

in all three domains.

Specialization in public use further appears at sub-domain levels (Fig. 4.6). For gov-

ernment, different agencies consume very different scientific research. For example, the

U.S. Department of Treasury draws especially on economics and business research, the

U.S. Department of Energy draws especially on geology and engineering, and the U.S. De-

partment of Defense draws unusually on history. Different patenting fields further exhibit

highly specialized relationships to specific scientific fields. By contrast, in media, while

the Washington Post draws unusually heavily on political science research, mainstream
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Different scientific fields experience distinct and typically specialized public uses. (a-t)
The usage metric RCI for the three public domains, presented for each field (b-t). The
dashed triangles represent a null model where each paper has the same chance to be
used (a). The color scheme highlights four high-level areas of research – the physical
sciences, life sciences, social sciences, and ecology & earth sciences – following the four
major clusters of science detected by [190] and suggesting commonalities in patterns of
public use within these four areas.
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Figure 4.6. Use of science across subdomains of government, news, and patents.

(a) Patterns of consumption across subdomains. Subdomains are major departments
and entities within the U.S. federal government, major news outlets for U.S. media, and
top-level CPC (Cooperative patent classification) technology classes for patents. (b)
The heterogeneity of scientific consumption across the subdomains in (a). (c) For every
subdomain, paper hit rates are universally higher than the baseline (dashed line).

media sources in general are more consistent in the fields they report, with especially

strong and widespread interest in medicine and psychology.

The specialization in public use is further accompanied by substantial differences in

time lags in the use of science by the different public domains. Whereas the news media
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places a particular focus on very recent work, the government and inventive domains have

wider reach into prior discovery. For example, in the news media, 63% of citations to

scientific articles cover research papers published within the year. By contrast, government

documents and patent inventions draw more widely over past work, with a median citation

lag of 10 years between scientific publication and use (Fig. 4.7). We then examine the

lags between papers and their use, both across fields and in the different public domains.

Figure 4.7 presents these findings, with the time lag distribution for different fields (colored

lines) presented in each panel together with the average across fields in that domain (black

line). We see two types of heterogeneity here:

(1) We find substantial differences when comparing citation time lags across three

public domains. Mainstream media covers mostly recent scientific research, with 63%

of citations towards scientific papers published in the same year. At the same time,

government documents and patent inventions show much longer lags between discovery

and use, where a median citation time lag of 10 years, suggesting these two domains are

more likely to draw on knowledge that has stood the test of time.

(2) Within each public domain, we also find field-level heterogeneities in the time lag.

The median duration of policy citations to chemistry papers (15 years) is more than two

times of that for economics publications (7 years) or for computer science publications (7

years).

To test the potential effects of heterogeneity in citation time lag on the field-level

public use, we first expand the set of focal papers from the 10-year period (2005-2014) to

a 30-year period (1985-2014). Importantly, while the public domains differ considerably in

time lags, we find that the RCI comparisons are extremely similar when considering either
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Figure 4.7. The citation time lag between discovery and use.

For visualization purposes, the top and bottom rows show results in linear-linear (a,c,e)
and log-linear (b,d,f) scales respectively.

the recent decade of scientific publications (Fig. 4.5) or the stock of scientific publications

over a substantially longer history (Fig. 4.8). Thus, although there is heterogeneity in

lags, the RCI measure even over the 10-year period produces a similar picture as when

looking over the much longer period.

Overall, these results highlight a large set of specialized relationships between specific

domains of public use and specific fields of scientific research. From a public goods

perspective, if we think of scientific fields as akin to a series of national parks, we see

that each park is embedded in particular communities of public use. Collectively, these

parks spread across diverse regions of knowledge and are accessed by diverse segments of
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Figure 4.8. Comparing RCI calculated on papers across different time periods
(L0 level).

the public. A few fields, and especially biology, receive visitors at relatively intense rates

from a broad range of public domains – a “Yellowstone Park” of science.

4.4.2. Scientific impact and public use

Our second set of results examine whether the public domains tend to consume ideas that

scientists themselves consider impactful. Longstanding arguments suggest that the public

is not well equipped to evaluate science and may draw on poorly established scientific

ideas, which would undermine the public good benefits of science [104, 152, 154]. Contin-

uing the national parks metaphor, scientists may be primarily focused in a hard-to-reach

backcountry, whereas the typical visitor may not have the tools to access this terrain nor

gravitate to the same areas the scientists themselves consider attractive. To further ex-

amine public use, we therefore consider, at the article level, the alignment between public

use and scientific use. While citations are widely used as a proxy for scientific impact

[1, 2, 191–193], direct comparison of citation counts received by papers across time and

field can be problematic without normalization [109, 131]. We therefore calculate citation
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Figure 4.9. Public use and scientific use.

The public tends to consume exceptionally high impact science from all fields and in all
three public domains, indicating alignment between public use and scientific use. (a)
Usage by domain for papers published from 2005 to 2014. The area of each subset is
proportional to the square root of the paper count in the corresponding public domain.
(b) Hit rates for papers cited in at least one, two, or three public domains. Hit papers are
defined as those receiving citation counts, within science, in the top 1% within the field
and year. (c-e) Hit rates for each of the 19 fields consumed by government documents
(c), news media (d) and patents (e). In all fields, and in all three domains, the consumed
papers have hit rates within science many times larger than the baseline rate of 1% (dashed
line).

percentiles for papers within the same publication year and field. Here following prior

studies [15, 174, 194], we define ‘hit papers’ (also known as ‘home runs’) as papers ranking

in the top 1% of citations received.

We find that papers referenced in public domains have a remarkably high likelihood of

being hit papers within science (Fig. 4.9b). Papers cited by government documents, news

or patents exhibit hit rates of 14.1%, 18.0% and 9.1%, respectively, all large multiples of

the baseline rate of 1%. Further, papers referenced in the intersection of different domains

tend to be exceptionally impactful in science. For papers referenced in two public domains,

approximately half are hit papers. Papers referenced by both government documents and
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news media have a hit rate of 45.1%. The results are broadly similar if we examine the

intersection between government documents and patents (38.7%) or news and patents

(46.1%). A paper consumed in all three domains is a hit paper in science at a staggering

72.8 times the baseline rate. Reversing the exercise, we also see that, as the citation

percentile of a paper rises, the probability for public use increases steeply, with extremely

sharp increases at the very top of the citation distribution (Figs. 4.10, 4.11).

The use of high-impact papers is not only common across different public domains,

it also appears universal across research areas. Papers covered by public domains tend

to be highly cited in all scientific fields (Fig. 4.9c-e). These findings remain similar when

varying the threshold for hit papers to the top 5% or 10% citations (Appendix). We
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Figure 4.11. Comparing impact in science and public within top 10% most cited
papers.

We use citation percentile (a-c) and normalized citations (d-f) within the same field and
year as two measures of scientific impact.

further test robustness of these results by tuning the threshold from 1% to 5% or 10%.

We also repeat our analyses for papers produced by U.S.-based researchers, arriving at

the same conclusions. While government, media, and patenting documents may cite

science for a variety of reasons and our reference-based measures are proxies for uses

of science [103, 108, 125], we see that the science referenced in public domains is not

in conflict with what scientists themselves consider important; rather, impactful papers

defined by these communities show substantial overlap. This finding stands in contrast

to concerns over knowledge gaps, where the government and media in particular may be

poorly positioned to assess high impact scientific work or distinguish it from low impact
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scientific work [104, 152, 154, 163, 195]. Considering the findings, one may note that in

each of these public domains, the initial step beyond science involves an intermediary – via

the journalist in media, the inventor or other domain expert in patenting, the potential

policy expert in government – all of whom may bring specialized capacities to bear in

selecting what science they bring forth into their domain. The broader public use –

among those who read a news article, use an invented product, or experience a policy

– will then depend upon these intermediaries, who may help bridge the knowledge gap.

Overall, the public use of science, while marked by substantial specialization in use across

research areas, presents a striking universality, where diverse public domains all draw on

the highest-impact scientific papers within each field.

4.4.3. Public use and public funding

We further fine-grain the 19 broad research fields of papers into 294 subfields as indexed

by MAG, and calculate the RCI score for each subfield in a given public domain. We

visualize each field’s RCI values, locating each field within a common triangle to compare

each field’s tendency toward usage in specific public domains (Fig. 4.12a). Fields in social

science as well as arts and humanities are mostly used in media and government, whereas

fields in science and engineering spread out widely within the triangle, again highlighting

the field-level specialization yet collective diversity in the public uses of science.

Together, these results raise a central question: To what degree does the funding

input for science relate to the field’s public use? The majority of scientific research is

supported by public investment, which aims to advance not only science itself but also

broader public interest [125]. The NSF, for example, formally introduced broader impacts
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Figure 4.12. Public use and public funding.

Amidst enormous diversity in public use across fields and domains, scientific funding for
a given field is closely aligned with the totality of its public use. (a) Ternary plot of
RCI for 294 level-1 fields together, with the location of each field indicating its relative
usage among the public domains. Circles are colored coded according to its parent field
in Fig. 4.5, and circle sizes reflect overall usage. (b-d) Average funding per paper across
fields is positively correlated with a field’s RCI index in government (b), news (c) and
patenting (d). The relationship remains significant when combined with control variables
(P < 0.001 in OLS regressions controlling for the number of papers and parent field
fixed effects, see Supplementary Table 2 for details). (e) Collectively, public uses beyond
science strongly predict field level funding per paper.

as a key criterion for evaluating grant proposals in 1997. Here we focus on U.S.-funded

projects and use D5 to calculate the average funding per paper in a given subfield as a

proxy for public investment costs per unit of output.

To understand the association between public use and funding for different scientific

fields, we use linear regression models (ordinary least squares). We first note that all

three RCI measures are highly skewed (Fig. 4.13a-c), prompting us we take the natural

logarithm, lnRCI, in our linear regressions (Fig. 4.13d-f). The same transformation is

taken on the average funding per paper. The variables are defined as follows:
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Figure 4.13. Distribution of RCI index and transformations.

(a-c) Histogram of RCI for level-1 fields in policy (a), news (b) and patent (c). All
three distributions are highly skewed, prompting us to take appropriate transformations
before regression analysis. (a-c) Histogram of lnRCI for level-1 fields in policy (d), news
(e) and patent (f). The three distributions are closer to normal distributions after the
transformation as compared with (a-c).

Dependent variable: ln Yi, defined as the natural logarithm of average funding per

paper for the level-1 field i.

Predictors of interest : We examine the extent to which different impact measures

can predict funding, including lnRCIj for the three public domains, as well as ln ci, the

natural logarithm of mean citations received for papers in that field. To include all data

points in the regression, for the rare cases when an impact measure is 0, we add 1 to avoid

0s in the logarithm. We further include the natural logarithm of the number of papers

published in the ten-year period, ln pi, as a control variable.
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Fixed effects : To control for the possibility that fields under different broad categories

may have specific funding and public use norms, we introduce Ffi, fixed effect terms for

each level-0 field. Specifically, Ffi = 1 if the level-1 field i is a child field of the level-0

field f according to MAG’s classification structure. Note that some level-1 fields belong

to two level-0 fields simultaneously (e.g., mathematical physics is the child field of both

mathematics and physics).

We start with bivariate regressions examining the relationship between each RCI (i.e.,

for government, media, or patenting) and average funding (Fig. 4.12b-d, Table 4.1, Models

1-3). That is,

(4.2) ln Yi = βj lnRCIji + εi.

In multivariate regressions, we further include controls for heterogeneity in field size

or parent field fixed effects (Table 4.2, Model 4-6).

We further investigate the joint predictive power of the three RCI s (Fig. 4.12e, Ta-

ble 4.2, Model 7).

(4.3) ln Yi =
∑
j

βj lnRCIji + εi

which shows that each measure contributes independently and substantially to ex-

plaining the variation in funding.

Finally, we add further control variables into Models 8 (Table 4.2, Model 8).
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(4.4) ln Yi =
∑
j

βj lnRCIji + βp lnpi +
∑
f

βfFfi + ε

i

We find that the public investment per paper differs dramatically across fields, span-

ning over five orders of magnitude. Yet comparing average funding per paper with RCI

in each domain reveals substantial correlations between funding and the use of science

across all three public domains, with R2 = 0.159 for government, 0.272 for news, and

0.376 for patents (Fig. 3b-d, Methods, Supplementary Table 1). To further test if the

uncovered correlation is due to the heterogeneity in field size or parent field, we add the

number of papers in the subfield as well as parent field fixed effects (for the 19 higher-level

fields) into the regression, finding the strong correlation with RCI persists (P < 0.001

in all three cases). Notably, across the three domains, the representation of subfields in

government documents has the lowest predictive power for funding, suggesting that pub-

lic investments in science better reflect the overall public interest captured by media or

patents. We further include funding from non-governmental sources or focus on papers

by US researchers only, finding our conclusions remain the same (Appendix).

Most strikingly, a simple linear regression model combining the three RCI values

together yields a surprisingly high degree of agreement with funding, with an R2 of 0.647

(Fig. 4.12, Table 4.2), providing at minimum a 72% increase in predictive power compared

with using any of the three public domains alone. These results suggest that each public

domain provides independent predictive power for understanding the allocation of public

investment in science. The uncovered high predictive power of this analysis is especially

striking given many complex factors and processes at work in appropriations, budget
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[]

Model (1) (2) (3)
VARIABLES
Policy (RCI) 0.645***

(0.087)
News (RCI) 0.880***

(0.084)
Patent (RCI) 0.923***

(0.070)
Observations 294 294 294
R2 0.159 0.272 0.376
F 55.17 108.8 175.9

Table 4.1. Regression results for Models 1-3.

Standard errors in parentheses. *P < 0.1; **P < 0.05; ***P < 0.01.

[]

Model (4) (5) (6) (7) (8)
VARIABLES
Policy (RCI) 0.502*** 0.247*** 0.208***

(0.073) (0.064) (0.064)
News (RCI) 0.828*** 0.728*** 0.678***

(0.076) (0.067) (0.074)
Patent (RCI) 0.659*** 0.889*** 0.591***

(0.083) (0.053) (0.067)
# Paper (p) 0.243*** 0.303*** 0.160*** 0.192***

(0.052) (0.048) (0.053) (0.043)
Level-0 fixed effect Y Y Y Y
Observations 294 294 294 294 294
R2 0.700 0.754 0.713 0.647 0.816
F 30.13 39.61 32.18 177.4 51.90

Table 4.2. Regression results for Models 4-8.

Standard errors in parentheses. *P < 0.1; **P < 0.05; ***P < 0.01.

setting, and grant review [3, 7, 52, 53, 55, 194]. Although each research field differs

significantly in its relative role and contribution in science and beyond, the combination

of their impacts beyond science powerfully predicts funding, suggesting that, ultimately,

what the public uses, what scientists use, and what is funded are remarkably consistent.
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4.4.4. The role of scientific funding, author characteristics, and journal pres-

tige

We present extensive additional analysis to further inform the observed alignment between

scientific use, public use, and funding. Before turning to these analyses, it is useful to

emphasize that the paper’s primary purpose (including the data assembly and analysis) is

to test commonly held views that there is little or no alignment between the science and

public spheres and that the methods are intended to draw together high-scale data and

establish novel facts that speak to those hypotheses. The methodology is not intended

to produce causal interpretation, which we consider an exciting avenue for future work

deploying experimental or quasi-experimental methods. That said, adding in finer-grained

analyses can reveal important, additional insights.

To further analyze the relationships between public use, funding, and impact, here we

leverage variation at the paper level. This allows us to see whether the journal placement,

author traits (like eminence), and paper-level funding predict public use, and whether such

considerations can explain the large variation in public use across fields. For example,

promotional advantages may increase public use – where greater financial resources for

a research team, the prestige and marketing efforts of a journal, or perhaps individual

eminence advantages may increase public attention to certain scientific papers.

First consider regressions at the paper level. The dependent variable is an indicator

for whether a given paper is referenced in one of our public domains. The explanatory

variables include an indicator for whether the paper is high impact (in the top 1% of

citations in its field and publication year) and an indicator for whether the paper is

supported by public funding. We then further include fixed effects for (a) the journal in
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which the paper appears (accounting for features like journal prestige as an information

cue to the public, or variation in journals’ capacity to market ideas); (b) individual author

fixed effects, which can account for the author’s capacity for self-promotion, eminence, or

other personal factors; and (c) field fixed effects, which account for remaining differences

across fields in their average public use once the journal, authors, impact, and funding of

the specific paper have been taken into account. To capture author-level advantages, note

that we deploy two alternatives: (i) the average h-index of all authors affiliated with a

paper and (ii) author-level fixed effects. Due to the large sample size of our data (116.6M

author-paper pairs in 2005-2014), we run (ii) by randomly sampling 1% of the authors in

our data for computational efficiency.

Supplementary Table 8 presents the regression results. First, we see a very large effect

of being a high impact paper. That is, even conditional on whether the paper is publicly-

funded, in a given field, in a given journal, by a particular authors, etc., public use is

sharply predicted by impact within science. This indicates that the link between impact

within science and public use is highly robust, and not simply a matter of journal prestige,

author prestige, or funding status.

Second, we also see evidence that is consistent with some promotional advantages.

Public funding does suggest greater public use at the paper level, conditional on the other

controls. That is, even conditional on a paper being high impact in a given field (and in

a given journal and by a particular author, etc.) public funding has additional positive

predictive capacity for public use, although this paper-level result is quite weak compared

to being a high-impact paper.
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The journal dimension can be further seen in Fig. 4.14. Here we separately consider

groups of journals within each field. Specifically, we calculate a measure of expected hit

rate at the journal level, defined as the frequency for papers on a particular journal to

be a “hit” paper (i.e., top 1% cited within the same year and field). The journal-level

expected hit rate therefore offers an approximation for journal impact. To test if the

observed pattern between public use and impact exists outside the very top journals, we

construct a list of the top 10 journals in each L0 field (ranked by the journal-level expected

hit rate), which includes journals such as Nature, Science, and PNAS. We then repeat our

results in Fig. 4.9b looking outside the top 10 journals in each field. We still see a strong

linkage between the paper hit rate within science and public use.

We also find that fields continue to vary massively in how often their papers are taken

up, and in a similar way regardless of paper-level considerations. One way to see this is

in Fig. 4.15, where we separated papers by their funding status and looked at their RCI

measured separately. For each L1 field, we calculate the RCI measures separately based

on funded papers, unfunded papers, and unfunded hit papers. These RCI measures

prove highly correlated with each other. Therefore, fields with relatively high public

attention (high RCI measures) are high attention regardless of whether the specific paper

was publicly funded. This suggests that public funding at the paper level is not really

what’s driving the relative attention to the field. Yet another way to see this is to look

at the relationship between the raw RCI measure and the field fixed effects in the above

regression, as shown in Fig. 4.16. Here we see that the field differences appear broadly

similar both in the raw data and when net of all the controls (journal, individual fixed

effects, paper funding, and paper impact).
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Figure 4.14. Hit rates for papers cited in at least one, two, or three public
domains.

This figure repeats the analysis of Fig. 4.9b but dropping the top 10 journals by impact
in each field.

Altogether, while a paper’s funding may advance attention to it, as may a high-prestige

journal or individual, the field-level variation in public attention appears robust to these

considerations. Ultimately, this paper-level analysis suggests that the large variation in

attention to different research areas appears to be primarily a feature of the area itself,

rather than the specific promotion opportunities from a journal, scientist, or funding.

4.5. Concluding remarks

One source of this alignment could be that science follows the public interest. For

example, scientists may prioritize or innately share areas of interest, such as COVID-19,
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Figure 4.15. Comparing RCI values between funded papers with unfunded pa-
pers (a-c) and unfunded hit papers (d-f) at the L1 level.

This figure compares relative attention to different fields when looking at funded papers
in that field versus unfunded papers in that field. The relative attention to a field tends
to be similar either way, suggesting that public attention to a field is not being driven by
paper-level funding.

where there is enormous public demand for solutions and where scientific attention has

surged [177, 196, 197]. Another source could be that some scientists or science institutions

are especially good at promoting their interests to the public, influencing what the public

sees and funds. For example, one may wonder if high-prestige journals, eminent authors,

or funding for a paper drive attention to specific research. To test this, we further consider

fine-grained, paper-level regressions that include journal fixed effects, author fixed effects,
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Figure 4.16. Comparing RCI values and field fixed effects at the L1 level.

We examine average attention to a field through field fixed effects in a regression. The
regression seeks to explain public attention to a paper based on whether a paper was
funded, the paper’s citation impact, author characteristics, journal fixed effect, and field
effects. Author-level advantages are controlled for by author average h-index at the paper
level (a-c) and author fixed effects on 1% random sample of all authors (d-f).

and paper-level funding indicators. We find that the results are very similar, regardless of

these controls (Fig. 4.14, 4.15, 4.16, Table 4.3). Indeed, the relative attention to different

fields (Fig. 4.5), the alignment between public use and high-impact science (Fig. 4.9),

and the alignment with public funding (Fig. 4.12), all appear robust after accounting for

journal placement, the scientists who produced the work, or the funding status of the

specific paper. Thus, while some scientists, journals, or funders may have advantages
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[]
Model (1) (2) (3) (4) (5) (6)

Government uses
(dummy)

News uses
(dummy)

Patent uses
(dummy)

VARIABLES
Hit paper (indicator) 0.045*** 0.036*** 0.107*** 0.135*** 0.233*** 0.258***

(0.000) (0.001) (0.000) (0.001) (0.000) (0.002)
Funded (indicator) 0.002*** 0.001*** 0.009*** 0.011*** 0.026*** 0.033***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Author h-index 0.000*** 0.000*** 0.000***

(0.000) (0.000) (0.000)
Author fixed effect Y Y Y
Level-1 field fixed effect Y Y Y Y Y Y
Year fixed effect Y Y Y Y Y Y
Journal fixed effect Y Y Y Y Y Y
R2 0.036 0.190 0.079 0.250 0.121 0.265
F 702.0 13.41 2216.8 70.18 3949.6 91.03

Table 4.3. Regression results for public uses of science.

Standard errors in parentheses. *P < 0.1; **P < 0.05; ***P < 0.01.

in reaching the public, the forms of alignment we see appear primarily as features of a

research area, rather than the specific promotion opportunities from a journal, scientist,

or funding. More generally, numerous mechanisms, institutional factors, and policies may

be at work in producing, increasing, or reducing use and alignment, and unpacking these

mechanisms is an exciting area for future work.

Altogether, the analysis probes quantitatively key features of the public use and fund-

ing of science. Measuring the usage of scientific research outside science itself, we uncover

enormous diversity and specialization in how different fields of scientific inquiry are linked

to different public domains. Yet, despite these differences, the different public domains

(and subdomains) universally draw on highly cited papers within science, indicating that

public use is strongly aligned with what scientists themselves consider impactful. And,
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critically, the public usage of scientific fields across the diverse domains provides simple

yet powerful predictors for the level of public investment in each field.

Note that, although the three domains each represent an important dimension of the

public space, they do not cover all domains that science may impact. Even within each

of the three domains we studied, there may be consumption of science through channels

that go beyond our datasets. For example, scientists and their ideas can appear through

television, in congressional testimony, and in private sector consulting. Scientific ideas

may also enter industry and government through social networks, through the hiring of

scientists, and through influencing managerial practices (Fig. 4.3), which may augment

and alter perspectives on the public use of specific research fields. While there is much

still to explore, this paper introduces a quantitative framework to examine public uses

of science at the individual paper level, both across all scientific fields and diverse public

domains, revealing individually specialized and collectively diverse uses, universality in

impact, and a remarkable alignment between the funding of science and its public use.

As society’s support of science depends on a public goods model [144, 146], and as

legislators have called for more transparency in the usage and value of scientific funding

[198], the framework developed in this paper provides an empirical tool, offering quan-

titative evidence to inform discussions around public interest features of science. The

allocation of science funding involves chains of decisions by individuals and groups with

different perspectives and priorities. These considerations range from legislative commit-

tees and the goals of individual political representatives, to funding agency leaders, to

within-agency mechanisms that often incorporate insights from scientists, interacting in

a complex process that must bridge across distinct communities. As such, one might
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expect a substantial disconnect between what is eventually funded and forms of public

interest – metaphorically, funding of public parks in ways weakly related to public use.

Yet, despite the massive diversity in the public uses of science and a complex funding

process, there is remarkable alignment in the end result. What the public uses and what

scientists themselves use are closely consistent. And the funding of science closely tracks

quantifiable public use. These results suggest the connections between the ivory tower

and the real world appear more aligned than is commonly imagined.
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CHAPTER 5

Conclusion

The rapid growth of scientific research and its increasing complexity have created

unprecedented opportunities and challenges for understanding and managing the scientific

enterprise. Understanding the key mechanisms underlying the full spectrum of scientific

achievements and impact, from success to failure, from scientific influence to broad impact,

carries growing importance for identifying and nurturing new ideas, talents, and paradigms

across a wide range of domains.

This dissertation illustrates the power of interdisciplinary tools to unearth how differ-

ent individual, social, and environmental factors can promote (or inhibit) scientific and

technological progress. Chapter 2 would not have been possible without the modeling

framework rooted in complex systems, which is further combined with large-scale data

analytics. By mimicking how future attempts build on those past, this simple yet powerful

mechanistic model speaks directly to a wide range of literature, including innovations, hu-

man dynamics, and learning theories, capable of covering the key predictions by existing

models in its limiting cases. More importantly, following the idea of phase transitions – a

fundamental concept from statistical physics – the model separates failure dynamics fail-

ure into regions of stagnation or progression, making four different empirically testable

predictions. At the same time, the empirical validity and practical relevance are only

possible through the three large-scale datasets in science, security, and startups. These

corpora are among the largest in their respective settings, yet at the same time, also
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differ dramatically in their scope, scale, definition, and temporal resolution, allowing us

to systematically interrogate the theoretical framework we developed. Chapter 3 builds

directly on canonical science of science tools such as citation networks analysis, which is

further applied to high-resolution tracking data of scientific and policy landscapes during

the pandemic. These results not only offer a novel quantitative framework to quantify the

interconnectedness of the COVID-19 policy responses, but also present some of the most

urgently needed empirical evidence to inform a large set of global issues and debates by the

time of writing, ranging from the role of science and journals in this crisis to the US Pres-

ident Trump’s decision to defund WHO amidst the global crisis. Further, the frameworks

developed are not limited to COVID-19, but can be generalized to study real-time policy

responses to various emergent threats, from natural disasters to human conflicts to more,

holding omnipresent relevance to the scientific community and beyond. Chapter 4 repre-

sents an emerging opportunity for the science of science research in the Big Data era. By

leveraging the latest computational tools in information retrieval, we are now able to sys-

tematically link scientific publications and researchers to a wide range of complementary

features that are not tracked in traditional citation databases, from upstreaming public

funding to downstream public uses in government policy, media news, and marketplace

applications. Such linkages offer an unprecedented opportunity to examine the role of

science in the broader public space, which not only relates to the long-standing interest in

the sociology and economics of science literature, but also serves as the foundational idea

of the institutional architectures to support science through public investment in many

countries. Together, these three examples illustrate the power of integrating fundamental

ideas and tools from physical, computational, and social sciences.
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From a broader computational social science perspective, science and innovation serve

as a powerful lens to examine broader social processes. As shown in this dissertation,

a deeper understanding of science as a model system can produce highly generalizable

methods and conclusions to complement and enrich data-driven insights across a diverse

set of complex social systems. For example, by developing a simple yet general model

of repeated failures, Chapter 2 offers a universal quantitative basis not only for scien-

tists obtaining NIH grants but also for business innovators achieving startup exits and

terrorist organizations launching fatal attacks. Given the ubiquity of failure and knowl-

edge spillover in various social systems, the techniques and insights presented here may

prove useful for our understanding of other social systems, ranging from artistic and cul-

tural productions to public policy and media attention to market competition and human

conflict.

The endeavors made in this work are certainly not complete. Indeed, as simple as

many of the measurement frameworks we established here, they have achieved remark-

able success in uncovering hidden patterns within and beyond the knowledge ecosystems,

suggesting a high degree of regularity and predictability underlying the seemingly noisy

and random data. One interesting extension is to build and analyze a more comprehensive

modeling framework of learning for benchmarking and diagnosing the fundamental con-

straints in successful productivity. The extant literature on the essential tension between

exploration and exploitation, from areas as diverse as sociology, psychology, economics,

physics, and innovation, highlights that neither pure exploration nor pure exploitation

is ideal, implying the existence of an optimal progress trajectory when exploration and
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exploitation are combined. A deeper understanding of this optimal trajectory, both the-

oretically and empirically, carries direct implications for the diagnosis, improvement, and

planning of all innovative activities where learning dynamics play a role. It would also

be interesting to examine the collective dynamics behind scientific and technological fron-

tiers, building on canonical insights across diverse domains such as organizational search,

cultural evolution, crowd wisdom, and technology management. For example, are there

reproducible patterns governing the evolution of technological frontiers? Are there signals

for an impending scientific breakthrough? What kinds of teams or strategies are most

effective in shaping the rate and direction of technological progress and disruptive inno-

vations? Finally, given the substantial time gap between scientific production and public

uses, one can imagine a data-driven framework to quantify and forecast how today’s scien-

tific discoveries enable tomorrow’s technological and commercial inventions. Ultimately,

an improved ability to understand and predict the use and applications of new scien-

tific knowledge would improve and accelerate scientific and technological progress, the

fundamental engine of economic growth and human prosperity.
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APPENDIX A

Robustness checks

A.1. Robustness checks for Chapter 2

A.1.1. Definition of success and failure

We vary our definition of success and failure across different datasets. For D1 we re-

move all renewal/resubmission successes and only focus on new applications, finding our

conclusions are not affected by resubmissions (Fig. A.1).

For D2 we vary the definition of success for a startup. Previously we have considered

IPO and high-value M&A as success. Similar with hit papers defined in science of science,

we define high-value M&As as those with transaction value ranking top 1% among all

transactions in the same year. We vary this definition to top 5% transactions or exclude

all M&As (Fig. A.2), finding our conclusions still hold. One problem with our definition

for success is that it does not include ventures that could already be considered successful

despite not having had an IPO or being acquired. To this end, we collected a list of

unicorn companies, defined as privately held startup companies valued at over 1 billion,

from CB Insights website, yielding 121 companies in our sample, which can be linked

through company names. Overall we find such cases are relatively rare. We also test our

conclusions by removing these cases from the unsuccessful group, or re-defining them as

successful attempts. In both cases we find our results remain the same (Fig. A.2).
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Figure A.1. Robustness check on D1.

(Caption next page.)

For D3 we tried variants by expanding unsuccessful groups to all samples or restricting

successful groups to human-target samples only (Fig. A.3). Both variants yield similar

results. We also vary the threshold in our data, changing our definition of successful group
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(Previous page.) a-c, Failure streak as we change score threshold to 55 (a), exclude
revisions as successes (b) and only focus on new PIs without previous R01 grants (c). Blue
circles represent real data of success group and dashed lines represent fitting of Weibull
distributions. d-f, Temporal scaling patterns as we change score threshold to 55 (d),
exclude revisions as successes (e) and only focus on new PIs without previous R01 grants
(f). The shaded area shows mean ± s.e.m. of Tn (logged). g-i, Performance dynamics
as we change score threshold to 55 (g, n = 768, 189, 686, 170 respectively), exclude
revisions as successes (h, n = 252, 145, 216, 123 respectively) and only focus on new PIs
without previous R01 grants (i, n = 1164, 308, 1530, 334 respectively). The success and
non-success groups who experienced a large number of consecutive failures prior to the last
attempt (at least 5 for g,h and 3 for i) appear indistinguishable in first failures (two-sided
t-test, P = 0.242, 0.819, 0.289) but quickly diverge in second failures (two-sided t-test,
P = 3.40 × 10−4, 3.40 × 10−2, 9.70 × 10−7). The success group also shows significant
performance improvement (one-sided t-test, P = 4.23× 10−2, 3.04× 10−2, 1.92× 10−4),
which is absent for the non-success group (one-sided t-test, P = 0.863, 0.754, 0.997). The
centers and error bars denote the mean and s.e.m. j-l, AUC score of predicting ultimate
success as we change score threshold to 55 (j), exclude revisions as successes (k) and
only focus on new PIs without previous R01 grants (l). The centers and error bars of
AUROC scores denote the mean and s.e.m calculated from 10-fold cross validation over
50 randomized iterations. ∗: P < 0.1, ∗∗: P < 0.05, ∗ ∗ ∗: P < 0.01, NS: P ≥ 0.1.

as organizations that killed at least 5, 10 and 100 people in a terrorist attack (Fig. A.3).

We find the patterns hold the same.

A.1.2. Threshold for being inactive in the system

The definition of unsuccessful group depends on the threshold for inactive in the system.

In main text we set up the threshold as 5 years, i.e. if one does not appear in the system

for the last 5 years, we consider such cases as drop-out samples. To test the effect of this

threshold, here we repeat our main results for 3 years and 7 years (Fig. A.4), respectively.

We find all our results are robust as we tune this criterion.
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Figure A.2. Robustness check on D2.

(Caption next page.)

A.1.3. Effect of overall success rate

It is also important to keep in mind that the success rate may go up and down over

time. Here we control for the overall success rates across our three datasets and test its

potential impact on our results. More specifically, we renormalize our empirical data by
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(Previous page.) a-c, Failure streak as we change threshold of high-value M&A to 5% (a),
exclude M&As as successes (b) and classify unicorns as successes (c). Blue circles repre-
sent real data of success group and dashed lines represent fitting of Weibull distributions.
d-f, Temporal scaling patterns as we change threshold of high-value M&A to 5% (d),
exclude M&As as successes (e) and include unicorns as successes (f). The shaded area
shows mean ± s.e.m. of Tn (logged). g-i, Performance dynamics as we change threshold
of high-value M&A to 5% (g, n = 251, 1304, 243, 1284 respectively), exclude M&As as
successes (h, n = 248, 1335, 237, 1315 respectively) and include unicorns as successes (i,
n = 257, 1330, 244, 1311 respectively). The success and non-success groups who experi-
enced a large number of consecutive failures prior to the last attempt (at least 3) appear
indistinguishable in first failures (two-sided t-test, P = 0.937, 0.647, 0.620) but quickly
diverge in second failures (two-sided t-test, P = 9.92 × 10−3, 4.94 × 10−3, 6.33 × 10−3).
The success group also shows significant performance improvement (one-sided t-test,
P = 2.16 × 10−2, 2.37 × 10−2, 2.77 × 10−2), which is absent for the non-success group
(one-sided t-test, P = 0.224, 0.158, 0.167). The centers and error bars denote the mean
and s.e.m. j-l, AUC score of predicting ultimate success as we change threshold of high-
value M&A to 5% (j), exclude M&As as successes (k) and include unicorns as successes
(l). The centers and error bars of AUROC scores denote the mean and s.e.m calculated
from 10-fold cross validation over 50 randomized iterations. ∗: P < 0.1, ∗∗: P < 0.05,
∗ ∗ ∗: P < 0.01, NS: P ≥ 0.1.

weighing different samples by success rate to ensure that each year has effectively the

same success rate. For example, for samples from the successful group ending in year

y, we count the total number of successes and failures in that year, defined as S(y) and

F (y). We then calculate the weight of each sample as w ≡ (F + S)/S, i.e., the inverse

of the overall success rate. This is equivalent to resampling within all successful cases,

with the sampling probability proportional to the inverse of the success rate. To this end,

the weighted sum of each year’s success should be S/w = (F + S), or proportional to the

total number of samples in the same year.

We then repeat all of our main measurements using the renormalized samples. As

shown in Fig. A.5, all of the main predictions made in our paper hold the same. This

suggests that even though intelligence agencies may improve their ongoing detection of
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Figure A.3. Robustness check on D3.

(Caption next page.)

terror attacks, congress may decrease (or increase) its annual budget for science, and

economic cycles may increase or reduce the companies with successful exits, these changes

are smooth in time, and do not affect the conclusions.
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(Previous page.) a-c, Failure streak as we focus on all samples (a), samples of human-
targeted attacks (b) and include vague data on fatality (c). Blue circles represent real data
of success group and dashed lines represent fitting of Weibull distributions. d-f, Temporal
scaling patterns as we focus on all samples (d), samples of human-targeted attacks (e)
and include vague data on fatality (f). The shaded area shows mean ± s.e.m. of Tn

(logged). g-i, Performance dynamics as we focus on all samples (g, n = 231, 231, 229, 232
respectively), samples of human-targeted attacks (h, n = 176, 173, 173, 174 respectively)
and include vague data on fatality (i, n = 227, 147, 225, 148 respectively). The success
and non-success groups who experienced a large number of consecutive failures prior
to the last attempt (at least 2) appear indistinguishable in first failures (two-sided t-
test, P = 0.400, 0.859, 0.395) but quickly diverge in second failures (two-sided t-test,
P = 2.08 × 10−3, 6.70 × 10−3, 3.76 × 10−3). The success group also shows significant
performance improvement (one-sided t-test, P = 2.55× 10−2, 5.65× 10−2, 3.77× 10−2),
which is absent for the non-success group (one-sided t-test, P = 0.970, 0.901, 0.967). The
centers and error bars denote the mean and s.e.m. j-l, AUC score of predicting ultimate
success as we focus on all samples (j), samples of human-targeted attacks (k) and include
vague data on fatality (l). The centers and error bars of AUROC scores denote the mean
and s.e.m calculated from 10-fold cross validation over 50 randomized iterations. m-o,
Temporal scaling patterns as we change the threshold for the success group as fatal attacks
that killed at least 5 (m), 10 (n) and 100 (o) people. ∗: P < 0.1, ∗∗: P < 0.05, ∗ ∗ ∗:
P < 0.01, NS: P ≥ 0.1.



205

Te
rro

ris
t A

tta
ck

s
N

IH
 G

ra
nt

s
St

ar
tu

ps
d ga j

e hb k

f ic l

Te
rro

ris
t A

tta
ck

s
N

IH
 G

ra
nt

s
St

ar
tu

ps

p sm v

q tn w

r uo x

0 10 20
Number of failures

10− 6

10− 5

10− 4

10− 3

10− 2

10− 1

100

C
C

DF

100 101

n
10−1

100

T n

First failure Second failure0.5

0.6

0.7

0.8

0.9

Ev
al

ua
tio

n
sc

or
e

NS **

*

NS

2 4 6 8 10
Number of failures

0.5

0.6

0.7

0.8

AU
C

0 10 20
Number of failures

10− 6

10− 5

10− 4

10− 3

10− 2

10− 1

100

C
C

DF

100 2×100 3×1004×100 6×100

n
10−1

100

T n

First failure Second failure0.0

0.1

0.2

0.3

0.4

0.5

0.6

In
ve

st
m

en
ta

m
ou

nt

NS

***
**

NS

2 4 6
Number of failures

0.5

0.6

0.7

0.8

AU
C

0.8 0.8

0 10 20
Number of failures

10− 6

10− 5

10− 4

10− 3

10− 2

10− 1

100

C
C

DF

100 2×100 3×100 4×100

n
10−1

100

T n

First failure Second failure0.0

0.2

0.4

0.6

W
ou

nd
ed

in
di

vi
du

al
s

NS *

**

NS

2 4
Number of failures

0.5

0.6

0.7

AU
C

0 10 20
Number of failures

10− 6

10− 5

10− 4

10− 3

10− 2

10− 1

100

C
C

DF

100 101

n
10−1

100

T n

First failure Second failure0.5

0.6

0.7

0.8

0.9

Ev
al

ua
tio

n
sc

or
e

NS **

**

NS

2 4 6 8 10
Number of failures

0.5

0.6

0.7

0.8

AU
C

0 10 20
Number of failures

10− 6

10− 5

10− 4

10− 3

10− 2

10− 1

100

C
C

DF

100 2×100 3×1004×100 6×100

n
10−1

100

T n

First failure Second failure0.0

0.1

0.2

0.3

0.4

0.5

0.6

In
ve

st
m

en
ta

m
ou

nt

NS

***
**

NS

2 4 6
Number of failures

0.5

0.6

0.7

0.8

AU
C

0 10 20
Number of failures

10− 6

10− 5

10− 4

10− 3

10− 2

10− 1

100

C
C

DF

100 2×100 3×100 4×100

n
10−1

100

T n

First failure Second failure0.0

0.2

0.4

0.6

0.8

W
ou

nd
ed

in
di

vi
du

al
s

NS
*

**

NS

2 4
Number of failures

0.5

0.6

0.7

0.8

AU
C

Figure A.4. Robustness check on definition of non-success group.

(Caption next page.)
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(Previous page.) a-l, Robustness check as we change the threshold of inactivity to 3
years. a-c, Failure streak in science (a), entrepreneurship (b) and security (c). Blue
circles represent real data of success group and dashed lines represent fitting of Weibull
distributions. d-f, Temporal scaling patterns in science (d), entrepreneurship (e) and
security (f). The shaded area shows mean ± s.e.m. of Tn (logged). g-i, Performance
dynamics in science (g, n = 641, 231, 578, 190 respectively), entrepreneurship (h, n =
248, 1332, 237, 1312 respectively) and security (i), n = 238, 198, 236, 199 respectively.
The success and non-success groups who experienced a large number of consecutive failures
prior to the last attempt (at least 5 for D1, 3 for D2 and 2 for D3) appear indistinguishable
in first failures (two-sided t-test, P = 0.566, 0.671, 0.349) but quickly diverge in second
failures (two-sided t-test, P = 2.09 × 10−2, 4.95 × 10−3, 7.77 × 10−2). The success
group also shows significant performance improvement (one-sided t-test, P = 7.03 ×
10−2, 2.37 × 10−2, 2.32 × 10−2), which is absent for the non-success group (one-sided
t-test, P = 0.717, 0.176, 0.786). The centers and error bars denote the mean and s.e.m.
j-l, AUC score of predicting ultimate success in science (j), entrepreneurship (k) and
security (l). The centers and error bars of AUROC scores denote the mean and s.e.m
calculated from 10-fold cross validation over 50 randomized iterations. m-x, As in a-l
but using 7 years as the threshold of inactivity. Sample sizes are s: n = 620, 101, 559, 76;
t: n = 248, 977, 237, 989; v: n = 216, 152, 214, 153 respectively. P -values in u-w
are P = 0.883, 0.671, 0.456; P = 2.25 × 10−2, 1.38 × 10−3, 8.34 × 10−2; P = 4.59 ×
10−2, 2.37× 10−2, 3.33× 10−2; P = 0.838, 0.446, 0.775. ∗: P < 0.1, ∗∗: P < 0.05, ∗ ∗ ∗:
P < 0.01, NS: P ≥ 0.1.
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(Previous page.) a-l, Robustness check as we change the threshold of inactivity to 3
years. a-c, Failure streak in science (a), entrepreneurship (b) and security (c). Blue
circles represent real data of success group and dashed lines represent fitting of Weibull
distributions. d-f, Temporal scaling patterns in science (d), entrepreneurship (e) and
security (f). The shaded area shows mean ± s.e.m. of Tn (logged). g-i, Performance
dynamics in science (g, n = 641, 231, 578, 190 respectively), entrepreneurship (h, n =
248, 1332, 237, 1312 respectively) and security (i), n = 238, 198, 236, 199 respectively.
The success and non-success groups who experienced a large number of consecutive failures
prior to the last attempt (at least 5 for D1, 3 for D2 and 2 for D3) appear indistinguishable
in first failures (two-sided t-test, P = 0.566, 0.671, 0.349) but quickly diverge in second
failures (two-sided t-test, P = 2.09 × 10−2, 4.95 × 10−3, 7.77 × 10−2). The success
group also shows significant performance improvement (one-sided t-test, P = 7.03 ×
10−2, 2.37 × 10−2, 2.32 × 10−2), which is absent for the non-success group (one-sided
t-test, P = 0.717, 0.176, 0.786). The centers and error bars denote the mean and s.e.m.
j-l, AUC score of predicting ultimate success in science (j), entrepreneurship (k) and
security (l). The centers and error bars of AUROC scores denote the mean and s.e.m
calculated from 10-fold cross validation over 50 randomized iterations. m-x, As in a-l
but using 7 years as the threshold of inactivity. Sample sizes are s: n = 620, 101, 559, 76;
t: n = 248, 977, 237, 989; v: n = 216, 152, 214, 153 respectively. P -values in u-w
are P = 0.883, 0.671, 0.456; P = 2.25 × 10−2, 1.38 × 10−3, 8.34 × 10−2; P = 4.59 ×
10−2, 2.37× 10−2, 3.33× 10−2; P = 0.838, 0.446, 0.775. ∗: P < 0.1, ∗∗: P < 0.05, ∗ ∗ ∗:
P < 0.01, NS: P ≥ 0.1.
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Figure A.5. Additional robustness checks.

(Caption next page.)
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(Previous page.) a-i, Robustness check as we control for temporal variation. a-c, Failure
streak in science (a), entrepreneurship (b) and security (c). Blue circles represent real
data of success group and dashed lines represent fitting of Weibull distributions. d-f,
Temporal scaling patterns in science (d), entrepreneurship (e) and security (f). The
shaded area shows mean ± s.e.m. of Tn (logged). g-i, Performance dynamics in science
(g, n = 628, 145, 571, 123 respectively), entrepreneurship (h, n = 248, 1332, 237, 1312
respectively) and security (i), n = 231, 173, 229, 174 respectively. The success and
non-success groups who experienced a large number of consecutive failures prior to the
last attempt (at least 5 for D1, 3 for D2 and 2 for D3) appear indistinguishable in first
failures (two-sided weighted t-test, P = 0.814, 0.728, 0.330) but quickly diverge in second
failures (two-sided weighted t-test, P = 1.80×10−2, 3.10×10−2, 4.56×10−2). The success
group also shows significant performance improvement (one-sided weighted t-test, P =
2.10×10−2, 1.92×10−2, 4.53×10−2), which is absent for the non-success group (one-sided
weighted t-test, P = 0.755, 0.175, 0.903). The centers and error bars denote the mean and
s.e.m. j-l, Performance dynamics as we compare the first and halfway attempts in science
(j, n = 628, 145, 582, 111 respectively), entrepreneurship (k, n = 248, 1332, 240, 1294
respectively) and security (l, n = 231, 173, 228, 175 respectively). The success and
non-success groups who experienced a large number of consecutive failures prior to the
last attempt (at least 5 for D1, 3 for D2 and 2 for D3) appear indistinguishable in first
failures (two-sided t-test, P = 0.898, 0.671, 0.289) but quickly diverge in halfway failures
(two-sided t-test, P = 2.18 × 10−5, 1.34 × 10−2, 1.34 × 10−2). The success group also
shows significant performance improvement (one-sided t-test, P = 2.35 × 10−2, 4.54 ×
10−2, 3.69 × 10−2), which is absent for the non-success group (one-sided t-test, P =
0.992, 0.252, 0.955). The centers and error bars denote the mean and s.e.m. m-o,
Performance dynamics as we compare the first and penultimate attempts in science (m,
n = 628, 145, 896, 87 respectively), entrepreneurship (n, n = 248, 1332, 227, 1199
respectively) and security (o, n = 231, 173, 230, 173 respectively). The success and non-
success groups who experienced a large number of consecutive failures prior to the last
attempt (at least 5 for D1, 3 for D2 and 2 for D3) appear indistinguishable in first failures
(two-sided t-test, P = 0.898, 0.671, 0.289) but quickly diverge in penultimate failures
(two-sided t-test, P = 8.50 × 10−8, 3.12 × 10−2, 1.13 × 10−2). The success group also
shows significant performance improvement (one-sided t-test, P = 5.79 × 10−9, 4.30 ×
10−2, 1.33 × 10−2), which is absent for the non-success group (one-sided t-test, P =
0.980, 0.138, 0.923). The centers and error bars denote the mean and s.e.m.

We then repeat all of our main measurements using the renormalized samples. As

shown in Extended Data Fig. 9, all of the main predictions made in our paper hold the

same. This suggests that even though intelligence agencies may improve their ongoing



210

(Previous page.) p-r, The correlation between length of failure streak and initial perfor-
mance (samples with repeated failures) in science (p, n = 12171), entrepreneurship (q,
n = 2086) and security (r, n = 441). Correlation is weak across all three datasets (Pearson
correlation r = −0.051, −0.011, −0.107 respectively). s-u, Length of failure streak still
follows fat-tailed distributions conditional on bottom 10% initial performance samples in
science (s, n = 6339), entrepreneurship (t, n = 2438) and security (u, n = 1092). Two-
sided KS test between sample and exponential distribution rejects the two distributions
to be identical with P < 0.01. ∗: P < 0.1, ∗∗: P < 0.05, ∗ ∗ ∗: P < 0.01, NS: P ≥ 0.1

detection of terror attacks, congress may decrease (or increase) its annual budget for

science, and economic cycles may increase or reduce the companies with successful exits,

these changes are smooth in time, and do not affect the conclusions drawn in the paper.

A.1.4. Comparing first failures versus halfway/penultimate failures

In Chapter 2, we showed performance divergence patterns in two groups using first and

second failures. Here we also compares the first failures versus halfway or penultimate

failures, recovering the same patterns (Fig. A.5).

A.1.5. Other checks

For D1 we further confirmed that only focusing on failures before the first success yield

similar results. Indeed, as we plot Tn for samples with and without prior success, we find

the dynamical patterns remain the same. Lastly, we check the threshold of discussion

score, considering original percentile score higher than 55, rather than 50, as undiscussed.

All these variants show consistent results (Fig. A.1).

ForD3, 5.7% of the records contain vague numbers of killed people despite the evidence

of fatalities, which we discarded in our original analysis. We also consider these events
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as successful attempts and repeated our results, finding the patterns remain the same

(Fig. A.3).

A.2. Robustness checks for Chapter 3

A.2.1. Robustness checks using Altmetric data

While the Altmetric data is inadequate to carry out the vast majority of our analyses due

to its limited data coverage, it does offer information to allow us to repeat some of our

analyses. Here we report these measurements, showing that although results from the

Altmetric data are much noisier, they offer consistent conclusions as our analyses, further

validating our findings.

More specifically, we measure the share of COVID-19 policy documents across the

three broad categories using the Altmetric data, finding a similar pattern as in our data

(Fig. A.6AB). Although the patterns shown are noisier, partly due to its sample size, they

do show consistent patterns. Furthermore, we also queried the Altmetric API to extract

COVID-19 research papers cited by policy documents and analyzed their citations, which

allows us to repeat our previous results. Although Altmetric covers many fewer science-

policy citations, results in Fig. A.6CD suggest that for the ones they do cover, they

show consistent patterns as our data. That is, COVID-19 papers used by policy tend

to be highly cited within science itself, and are more likely to be peer-reviewed papers

(Fig. A.6CD).

Together, these additional analyses are clarifying, as they further highlight the state-

of-the-art coverage of the Overton data as well as the robustness of our findings. They
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not only offer further validation of our data and results, but also highlight the novelty of

the Overton dataset and the advances that the data may allow researchers to make.

A.2.2. Robustness checks on Perspective and Opinion pieces

We also test if our results may be dominated by Perspective and Opinion pieces in scientific

journals. As such article type information is not available in the Dimensions database,

here we employ two independent strategies: (i) accessing and linking to another external

database – PubMed to obtain article type information, and (ii) performing an estimation

based on related observable features available in the Dimensions database.

We start from scientific papers cited by COVID-19 policy documents and obtain their

PubMed ID (PMID) by calling the Dimensions API. Out of 9,191 papers, we find 4,864

of them (52.9%) are associated with a PMID (many articles are either preprints or are

not in biomedicine). Then, we query the PubMed API to obtain the metadata for each

paper in this subset, where 99.9% of them are associated with at least one publication

type. For the purpose of this task, we focus on four relevant types: Comment, Editorial,

Letter, and News. We find that about 7.3% of the papers have at least one of these four

types (6.2% if we require the paper has no other formats beyond these four). Moreover,

these papers do not receive a disproportionately large number of policy citations, as the

ratio of policy citations received is similar (7.9%). These statistics suggest that Opinion

and Perspective pieces only contribute to a small proportion of the scientific papers cited

by policy documents.

Furthermore, we estimate the rate of such non-research articles in the entire data

through a two-step procedure. (i) We first use keywords filtering of title [”editorial”,
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Figure A.6. Validations based on the Altmetric/Dimensions data.

(A-B) The share of COVID-19 policy documents across three broad subject categories
(21-day moving average) in Overton and Altmetric/Dimensions data. Throughout the
figures, the black vertical dashed line marks the date of the WHO’s pandemic declaration.
(C) Among COVID-related scientific papers, those cited by Altmetric/Dimensions policy
documents on average have greater citation impact within science. (D) For different
journals and preprint servers, we measure the number of COVID-19 papers (x-axis) and
the average number of citations from Altmetric/Dimensions policy documents to these
papers (y-axis) in 2020 (shown here top 50 publication outlets based on the total number
of citations from policy documents). The black dashed line represents the average number
of citations measured on all COVID-19 papers. While pre-print servers published a large
number of COVID-19 papers, papers from peer-reviewed journals received substantially
more COVID-19 policy citations than preprints.
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”comment”, ”reply to”, ”letter to the editor”, ”response to: ”, ”authors’ response”, ”letter

to editor”, ”from the editor”, etc.] to select publications that are less likely to be formal

research papers. (ii) For the remaining data, we look into page information, focusing on

cases where the start and the end page information are available, and we select papers

with no more than 3 pages. Note that this is likely to be a conservative estimate, as some

of the 3-page publications may also report original research. Together, such estimates

suggest the rate of non-research items is between 6.7% and 9.3%.

We further run robustness checks by excluding non-research papers identified above.

Replicating our key results above, the findings remain robust (Fig. A.7).

A.3. Robustness checks for Chapter 4

A.3.1. Including non-governmental funding

In our main regression analysis, we focused on US governmental funding agencies (defined

as funding agencies under .gov or .mil domains.) Here we run further robustness checks

by considering other U.S. funding agencies. Indeed, we find funding information recorded

in Dimensions is primarily dominated by governmental funding agencies, and our results

remain robust when considering all U.S. funding.

The relationship documented in Fig. 4.12 remains significant (Fig. 4.14) and signifi-

cance remains in all three cases after controlling for number of papers and level-0 parent

field fixed effect in (P < 0.001, Table A.1). We also find a similar level of predictive

power, where the three public use variables have R2 = 0.646 (Supplementary Fig. 4.14d,

Table A.2).
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Figure A.7. Robustness checks by excluding identified opinion/perspective
pieces.

We remove policy citations from COVID-19 policy documents to opinion/perspective
pieces and repeat our analysis, finding our results remain robust. (A) Distribution of
publication years of scientific papers cited by COVID-19 and other policy documents.
These results are computed for scientific papers published from 1980 to 2020. (B) Among
COVIDrelated scientific papers, those cited by COVID-19 policy documents on aver-
age have greater citation impact within science. (C) For different journals and preprint
servers, we measure the number of COVID-19 papers (x-axis) and the average number of
citations from COVID-19 policy documents to these papers (y-axis) in 2020 (shown here
top 50 publication outlets based on the total number of citations from COVID-19 policy
documents). The black dashed line represents the average number of citations measured
on all COVID-19 papers. While preprint servers published a large number of COVID-19
papers, papers from peer-reviewed journals received substantially more COVID-19 policy
citations than preprints.
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Figure A.8. Public use of science and scientific funding by including all US
funding.

(a-c) Average funding per paper across fields is positively correlated with a field’s RCI
index in government (a), news (b) and patenting (c). The relationship remains signifi-
cant when combined with control variables. (d) Collectively, public uses beyond science
strongly predict field level funding per paper.

A.3.2. Focusing on papers produced by US researchers

As another robustness check of our results, we also count the number of papers produced

by US researchers. This allows us to construct an additional $ per paper measure, where

the measure is calculated by dividing U.S. governmental funding by the total number

of U.S. papers in each scientific field. We find the results of our main regression result

remains robust after different counting of US papers (Tables A.3, A.4), where the three

public use variables have R2 = 0.592.
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[]

Model (1) (2) (3)
VARIABLES
Policy (RCI) 0.636***

(0.087)
News (RCI) 0.878***

(0.084)
Patent (RCI) 0.919***

(0.069)
Observations 294 294 294
R2 0.156 0.273 0.375
F 53.89 109.5 175.4

Table A.1. Regression results for Models 1-3 by including all US funding.

Standard errors in parentheses. *P < 0.1; **P < 0.05; ***P < 0.01.

[]

Model (4) (5) (6) (7) (8)
VARIABLES
Policy (RCI) 0.499*** 0.236*** 0.204***

(0.073) (0.064) (0.064)
News (RCI) 0.830*** 0.731*** 0.682***

(0.076) (0.067) (0.074)
Patent (RCI) 0.661*** 0.885*** 0.593***

(0.083) (0.052) (0.067)
# Paper (p) 0.242*** 0.301*** 0.158*** 0.191***

(0.053) (0.048) (0.053) (0.043)
Level-0 fixed effect Y Y Y Y
Observations 294 294 294 294 294
R2 0.695 0.751 0.710 0.646 0.813
F 29.53 39.04 31.71 176.7 51.16

Table A.2. Regression results for Models 4-8 by including all US funding.

Standard errors in parentheses. *P < 0.1; **P < 0.05; ***P < 0.01.

A.3.3. Paper hit rate

We check our definition of hit papers by changing the threshold to the top 5% (Fig. A.10)

or top 10% (Fig. A.11) most highly cited papers. Both variants show that papers used

across public domains and scientific fields are universally impactful within science.
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Figure A.9. Public use and public funding, with $ per paper calculated only
focusing on papers produced by US researchers.

(a-c) Average funding per paper across fields is positively correlated with a field’s RCI
index in government (a), news (b) and patenting (c). The relationship remains signifi-
cant when combined with control variables. (d) Collectively, public uses beyond science
strongly predict field level funding per paper.

We further repeated our analyses for papers produced by U.S.-based researchers. More

specifically, we identify U.S. institutions in MAG based on their GRID (Global Research

Identifier Database) id and limit our analysis to papers produced by scholars with these

institutional affiliations, again finding universal high impact of papers (Fig. A.12).

A.3.4. Changing the criterion of academic publications

As mentioned in Chapter 4, papers missing either document categorization or DOI in-

formation are not considered, since this is a noisier population that may not represent
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[]

Model (1) (2) (3)
Policy (RCI) 0.506***

(0.076)
News (RCI) 0.644***

(0.076)
Patent (RCI) 0.811***

(0.059)
Observations 294 294 294
R2 0.133 0.197 0.392
F 44.61 71.42 188.3

Table A.3. Regression results for Models 1-3 by focusing on papers produced
by US researchers.

Standard errors in parentheses. *P < 0.1; **P < 0.05; ***P < 0.01.

[]

Model (4) (5) (6) (7) (8)
VARIABLES
Policy (RCI) 0.381*** 0.216*** 0.168***

(0.063) (0.060) (0.060)
News (RCI) 0.607*** 0.510*** 0.488***

(0.069) (0.062) (0.070)
Patent (RCI) 0.497*** 0.784*** 0.446***

(0.073) (0.049) (0.063)
# Paper (p) 0.165*** 0.209*** 0.102** 0.125***

(0.046) (0.043) (0.046) (0.040)
Level-0 fixed effect Y Y Y Y
Observations 294 294 294 294 294
R2 0.694 0.730 0.704 0.592 0.779
F 29.31 35.08 30.74 140.0 41.37

Table A.4. Regression results for Models 4-8 by by focusing on papers produced
by US researchers.

Standard errors in parentheses. *P < 0.1; **P < 0.05; ***P < 0.01.

standard research publications. Here we repeat our analysis by including these samples

and calculate RCI for each level-0 field, finding our results are broadly consistent. We also
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Figure A.10. Robustness checks on paper hit rate (5% threshold).

Paper hit rate for the papers used across 19 fields consumed by government documents
(a), news media (b) and patents (c). In all fields, and in all three domains, the consumed
papers have hit rates within science many times larger than the baseline rate of 5% (dashed
line).

try another variant by restricting the samples used in main text to those only published

in English, again finding our results do not change (Figs. A.13, A.14).

A.3.5. Robustness checks using Overton data

Repeating our main results using Overton data, we find that although the correlation

between log of RCIGovernment and log of average funding decreases (R2 from 0.159 to 0.097),

the relationship remains significant (P < 0.001 after controlling for number of papers and

level-0 parent field fixed effect, see Appendix for details). Together, these results indicate

that the core findings from government documents are robust across different datasets

(Figs. A.15, Table. A.5).
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Figure A.11. Robustness checks on paper hit rate (10% threshold).

Paper hit rate for the papers used across 19 fields consumed by government documents (a),
news media (b) and patents (c). In all fields, and in all three domains, the consumed
papers have hit rates within science many times larger than the baseline rate of 10%
(dashed line).

[]

Model (1) (4) (7)
VARIABLES
Policy (RCI) 0.414*** 0.358*** 0.171***

(0.074) (0.065) (0.059)
News (RCI) 0.722***

(0.074)
Patent (RCI) 0.926***

(0.054)
# Paper (p) 0.257***

(0.054)
Level-0 fixed effect Y

Observations 294 294 294
R2 0.097 0.682 0.640
F 31.47 27.77 171.8

Table A.5. Regression results using Overton data.

Standard errors in parentheses. *P < 0.1; **P < 0.05; ***P < 0.01.
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Figure A.12. Robustness checks on paper hit rate for papers produced by U.S.-
based researchers.

Paper hit rate for the papers used across 19 fields consumed by government documents
(a), news media (b) and patents (c). In all fields, and in all three domains, the consumed
papers have hit rates within science many times larger than the baseline rate of 1% (dashed
line).
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Figure A.13. Robustness checks on definition of academic papers: results using
all MAG publications.
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Figure A.14. Robustness checks on definition of academic papers: results only
using English publications.
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Figure A.15. Robustness checks on policy documents by using Overton data.

(a) Average funding per paper across fields is positively correlated with a field’s RCI
index in government (based on Overton data). The relationship remains significant when
combined with control variables. (b) Collectively, public uses beyond science strongly
predict field level funding per paper.
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