
NORTHWESTERN UNIVERSITY

Real-Time Algorithms for Symbol-Based Automation

A THESIS

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Mechanical Engineering

By

Anastasia Mavrommati

EVANSTON, ILLINOIS

September 2017

2

c© Copyright by Anastasia Mavrommati 2017

All Rights Reserved

—-

3

ABSTRACT

Real-Time Algorithms for Symbol-Based Automation

Anastasia Mavrommati

Intelligent behavior in humans is largely associated with encoding information to discrete sym-

bols. However, symbolic behavior in robotic systems is not widespread, mainly due to lack of

tools that constitute symbol-based automation implementable in real time. This thesis proposes

real-time algorithms that facilitate and promote symbol-based action and sensing. In particular,

we show that time-efficient control with symbolic actions is possible, using mode scheduling

and, subsequently, finite state machines. Serving as the link between action and sensing is a

model predictive control algorithm that performs adaptive exploration, driven by an informa-

tion distribution. This exploration strategy is the key that enables sensing—i.e., learning and

tracking—symbols in a variety of settings, reinforcing the importance of information equiv-

alence. The proposed methodologies are validated through simulation examples, reflecting

real-world situations, as well as experimentation that verifies real-time execution and imple-

mentability. In the final example of this thesis, we demonstrate—in experiment, using a mobile

robot performing tactile exploration—how learned symbols can be subsequently employed as

self-localization landmarks through their information signature.

4

Acknowledgements

First and foremost I would like to thank my advisor, Professor Todd Murphey, for being

immensely understanding, encouraging and supportive these past five years. I can say with

certainty now that I wouldn’t have made it this far if it was not for his inspiring enthusiasm and

expert perspective guiding me through a difficult period full of classes and research, so thank

you!

I would also like to thank my committee, Professor Brenna Argall and Professor Ed Colgate

for taking time to read the manuscript and helping me advance my research career with their

valuable advice.

Special thanks to my lab mates for their help and for being who they are—social, enthusias-

tic, open-minded and professional all at once. They all make our lab an enjoyable place to work

in with lots of positive energy.

Thanks to my family and friends back in Greece, for always being there for me, even from

so many miles away. Finally, to Emmanouil, my partner in life, the greatest of thanks for his

calm, inspiring soul that supports me unconditionally. I’ve been blessed to have you by my side,

thank you.

This work would not be possible without my funding resources: in particular, my thesis was

supported by Army Research Office grant W911NF-14-1-0461 and by the National Science

Foundation under awards CMMI-1200321 and IIS-1426961.

5

Table of Contents

ABSTRACT 3

Acknowledgements 4

List of Figures 8

Chapter 1. Introduction 25

1.1. Part 1: ACTION 25

1.2. Part 2: EXPLORATION 26

1.3. Part 3: SENSING 28

Part 1. Acting with Symbols in Real Time 30

Chapter 2. Real-Time Hybrid Control 31

2.1. Introduction 31

2.2. Review 36

2.3. Single Integration Optimal Mode Scheduling 41

2.4. Open-Loop Implementation and Evaluation 51

2.5. Closed-Loop Simulation and Experimental Implementation 59

Chapter 3. Control Alphabet Policies 68

3.1. Introduction 68

6

3.2. Symbolic Control Calculation 72

3.3. Control Alphabet Policies 76

3.4. Example: Cart-Pendulum Inversion 81

3.5. Example: Two-Tank System 86

3.6. Example: Planar SLIP Hopper 89

Part 2. Real-Time Information-Driven Exploration for Symbols 94

Chapter 4. Introduction 95

4.1. Why Exploration? 95

4.2. Exploration Challenges and Contribution 96

4.3. Review of Exploration Strategies 101

Chapter 5. Ergodic Exploration Algorithm 105

5.1. Ergodicity 105

5.2. Algorithm Derivation 107

5.3. Stability 119

5.4. Extension to Multi-Agent Control 122

Chapter 6. Area Search and Coverage using Distribution-Driven Exploration 125

6.1. Single-Agent Coverage 126

6.2. Multi-Agent Coverage 131

Part 3. Sensing Symbols in Real Time 134

Chapter 7. Introduction: Abstract Sensing of Action Symbols 136

Chapter 8. Tracking Symbols: Bearing-Only Localization of Targets 144

7

8.1. Expected Information Density 149

8.2. Results 152

Chapter 9. Learning Symbols: Tactile Exploration and Estimation of Physical Object

Shapes 164

9.1. Symbol Identification using Ergodic Tactile Exploration 164

9.2. Information Equivalence in Ergodic Exploration 173

Chapter 10. Conclusion 184

References 186

8

List of Figures

2.1 An illustration of the operators update step in a receding-horizon scheme. A

differential equation needs to be integrated only over a limited time interval

δ rather than the time horizon (TM − T0) := T . 49

2.2 Spring-Mass-Damper vibration control: (a) Optimal trajectory and switching

control and (b) the cost versus iteration count. 52

2.3 Variation of (a) online execution times and (b) approximation errors (2-norm

of the root-mean-squared differences between the analytic and computed

state values) with respect to the selected number of samples evaluated across

3 different optimization methods. SIOMS can achieve both objectives (i.e.

fast execution and high approximation accuracy) for a wide range of sample

sizes. 54

2.4 The experimental setup consists of an one-dimensional differential drive

mobile robot with magnetic wheels (i.e. cart) and a ball suspended by a

string. The string changes length by means of an actuated reeling system

attached on the robot. The system configuration is measured by a Microsoft

Kinect at ≈ 30 Hz. The full state is estimated using an Extended Kalman

Filter. The Robot Operating System (ROS) is used for collecting sensed data

9

and transmitting control signals (i.e. robot acceleration values). See more

in [1, 2]. 60

2.5 Open-loop SIOMS (Algorithm 1 with TM = 40 s) vs Closed-loop SIOMS

(Algorithm 2 with δ = 0.5 and T = 3 s) in simulation. 61

2.6 Robustness to uncertainty in the damping coefficient through Monte-Carlo

analysis. Angle trajectories bundle and optimal cost distribution for (a)

open-loop SIOMS (Algorithm 1 with T0 = 0 and TM = 6) and (b) closed-loop

SIOMS (Algorithm 2 with δ = 0.2 and T = 3). 62

2.7 An example trial of Experiment 1. First, the robot follows a sinusoidal

trajectory perturbing the string angle. Approximately 6.6 seconds later,

receding-horizon SIOMS is applied in real time and drives the angle back to

the origin in approximately 4.8 seconds. Without control, the angle exhibits

high oscillations with minimal decay. 65

2.8 An example trial of Experiment 2. SIOMS controller is always active while

a person applies random disturbances by pushing the suspended ball four

times sequentially. The controller reacts in real time to regulate the angle.

Approximate settle time is at 6 seconds. 66

3.1 A diagram showing how our approach (in red) compares to common

automata synthesis methodologies [3–6] (in blue). 71

3.2 Control alphabet policies for cart-pendulum inversion. Phase plane plots

showing consecutive layers of the cell subdivision strategy described in

Algorithm 1 (layer 0 to layer 4) for synthesis of a two-symbol CAP with

10

U = {u1, u2} = {5,−5}. The CAP finite state machine is also visualized.

Vertices are the control symbols in U and each edge label Ai corresponds to

the union of grid cells labeled with the symbol ui. 81

3.3 Control alphabet policies for cart-pendulum inversion using energy tracking

cost. (a) Cart-pendulum system. (b) Phase plane plot and finite state machine

showing the four-symbol CAP with U = {u1, u2, u3, u4} = {−5,−2, 2, 5}. (c)

Numerical evaluation of the Lyapunov derivative on the control policies.

Derivative is negative (stable) except for the gray lines θ̇ = 0 and cosθ = 0,

where it is zero. These lines correspond to system singularities and are not

concerning with regard to stability, as it happens that the vector field always

drives the system out of these regions (non-invariant sets). 82

3.4 Control alphabet policies for cart-pendulum inversion using energy

tracking cost: A six-symbol policy with U = {u1, u2, u3, u4, u5, u6} =

{−5,−2,−1, 1, 2, 5}. 82

3.5 Control alphabet policy for cart-pendulum inversion using state tracking cost.

(a) Phase plane plots showing the sSAC-generated 2-symbol control policy,

along with the cell subdivision result from Algorithm 1. (b) Illustration of

the control automaton. Vertices are control symbols and each edge label

Ai corresponds to the union of grid cells labeled with the symbol ui (see

Algorithm 1). (c) Monte Carlo test: A bundle of 100 closed-loop trajectories

(blue curves) with marked initial and final states. 83

3.6 Control alphabet policies for tracking desired fluid levels in a double-tank

system. (a) The two-tank configuration. (b) Case A: Phase plane plot

11

showing the CAP policy with u = [V1,V2,V3] and N = 8 symbols. Desired

state is xd = [0.8, 0.2]. Figures on the right show Monte Carlo results

with tolerance ε = 0.1 (depicted as a circle). A 100% rate of success was

achieved. Blue trajectories show reduction of open-loop cost J in (3.2)

over time for a sample of 100 trials. Note that J was only calculated for

verification purposes and was not part of the control calculation. Smaller

figure shows a phase plane plot with the initial trial states in green and the

final states in red for 500 trials. 87

3.7 Control alphabet policies for tracking desired fluid levels in a double-tank

system. Case B: Phase plane plot showing the CAP policy with u = [V1,V3],

V2 = 0.2 and N = 4 symbols. Desired state is xd = [0.4, 0.6]. Monte Carlo

test was performed with tolerance ε = 0.05. A 100% rate of success was

achieved. In all trials, open-loop cost J in (3.2) was decreased over time.

Smaller figure shows a phase plane plot with the initial trial states in green

and the final states in red for 500 trials. 87

3.8 Control alphabet policy for hopping forward using the SLIP model. (a) The

SLIP configuration and an illustration of SLIP hopping during a successful

Monte Carlo trial. (b) On the left is the finite state machine with N = 5

symbols. The indicator function Φ is included at the finite state machine

edges. On the right is a phase plane plot of zm with respect to y, showing

the policy for ẋm = 0.1 and żm = −3. The switching manifold Φ = 0 only

depends on zm and y and is plotted too. Note the cells on the manifold are

assigned two labels (i.e colors) one for Φ > 0 and one for Φ < 0. 90

12

3.9 Control alphabet policy for hopping forward using the SLIP model. (a) We

ran a Monte Carlo test with 200 trials, 193 of which were successful by only

using the CAP for control. The other 7 trials relied on sSAC to account

for states out of CAP range, i.e. for x < Ω. (b) Histogram of the average

hopper velocities across trials. The mean of the Gaussian fit is 0.39 with 0.16

standard deviation. (c) The bundle of zm trajectories for all trials. 91

5.1 An overview of the ergodic control process. One major difference between

the proposed ergodic control algorithm and traditional MPC approaches

is that the open-loop problem can be solved without employing nonlinear

programming solvers [7] by using hybrid systems theory. In order to solve

(5.8), the algorithm follows four steps as illustrated above. 111

5.2 Communication network for multi-agent ergodic exploration using a hub

configuration. Agents are equipped with independent computational units

for local control calculation but exchange information that may influence

each other’s subsequent actions. The HUB is simply a network component

and has no computational capacity. Assuming that a double precision (d.p.)

number has 64 bits and an algorithm cycle completes in ts seconds, the

transmitting bit rate of each individual communication channel should be at

least (K+1)ν·64
ts

bits/s and receiving bit rate equal or higher than (N − 1) (K+1)ν·64
ts

bits/s. 124

6.1 Ergodic area coverage in an occluded environment (Algorithm 4 with time

horizon T = 0.1s and sampling time ts = 0.02s). White regions in Φ(x) (top

13

row) indicate low to no probability of detection (occlusions), for example

due to sensor failure or physical entities obscuring visibility. Note that

occlusions are not obstacles that should be completely avoided. Bottom row

shows the spatial statistics Φi
x(x) of the followed trajectory from t = 0 to

t = ti calculated as Φi
x(x) =

∑{K}ν
k={0}ν

{
Λkci

kFk(x)
}

with ν = 2 and K = 20. By

the end of the simulation at t = 60, the trajectory spatial statistics Φ60
x (x)

closely match the initial terrain spatial distribution Φ(x), accomplishing

the objective of ergodicity as expected. The ergodic cost (5.7) is shown to

decrease on logarithmic scale over time. Small cost fluctuations result from

numerical errors. 126

6.2 Bimodal Gaussian distribution coverage using a UGV. On the left, the

exploration trajectory is shown in red on top of the bimodal distribution that

indicates probability of detection. Middle figure shows the spatial statistics

of the ergodic trajectory, calculated as in Fig. 6.1 with K = 20. The objective

of ergodic exploration is for the trajectory spatial statistics (center) to match

the distribution Φ(x) (left). On the right, the open-loop ergodic control cost

is shown to reduce in time. 128

6.3 Bimodal Gaussian distribution exploration by a quadrotor. The trajectory

spatial statistics (center) match closely the distribution under exploration

(left) as desired. The controllers adapts to changes in dynamics without any

modification required (compared to Fig. 6.2). 129

6.4 Time-varying distribution exploration by a quadrotor, using Algorithm 5. 130

14

6.5 (a) The robotic fish developed by the Smart Microsystems Lab at Michigan

State University, and its planar configuration. (b) Exploring a Gaussian

distribution using the robotic fish and Algorithm 4 without additional

constraints. (c) Exploring a Gaussian distribution with added control

frequency and tail pattern constraints, as imposed by the experimental setup. 131

6.6 Two quadrotors exploring a trimodal Gaussian distribution. The resulting

spatial statistics closely match the search distribution, as desired. 132

6.7 Multi-agent UAV exploration (each agent executes Algorithm 4 with

trajectory coefficients calculated as in (5.28) with N = 2, time horizon

T = 1.3s and sampling time ts = 0.1s). Five quadrotor models collectively

explore a terrain to track a spatial distribution Φ(x) (top row). Highest order

of coefficients is K = 12. Note that agents naturally avoid exploring the

same region simultaneously and only return back to already visited areas

when sufficient time has passed. Bottom row shows the spatial statistics of

the combined agent trajectories calculated as described in Fig. 6.1 caption.

As expected, by the end of simulation, the collective spatial statistics match

closely the initial spatial distribution. Plot on the right shows the ergodicity

measure of trajectories as they evolve in time. Ergodicity of each agent’s

trajectory at time t is calculated as
∑

k{Λk[1
t−terg

0

∫ t

terg
0

Fk(xζ(s))ds − φk]2} for the

ergodic trajectories xζ(t) with ζ = 1, ...,N. Total ergodicity of the collective

trajectories is calculated as
∑

k{Λk[1
t−terg

0

∫ t

terg
0

∑N
j=1 Fk(x j(s))ds − φk]2}. 133

15

7.1 Control map for cart-pendulum inversion using infinite number of symbols.

X-axis is the angle θ with range [−π, π] and y-axis is the angle velocity

with range [-6,6]. Colors from yellow to blue correspond to scaled control

actions, i.e. cart acceleration values. The map is the result of abstract ergodic

exploration using Algorithm 4. 137

7.2 Building a control map for cart-pendulum inversion using ergodic exploration

(Algorithm 4) and probabilistic classification methods for shape estimation.

The exploration trajectory is ergodic with respect to a uniform distribution. 137

7.3 Two resulting θ trajectories of the cart-pendulum when the generated control

map of Fig. 7.2 is used for online control. X-axis is “time” in seconds and

Y-axis is angle θ in rad. On the left, the cart-pendulum is initialized at the

downward position ([θ, θ̇] = [π, 0.05]]) and the control policy fails to invert

the system. On the right, the cart pendulum is initialized from a random

position and the control policy is successful.) 138

7.4 Building a control map for cart-pendulum inversion using ergodic exploration

(Algorithm 4) and probabilistic classification methods for shape estimation.

The exploration trajectory is ergodic with respect to the likelihood of

crossing a symbol boundary. This likelihood distribution is shown on the

right. Notice how information-driven exploration in this example, compared

to uniform exploration in Fig. 7.2, spends more time in areas where more

information can be extracted (i.e., the boundaries of symbol shapes). 139

7.5 The resulting θ trajectory of the cart-pendulum when the generated control

map of Fig. 7.4 is used for online control. X-axis is “time” in seconds and

16

Y-axis is angle θ in rad. The cart-pendulum is initialized at the downward

position ([θ, θ̇] = [π, 0]] and the control policy is successful in inverting the

system with a small offset.) Comparing this result with Fig. 7.3 indicates

that exploration with respect to a dynamically varying expected information

density results in better refinement of the symbol boundaries on the state

space. 141

7.6 Monte Carlo tests for evaluating the control policies resulting from uniform

and informed state-space exploration at two different instances during

exploration: at the start of exploration when only 200 measurements have

been acquired and after 2000 measurements have been acquired. Each dot

on the state-space maps corresponds to a single trial (1000 trials in total per

map). Blue dots indicate successful trials, while red indicates failed trials. 142

7.7 Control map for cart-pendulum inversion using three symbols and

dynamically feasible exploration trajectories. X-axis is the angle θ with

range [−π, π] and y-axis is the angle velocity with range [-5,5]. Colors

correspond to symbolic control actions, i.e. cart acceleration values. The

map is the result of abstract ergodic exploration using Algorithm 4 and

cart-pendulum dynamics (instead of double integrator dynamics in Fig. 7.2).

Notice that the exploration trajectory fails to accurately cover the state-space

region around the unstable equilibrium (θ = 0 and θ = 2π), resulting in an

incomplete map around these regions (compare with Fig. 7.2). This is due

to the exploration dynamics that don’t allow the system to “linger” around

17

the unstable equilibrium to accurately get information about the state-space

region around it without violating actuation and state constraints. 143

8.1 Top-view illustration of the ergodic trajectory (green curve) performed

by an aerial vehicle while localizing a target (blue marker) in a square

terrain. Light green circle shows the camera sensor range around the current

UAV position. Red dots correspond to bearing-only measurements of the

target. One can observe the benefits of trajectory optimization—pursued

by our approach—as opposed to path planning [8–11]. Although temporal

frequency of measurements is constant at 10Hz, the spacing between

consecutive measurements becomes smaller when the UAV approaches the

target. This means that the agent is controlled to slow down when higher

information areas are encountered and to speed up otherwise. 146

8.2 Bearing-only static target localization. Top row shows top-view snapshots of

the ergodic trajectory followed by the quadrotor in different time windows

along with the corresponding EID map. EID is updated every 5 seconds and

a new sensor measurement is taken every second. The quadrotor explores the

areas with highest information to acquire useful measurements. Although

the geometry of the paths is not predefined, the resulting trajectories follow

a cyclic, swirling pattern around the true target position, as one would

naturally expect. The target belief, illustrated in bottom, converges to a

normal spatial distribution with the mean at the true target position and low

covariance. 153

18

8.3 Bearing-only localization of a moving target. Top: Top-view snapshots of the

UAV trajectory (red curve) where the true target position (blue X-mark) and

path (blue curve), and the estimated target position (green X-mark) are also

illustrated. The quadrotor can acquire vision-based measurements with a

limited range of view that is illustrated as a light red circle around the current

UAV position. No prior behavior model of the target motion is available for

estimation using EKF. The limited sensor range serves as an occlusion as it

naturally occludes large regions while taking measurements. The highest

order of coefficients is K = 10. The quadrotor explores the areas with highest

information to acquire useful measurements. Although the geometry of the

paths is not predefined, the resulting trajectories follow a cyclic, swirling

pattern around the true target position, as one would naturally expect — like

in standoff tracking solutions for example [12]. Bottom: The target estimate

(solid blue curve) is compared to the real target position (dashed blue curve)

along with an illustration of the belief covariance (light blue area around

estimated position) over time. The target belief converges to a normal spatial

distribution with the mean at the true target position and low covariance. 155

8.4 Multi-agent simultaneous exploration and targets localization. The problem

of exploration vs exploitation is addressed by controlling two agents to

localize detected targets while exploring for new undetected targets. The

algorithm scales to multiple target localization without any modification, as

it tracks a universal non-parametric information distribution instead of each

target independently. For cleaner representation, only the UAV trajectories

19

of the past 5s are shown in each snapshot. Highest order of coefficients is

K = 10. Mean and standard deviation of targets belief (not shown here)

fluctuate in a pattern similar to the experimental results in Fig. 8.8. Light

green and red circles around the current UAV positions indicate the camera

range of view. Notice that before all targets are detected, the EID value

is set at a middle level (gray color) in areas where no high information

measurements can be taken from the already detected targets. This serves to

promote exploration for more targets. 157

8.5 (a) The sphero SPRK robot is shown in the experimental setup. The internal

mechanism shifts the center of mass by rolling and rotating within the

spherical enclosure. RGB LEDs on the top of the sphero SPRK are utilized

to track the odometry of the robot through a webcam using OpenCV for

motion capture. The Robot Operating System (ROS, available online [13]) is

used to transmit and collect data at 20 Hz. A projection (b) is used to project

the targets onto the experimental floor shown in (c). 159

8.6 Twenty trials of localizing 2 random targets using the sphero robot at a

1m×1m terrain with simulated limited sensor range of 0.2m. a) Bar graph

showing the number of successful target localizations in specified time

intervals. The localization of a target is successful when the `2-norm of the

difference between the target’s position belief and the real target position

falls below 0.05, i.e. ‖αbelie f − αtrue‖2 < 0.05. Over 50% of the targets (40 in

total) are successfully localized within the first 10 seconds and about 90%

of the targets are localized by 50 seconds. Even when target detection is

20

delayed or EKF fails to converge in a few iterations, the robot is successful

in localizing all the targets by 100 seconds. b) The distance of the mean

target estimate from true target position over time across all trials that were

complete by the first 50 seconds. Distance remains constant for as long as

the target is outside of the sensor range or it has not be detected yet. c)

Top-view snapshots of the robot trajectories across trials. 160

8.7 Experimental trials localizing 1, 2, and 3 moving targets using the sphero

robot. The top-view snapshots depict the robot trajectories over a time

window of 40 seconds (in red) as well as the targets and their past trajectories

(in green). The spatial distribution indicates the targets belief p(α). The robot

robustly localizes the moving targets by tracking the expected information

density. 161

8.8 Localization of 3 moving targets using the sphero SPRK robot. The target

estimates (solid curves) are compared to the real target locations (dashed

curves) along with an illustration of the belief covariance (shaded area around

estimated position) over time. Because the targets are constantly moving

and the sensor range is limited, the standard deviation of the targets belief

fluctuates as time progresses. The agent localizes each target alternately;

once variance on one target estimate is sufficiently low, the agent moves

to the next target. Importantly, this behavior is completely autonomous,

resulting naturally from the objective of improving ergodicity. Note that we

can only decompose the targets belief into separate target estimates because

of our choice to use EKF where each target’s belief is modeled as a normal

21

distribution. This would not be necessarily true, had we used a different

estimation filter (e.g., particle filter). Bottom row shows top-view snapshots

of the robot and target’s motion. A video of this experiment is available in

the supporting multimedia files. 162

9.1 Estimating the 2D shapes of (a) a circle, (b) an ellipse, (c) a rectangle, and

(d) a triangle using ergodic exploration and contact sensors. The current

shape estimate in each snapshot is drawn in red. The trajectories performed

by the agent are ergodic with respect to the varying collision likelihood

distribution shown on the right column for each shape. 167

9.2 Estimating the shape of a sphere using collision measurements. Actual

sphere is depicted in light red and the estimated shape in light green. The

agent’s trajectory up to the current time step is also shown, with the collision

measurements highlighted in red. The agent is controlled to be ergodic with

respect to the likelihood distribution, illustrated at the bottom row. The final

shape matches closely the sensed sphere. 169

9.3 Estimating the shape of a torus using collision measurements. Actual

object is depicted in red and the estimated shape in light green. The agent’s

trajectory up to the current time step is also shown, with the collision

measurements highlighted in red. The agent is controlled to be ergodic with

respect to the likelihood distribution, illustrated at the bottom row. The final

shape matches closely the sensed torus. 170

22

9.4 Estimating the shapes of two objects simultaneously using collision

measurements. The final shapes matches closely the sensed objects.

Ergodic exploration promotes estimation of multiple symbols because it is

distribution-driven. 171

9.5 The sphero SPRK robot and the experiment setup (the Roomba robot

is used only as the object of estimation). The sphero SPRK internal

mechanism shifts the center of mass by rolling and rotating within the

spherical enclosure. RGB LEDs on the top of the sphero SPRK are

utilized to track the odometry using a Microsoft Kinect. The robot is

equipped with a collision detection feature that we use to acquire binary

(collision/no-collision) measurements in real time. The Robot Operating

System (ROS, available online [13]) is used to transmit and collect data at 20

Hz. 172

9.6 Estimating the shape of a circular object using the sphero robot and collision

measurements. A picture of the experimental setup is shown in Fig. 9.5.

The shape estimate at each snapshot is drawn in red. Bottom row shows the

collision likelihood distribution. The sphero is controlled to be ergodic with

respect to this distribution. 173

9.7 Bottom: Photo of the experiment setup. Top: Time series of the exploration

and estimation process from left to right. The red boundaries indicate the

estimated shapes at each time step. Sphero robot is shown as a green circle.

The robot trajectory up to current time is also shown. 174

23

9.8 Estimating symbol transformation: Illustration of the problem statement. (a)

A symbol is initially explored by an agent to extract its information signature

(i.e. measurement model) with respect to the symbol coordinate frame.

(b) An agent explores the extracted symbol acquiring measurements with

respect to a world coordinate frame. The agent’s objective is to estimate the

Euclidean transformation from the world coordinate frame to the symbol’s

coordinate frame, so that it can localize itself in the environment using the

unmodified symbol as reference. 176

9.9 Estimating the transformation of a previously explored ellipse. The

actual ellipse (position and orientation) is shown in light red. The current

transformation estimate is shown as a light green ellipse. The position

([tx, ty]]) particle filters, also depicted here, are shown to converge to the

center of the explored ellipse. 179

9.10 Estimating the transformation of a set of objects representing a single symbol

(i.e. landmark). The actual symbol is drawn in red, while the estimated

symbol is drawn in green. The bottom row shows the position particle filters

([tx, ty]]). The agent estimates the symbol configuration by using information

equivalence to explore with respect to the information signature of the

symbol. Once the symbol transformation has been successfully estimated,

the agent can use it to localize itself with respect to the unmodified landmark

instead of a randomly generated world coordinate frame. 180

9.11 The sphero SPRK robot estimates the transformation of the symbol explored

in Fig. 9.6 using collision measurements. Top row shows the actual object,

24

the robot trajectory up to current time, as well as the expected information

density calculated as in Section 9.2.2.1. Bottom row shows the configuration

of the estimated symbol at each time step (in white). The robot is successful

in estimating the current position of the circular object. 181

9.12 The sphero SPRK robot estimates the transformation of the symbol (a set of

multiple physical objects) explored in Fig. 9.7 using collision measurements.

Top row shows the actual objects setup that is being estimated, the robot

trajectory up to current time, as well as the expected information density

calculated as in Section 9.2.2.1. Bottom row shows the configuration of the

estimated symbol at each time step (in white). The robot is successful in

estimating the current configuration of the symbol and thus can use it as a

stable landmark for self-localization. 182

9.13 Time evolution of estimated symbol rotation and translation against true

symbol transformation (dashed lines). Fluctuations in estimated parameters

result from the contact manifold particle filter used for estimation, as new

particles are generated once there is a contact. 183

25

CHAPTER 1

Introduction

Humans sense signals and perform actions at a continuous level of granularity. For exam-

ple, throwing a ball is the result of continuous signals generated by efferent neurons. Similarly,

sensing an uneven surface through touch relies on an overwhelming amount of continuous sig-

nals generated by mechanoreceptors on the fingertip. However, intelligent behavior is largely

associated with breaking down these continuous signals to discrete symbols [14]. For instance,

if the sensed “uneven terrain” is the interior of a handbag, incoming information is encoded

to a series of symbols: keys, wallet, notebook, tablet and so on. Drawing inspiration from the

human world, this thesis aims to provide a complete, self-contained insight into symbol-based

action (Part 1), exploration (Part 2), and sensing and creation (Part 3) for automated systems.

Throughout, real-time capacity lies in the center as the irreplaceable key to implementability in

real-world situations.

1.1. Part 1: ACTION

Traditionally, the need for symbolic action is seen in hybrid control theory—where continu-

ous and discrete quantities coexist. Consequently, this thesis starts by exploring the options and

proposing solutions for real-time control with symbolic actions and with minimal computational

cost. The ability to select control symbols fast and on-the-go based on continuous feedback—

just like humans pick left or right when walking to avoid an incoming pedestrian—is essential

for robotic systems, because it frees up significant amount of processing potential intended for

26

more intelligent tasks. For example, if avoiding incoming obstacles is broken down to left- or

right-step decisions encoded in the circuitry of a finite state machine, the humanoid robot can

use most of its processing capacity searching for the mailbox to throw its owner’s letter in.

Two real-time symbolic control approaches are proposed. First, Chapter 2 introduces a

mode scheduling algorithm that is rendered fast enough for real-time implementation [15, 16].

The method is validated experimentally by regulating the swing angle of an overhead crane

using symbolic actions i.e. accelerate left, accelerate right, and maintain current velocity. This

experiment brought forth an interesting conclusion: crane regulation does, in fact, require only

2 bits of control information for real-time operation!

Relying on this outcome, this thesis goes further into investigating how symbolic control

policies (also referred to as control alphabet policies) can be entirely encoded into finite state

machines so that online control is computation-free. The solution to this problem will bene-

fit automation systems in terms of computing power allocation and compactness by boosting

their multi-tasking capacity (power allocation) and promoting miniaturization (compactness),

in the fields of aviation [17], manufacturing [18], and robotic locomotion [19] among others.

Chapter 3 proposes the solution of multi-resolution cell subdivision and validates it, most im-

portantly, using the SLIP model for walking [20]. Section 4.1 quotes this result to justify the

need for an information-driven exploration strategy in building control policies, leading to Part 2

of the thesis.

1.2. Part 2: EXPLORATION

In this thesis, a symbol s is defined as a discrete action or sensed entity, uniquely identified

by an information signature. Information signature is tied to the process of exploring (extracting

27

and/or detecting) for a symbol. In sensed symbols, this is more or less straightforward; if

I’m blindly searching for the keys (symbol) in my bag using the sense of touch (sensor), I’m

exploring with respect to its information signature by tracking pointy edges, metallic texture

etc. The information signature of keys, in this case, is engraved in my nervous system and can

be different for each sensor used for exploration (visual, tactile, auditory, etc.). This internal

representation of continuous neural signals as information signatures of discrete symbols (keys)

is driven by the need to perform decision and control tasks in a manner that is independent

of factors such as scaling, transformation and occlusions. This ability to use symbol-specific

information equivalently for tracking different symbol configurations, will be referred to in the

thesis as “information equivalence”. The concept of information equivalence is valuable in

humans—because we can search for, and identify, the keys in all sorts of different settings—

but that’s only the case because we have an intrinsic way of exploring with respect to this

information. This relationship between information and exploration brings forth the need for

an online exploration methodology that is information-driven in a distributed way and, most

importantly, is fully automated.

Following this reasoning, Part 2 of my thesis is dedicated in proposing an information-driven

exploration algorithm [21–23]—that meets the requirements that would allow a robot to sense

symbols in real time—e.g., stability, adaptability, distributability and more (see Section 4.2).

The concept of ergodicity plays a crucial role in achieving this. The goal is to build trajectories

that improve ergodicity online, i.e. spend time in the field proportional to an information distri-

bution. However, the ergodic metric is particularly hard to improve indefinitely—i.e., without

a finite time horizon in mind. Consequently, the problem is framed as a hybrid control problem

28

so that a single control action is computed at each time step to improve the ergodic cost func-

tional. Chapter 6 verifies the algorithm performance in generating area coverage trajectories for

a variety of different dynamic agents, including a model of a custom robotic fish built at the

Michigan State University [22].

Part 2 is the link between symbolic action and symbolic sensing. Because, throughout the

thesis, I distinguish between action symbols (i.e., discrete control actions) and sensed symbols

(i.e., targets, object shapes etc.), the benefit of exploration for symbolic action might not be clear

at first. However, Chapter 7 will show that all symbols are, to some extent, sensed information

entities, that require exploration. In particular, we will see how we can “sense” the boundaries of

action symbols on the state space through abstract exploration. See more about the dependence

of action symbols on exploration in Section 4.1.

1.3. Part 3: SENSING

Part 2 shows that distribution-driven exploration in real time is possible. But, how can we

use this outcome as an asset for enabling robots to sense in a symbolic manner? Part 3 is

dedicated in analyzing methods that apply this exploration strategy and use it to sense symbols

through their information signature. Before presenting the methodologies, we first establish the

connection between symbolic action and sensing in Chapter 7, by introducing a preliminary

idea for building control policies though abstract state-space exploration.

The primary contribution of Part 3 is two-fold: first, we show how to track known symbols

(i.e. with known measurement models) and second, how to learn unknown symbols. Chapter 8

demonstrates symbol tracking in the context of target localization with bearing-only measure-

ments. We start by showing how we can derive the information signature of a target (to be

29

identified as symbol) using the Fisher Information on the target’s measurement model. Subse-

quently, an agent can be controlled to track targets by being ergodic with respect to this expected

information density. This is our first encounter with “information equivalence” in this thesis;

real-time ergodic exploration allows us to track the symbols’ information signature (as extracted

through their measurement model in Section 8.1) regardless of their state or the agent’s state

and with no changes in the exploration process. We demonstrate the method in both simulation

and in experiment, illustrating that it is independent of the number of symbols being tracked

and can be run in real-time on computationally limited hardware platforms.

In target tracking, we assumed that the target’s measurement model, and thus information

signature, is known with some uncertainty. This however is hardly ever true. In most cases,

we are searching for symbols that have not be identified as such yet and thus their information

signature is unknown. For this reason, the thesis continues by using ergodic exploration to learn

information signatures, in the context of tactile sensing of physical object shapes (identified as

symbols). Subsequently, we show how the concept of information equivalence allows us to use

the extracted information signatures to estimate symbol transformation so that the symbols act

as stable natural landmarks for robot pose estimation.

30

Part 1

Acting with Symbols in Real Time

31

CHAPTER 2

Real-Time Hybrid Control

This chapter is motivated by the problem of reliable and fast implementation of mode sched-

uling algorithms in real-time applications where control authority is discrete. Switched systems

cover a range of real-world control platforms like antilock braking systems and other valve-

operated settings. However, most current approaches to dynamic compensation rely on spe-

cialized ODE solvers to simulate the hybrid dynamics and thus exhibit high execution times

and/or approximation errors. In our approach, we only require that a set of data is calculated

offline and stored in memory so that online computational complexity is significantly reduced.

Importantly, for memory efficiency, we show that approximation accuracy is independent of the

number of stored samples i.e. the size of the stored dataset. Using ROS, we apply the proposed

algorithm to regulate the swing angle of a mass suspended from a planar robotic system in real

time with hybrid control signals. Our experimental results verify that our algorithm is fast and

rejects disturbances online even using inexpensive hardware for sensing and actuation. This

result presents an opportunity for real-time optimal control of automation platforms with finite

set of control signals.

2.1. Introduction

It is common in the automation industry that control authority is not continuous, for ex-

ample, due to the discontinuous characteristics of actuators operated by valves. Optimal mode

scheduling—model-based control of both the sequence and timing of operating modes—is a

32

natural and efficient way of approaching these discrete1 problems, with an abundance of algo-

rithms proposed by the research community (e.g. [24, 25] and more—see below). However,

despite the common use of model predictive control (MPC, in the sense of receding horizon

control as defined in Section 2.3.2) for continuous control problems, mode scheduling algo-

rithms are rarely used in MPC schemes for real-time control in discrete control setting—in fact,

the discontinuous components of automation platforms are sometimes disregarded to allow for

application of continuous dynamic solutions (e.g. [26]). The main reasons for this lack of ap-

plicability are prohibitive execution times and/or high approximation errors resulting from the

use of specialized ODE solvers for numerical integration of hybrid differential equations. We

aim to overcome this drawback, by considering the problem of real-time mode scheduling for

an autonomous linear time-varying switched system to optimize a quadratic performance met-

ric. In particular, the contributions of this thesis are: 1) The formulation of an open-loop mode

scheduling algorithm (referred to as Single Integration Optimal Mode Scheduling—SIOMS) so

that no differential equation needs to be solved for during optimization; 2) The formulation and

experimental validation of receding-horizon SIOMS for real-time closed-loop mode scheduling

so that a differential equation only needs to be integrated over a limited time interval—typically

the time step of the receding-horizon window—rather than the full time horizon.

Switching control problems arise in a number of application domains in automation indus-

try, such as robot locomotion [27], manufacturing production [18, 28], power electronics [29],

telecommunications [30] and air traffic management [31]. Several algorithmic methods have

been proposed to deal with scheduling problems. Many approaches have relied on a bi-level hi-

erarchical structure with only a subset of the design variables considered at each level [28, 32].

1Here and for the rest of this thesis, “discrete” denotes a finite number of control settings and is not to be confused
with discretization in time, unless otherwise noted.

33

Other proposed methods include: embedding methods [25], which relax, or embed, the inte-

ger constraint and find the optimal of the relaxed cost; relaxed dynamic programming [33, 34]

where complexity is reduced by relaxing optimality within pre-specified bounds; variants of

gradient-descent methods [35, 36]; and application-specific solutions [37].

The iterative projection-based approach as introduced in [38–40] forms the basis for the

work in this thesis. The mode scheduling problem is formulated as an infinite-dimensional

optimal control problem where the variables to be optimized are a set of functions of time

constrained to the integers. For a projection-based method, the design variables are in an un-

constrained space but the cost is computed on the projection of the design variables to the set of

admissible switched system trajectories. In [38], an iterative optimization algorithm is synthe-

sized that employs the Pontryagin Maximum Principle and a projection-based technique. We

adapt this algorithm by taking advantage of the linearity of the dynamical system under con-

cern. The specific case of linear switching control has been extensively investigated by others

(see [41–43]). The approaches in [44, 45] solve for a differential equation at each step of the

iterative algorithm. Previous attempts to avoid the online integration of differential equations

are limited to switching time optimization problems where the mode sequence is fixed [44–46].

In this thesis, we extend our work in [16] to present and experimentally evaluate a projection-

based mode scheduling algorithm (SIOMS) where a single set of differential equations is solved

offline, so that no additional simulation is required during the open-loop optimization routine.

These offline solutions to differential equations are independent of the mode sequence and

switching times in contrast to [44–46]. Moreover, no assumption about the time-variance of

the modes is made. Therefore, SIOMS does not exclude many important linear systems, such

34

as time-varying power systems [47], traffic models [48], and nonlinear systems linearized about

a trajectory.

Here, our objective is to emphasize the importance of SIOMS as a tool for model-based

mode scheduling in real-time applications (see [28,49], for example). Real-time implementation

of switched system algorithms is often impractical due their dependence on numerical solutions

of differential equations. Three main points are listed to support this argument. First, the use of

ODE solvers often renders algorithm execution times prohibitive for real-time implementation

[50, 51]. Second, the solution approximation through discretization does not always guarantee

consistency (see Definition 3.3.6 in [52]), and lastly, discontinuous differential equations require

specialized event-based numerical techniques that are prone to approximation errors [53].

SIOMS overcomes the aforementioned issues by avoiding online simulations. As far as

the first point is concerned, one of the strongest assets of the proposed algorithm is that its

timing behavior—i.e., the execution time of a single iteration of the optimization algorithm—is

independent of the choice of ODE solver; it only depends on the number of multiplications and

inversions required for the calculation of the optimality condition. As a result, SIOMS is fast and

intrinsically free of the common trade-off between execution time and approximation accuracy

that normally dictates the selection of numerical integration technique. Furthermore, authors

in [51] address the second issue by proposing a time discretization that guarantees consistency

for nonlinear systems. In this work, by restricting our focus to linear time-varying systems,

we introduce a method where approximation accuracy and consistency are independent of the

number of samples used for approximation of the state and co-state trajectories. Lastly, to

address the third point, SIOMS only requires offline integration of differential equations that are

continuous and as smooth as each of the linear modes. Thus, our algorithm exhibits robustness

35

to numerical errors due to discontinuous vector fields. All the above SIOMS advantages are

verified through a method-comparison numerical study in Section 2.4.

Exploiting the aforementioned computational and timing advantages, we can use SIOMS

for real-time control applications by means of a receding-horizon synthesis [54]. Importantly,

in receding-horizon optimization with SIOMS, a simple update step removes the need for nu-

merical integration over the full time horizon in between consecutive algorithm runs—only

integration over a few time steps is required. Although stability analysis of closed-loop SIOMS

is not provided in this thesis, we include a short discussion on stability requirements based on

established results in Section 2.3.2.

Finally, we choose to experimentally validate SIOMS real-time implementability by regulat-

ing the swing angle of a mobile robot and suspended mass system, online, using a finite number

of control actions (i.e. switched system modes). For additional complexity, the string hold-

ing the mass exhibits a pre-defined time-varying length. Although not intrinsically a switched

system, our example resembles many systems that admit hybrid input by construction and thus

are difficult to control (e.g. antilock braking systems (ABS) [55], tanks [56] and other valve-

operated systems). Moreover, despite the fact that conventional real-time control of variants

of this system has been extensively studied [57–59]), we are interested in showing how a lim-

ited number of actions may suffice for control, even with time-varying parameters; a result that

opens a discussion for alternative, inexpensive actuation and sensing solutions in seemingly

complex control platforms. Our experimental work—based on the Robot Operating System

(ROS)—demonstrates that closed-loop SIOMS regulates the example system reliably in real

time, while rejecting disturbances.

36

2.2. Review

2.2.1. Switched Systems

Switched systems are a class of hybrid systems [60,61] that evolve according to one of N vector

fields (modes) fi : Rn → R, i ∈ {1, ...,N} at any time over the finite time interval [T0,TM], where

T0 is the initial time and TM > 0 is the final time. We consider two representations of the

switched system, namely mode schedule and switching control. As a unique mapping exists

between each representation [38], the two will be used interchangeably throughout the chapter.

Definition 1 The mode schedule is defined as the pair {Σ,T } where Σ = {σ1, ..., σM} is

the sequence of active modes σi ∈ {1, ...,N} and T = {T1, ...,TM−1} is the set of the switching

times Ti ∈ [T0,TM]. The total number of modes in the mode sequence—which may vary across

optimization iterations—is M ∈ Z+.

Definition 2 A switching control corresponds to a list of curves u = [u1, ..., uN]T com-

posed of N piecewise constant functions of time, one for each different mode fi. For all

t ∈ [T0,TM],
∑N

i=1 ui(t) = 1, and for all i ∈ {1, ...,N}, ui(t) ∈ {0, 1}. This dictates that the

state evolves according to only one mode for all time. We represent the set of all admissible

switching controls as Ω.

We will refer to the mode schedule corresponding to the switching control u as {Σ(u),T (u)}.

For a system with n states x = [x1, ..., xn]T and N different modes, the state equations are

given by

(2.1) ẋ(t) = F(t, x(t), u(t)) :=
N∑

i=1

ui(t) fi(x(t), t)

37

subject to the initial condition x(T0) = x0. For this chapter, we restrict our focus to linear

time-varying systems so that

(2.2) F(t, x(t), u(t)) :=
N∑

i=1

ui(t)Ai(t)x(t).

Alternatively, we may express the system dynamics with respect to the current mode schedule

as follows:

(2.3) F(t, x(t), Σ,T) := A(t, Σ,T)x(t)

where A(t, Σ,T) = Aσi(t) for Ti−1 ≤ t < Ti.

2.2.2. Problem Statement

Our objective is the minimization of a quadratic cost function

(2.4) J(x, u) =

∫ TM

T0

1
2

x(τ)T Q(τ)x(τ)dτ +
1
2

x(TM)T P1x(TM)

where x is the state, u the switching control and the pair (x, u) satisfy (2.1). Here, Q and P1 are

the running and terminal cost respectively, and are both symmetric positive semi-definite. Note

that this cost functional can also be adapted to include reference trajectory, in which case the

objective would be to minimize the error between the state and the reference ([46]).

2.2.3. Projection-based Optimization

From Definition 2 of an admissible switching control u, it follows that our optimization problem

is subject to an integer constraint [38]. Let S represent the set of all pairs of admissible state and

38

switching control trajectories (x, u), i.e. all pairs that satisfy the constraint (2.1) and are consis-

tent with Definition 2 so that u ∈ Ω. In [39], the authors propose a projection-based technique

for handling these constraints set by S. In particular, an equivalent problem is considered where

the design variables (α, µ) belong to an unconstrained set (X,U) and the cost J is evaluated on

the projection of these variables to the set S. Now, the problem is reformulated as

(2.5) min
(α,µ)

J(P(α, µ))

where P is a projection—with P(P(α, µ)) = (P(α, µ))—that maps curves from the uncon-

strained set (X,U) to the set of admissible switched systems S. As the cost is calculated on the

admissible projected trajectories, this problem is equivalent to the original problem described

in 2.2.2 and (2.4).

The optimal mode scheduling algorithm developed in [38] utilizes the max-projection oper-

ator. The max-projection operator P : X ×U → S at time t ∈ [T0,TM] is defined as

(2.6) P(α(t), µ(t)) :=


ẋ(t) = F(t, x(t), u(t)), x(T0) = x0

u(t) = Q(µ(t))

where Q is a mapping from a list of N real-valued control trajectories, µ(·) = [µ1(·), ..., µN(·)]T

∈ RN to a list of N feasible switching controls, u ∈ Ω. We define Q as

(2.7) Q(µ(t)) =


Q1(µ(t))

...

QN(µ(t))


with Qi(µ(t)) :=

N∏
j,i

1(µi(t) − µ j(t))

39

where 1 : R→ {0, 1} is the step function given by

(2.8) 1(t) =


1, t ≥ 0

0, else.

Notice that the max-projection operator does not depend on the unconstrained state trajectories

α(·). The unconstrained state α is included in the left hand side of the definition in order for P

to be a projection.

2.2.4. Mode Insertion Gradient

The mode insertion gradient appears in previous studies [24, 62, 63]. Here, it is defined as the

list of functions d = [d1(t), ..., dN(t)] ∈ RN that calculate the sensitivity of cost J to inserting one

of the N modes at some time t for an infinitesimal interval (i.e. dJ
dλ+ as λ+ → 0). Each element

of d is given by:

(2.9) di(t) := ρ(t)T (fi(x(t), t) − fσ(t)(x(t), t)), i = 1, ...,N

where x ∈ Rn is the solution to the state equations (2.1) for all t ∈ [T0,TM] and ρ ∈ Rn, the

co-state, is the solution to the adjoint equation2

(2.10) ρ̇(t) = −DxF(t, x(t), u(t))Tρ(t) − Q(t)x(t),

for all t ∈ [T0,TM] subject to ρ(TM) = P1x(TM). (In (2.9), σ(t) : [T0,TM] → {1, ...,N} is the

function that returns the active mode at any time t.)

2Dx f (·) denotes the partial derivative ∂ f (·)
∂x .

40

It has been shown in [64], that when a quadratic cost is optimized subject to a linear time-

varying switched system, a linear mapping between state x and co-state ρ exists. Thus, we may

express the co-state as

(2.11) ρ(t) = P(t)x(t)

where P(t) ∈ Rn×n is calculated by the following differential equation:

(2.12) Ṗ(t) = −A(t, Σ,T)T P(t) − P(t)A(t, Σ,T) − Q(t)

subject to P(TM) = P1. Note that this is the linear switched system analog to the Riccati

equation from the LQR problem in classical control theory [65]. Using (2.2) and (2.11), the

mode insertion gradient element can be written as

(2.13) di(t) := x(t)T P(t)T [Ai(t) − Aσ(t)(t)]x(t).

2.2.5. Iterative Optimization

To calculate the switching control u(t) that optimizes the quadratic performance metric (2.4), we

follow an iterative approach. Iterative optimization computes a new estimate of the optimum by

taking a step from the current estimate in a search direction so that a sufficient decrease in cost

is achieved [35, 38, 63, 66]. A single iteration is commonly structured in the following scheme:

Given a current iterate, i) Calculate a descent direction; ii) Calculate a step size; iii) Update

the current iterate by taking a step in the descent direction. The procedure is repeated until a

terminating condition is satisfied.

41

In the following section, we formulate an iterative projection-based algorithm for quadratic

optimization of linear time-varying switched systems that requires no online simulations.

Algorithm 1 SIOMS

Offline:
� Solve for the STM Φ j(t,T0) and ATM Ψ j(t,TM) ∀ j ∈ {1, ...,N} and t ∈ [T0,TM].
� Choose initial u0 → {Σ(u0),T (u0)}.
� Set x(T0) = x0 and P(TM) = P1.

Online iterative process:
Set k = 0, uk = u0.

(1) Evaluate xk(t) := χ(t, Σ(uk),T (uk)) as in Eq. (2.15).
(2) Evaluate Pk(t) := %(t, Σ(uk),T (uk)) as in Eq. (2.21).
(3) Evaluate the descent direction −dk(t) as in Eq. (2.28).
(4) Calculate step size γk by backtracking.
(5) Update: uk+1(t) = Q(uk(t) − γkdk(t)).
(6) If uk+1 satisfies a terminating condition, then exit, else, increment k and repeat from step 1.

2.3. Single Integration Optimal Mode Scheduling

2.3.1. Open Loop Control over Finite Time Horizon

The problem of optimizing an arbitrary cost functional J(x, u) subject to the switching control

u(t) and switching system state x(t) is considered in [38]. Here, we increase the computational

performance of [38] in the special case of linear time-varying systems with quadratic perfor-

mance metric. In particular, we reformulate this problem so that no differential equations are

solved during the iterative optimization routine. Algorithm 1 provides a summary of SIOMS.

Consider the optimization problem constrained by the system dynamics (2.3), as described

in Section 2.2. The dynamic constraint dictates that a system simulation should be performed

at each iteration in Algorithm 1 as soon as the next switching control has been calculated. In

particular, the calculation of the mode insertion gradient (2.9) involves the solution of the state

42

and adjoint equations, (2.3) and (2.10), while the max-projection operator also includes the state

equation (2.3).

We follow a similar approach to the switching time optimization approach in [46], extending

it to the situation where the mode sequence Σ is unknown. Building on the existence of a linear

relationship between the state and co-state as described in Section 2.2.4, we utilize operators to

formulate algebraic expressions for the calculation of the state x(t) and the relation P(t) at any

time t ∈ [T0,TM]. The operators are available prior to optimization through offline solutions

to differential equations. Moreover, they are independent of the mode sequence and switching

times.

In the switching time optimization case [46]—where the mode sequence is constant and

the problem is finite-dimensional—a single optimization iteration involves only a finite number

of state and co-state evaluations; these occur at the (finite) switching times for that particular

iteration. However, mode scheduling is an infinite-dimensional optimal control problem and

requires the time evolution of the state and co-state trajectories at each iteration.

Therefore, in order for the proposed algorithm to be feasible, an explicit mapping from

time t to x and P is needed at each iteration, depending on the current mode schedule {Σ,T }.

The mapping, below in (2.15) and (2.21), only includes algebraic expressions dependent on

solutions to pre-computed differential equations. The exact number of multiplications executed

in each iteration depends on how many time instances the state and co-state must be evaluated.

For the rest of the chapter, a variable with the superscript k implies that the variable depends

directly on uk, the switching control at the kth algorithm iteration.

Evaluating x(t). The operators for evaluating x(t) are the state-transition matrices (STM) of

the N modes. Let Φ j(· ,T0) : R → Rn×n denote the STM for the linear mode j ∈ {1, ...,N} with

43

A j(t). The STM are the solutions to the N matrix differential equations

(2.14)
d
dt

Φ j(t,T0) = A j(t)·Φ j(t,T0), j = 1, ...,N

subject to the initial condition Φ j(T0,T0) = In. The following two STM properties are useful for

computing the state x(t) given a mode schedule {Σ,T }. For an arbitrary STM, Φ, characterized

by A(t), we have [67] :

(1) x(t) = Φ(t, τ)x(τ)

(2) Φ(t1, t3) = Φ(t1, t2)Φ(t2, t3) = Φ(t1, t2)Φ(t3, t2)−1.

We emphasize the importance of Property 2 in that it allows us to use a single operator for the

evaluation of the state as explained in the following.

Proposition 1. The state x(t) at all t ∈ [T0,TM] depends on the mode schedule {Σ,T } and

the STM Φ j(· ,T0) and is given by x(t) := χ(t, Σ,T) where

χ(t, Σ,T) =

M∑
i=1

{[
1(t − Ti−1) − 1(t − Ti)

]
Φσi(t,T0)Φσi(Ti−1,T0)−1x(Ti−1)

}
subject to x(T0) = x0,

(2.15)

1(·) is the step function defined in (2.8) and Ti , σi are the ith switching time and corresponding

active mode as defined in Section 2.2.1.

Proof. Using the STM properties 1 and 2, the state x at the ith switching time is

(2.16) x(Ti) = Φ(Ti,T0)x0 =

 1∏
j=i

Φσ j(T j,T j−1)

 x0

44

where Φ(Ti,T0) is the state-transition matrix corresponding to A(t, Σ,T) as defined in (2.3).

Hence, the state evolution is defined as a piecewise function of time, each piece corresponding

to a time interval between consecutive switching times {Ti,Ti+1}:

(2.17) x(t) =



Φσ1(t,T0)x(T0), T0 ≤ t < T1

Φσ2(t,T1)Φσ1(T1,T0)x(T0), T1 ≤ t < T2

...
...

ΦσM (t,TM−1)[
1∏

j=M−1
Φσ j(T j,T j−1)]x(T0) TM−1 ≤ t ≤ TM

For a more compact representation of the state, we employ unit step functions and (2.16) to get

(2.18) x(t) =

M∑
i=1

{
[1(t − Ti−1) − 1(t − Ti)]Φσi(t,Ti−1)x(Ti−1)

}
where, from STM property 2,

(2.19) Φσi(t,Ti−1) = Φσi(t,T0)Φσi(Ti−1,T0)−1.

This concludes the proof. �

Prior to the iterative optimization, the STM operators Φ j(t,T0) are solved offline for t ∈

[T0,TM] and for all different modes j = 1, ...,N. Thus, given a mode schedule, the calculation

of state x(t) via (2.15) requires no additional integrations beyond the offline calculations used

for Φ j(t,T0).

Evaluating P(t). As proven in [46], an analogous operator to the STM exists for the eval-

uation of the relation P(t) appearing in (2.11). As in [46], we will refer to the operator as the

45

adjoint-transition matrix (ATM) and use Ψ j(· ,TM) : R → Rn×n to denote the ATM correspond-

ing to each mode j ∈ {1, ...,N}. The ATM are defined to be the solutions to the following N

matrix differential equations:

(2.20)
d
dt

Ψ j(t,TM) = −A j(t)T Ψ j(t,TM) − Ψ j(t,TM)A j(t) − Q(t)

subject to the initial condition Ψ j(TM,TM) = 0n×n.

The following two ATM properties will be useful for evaluating P(t) given a mode schedule

{Σ,T }. For an arbitrary ATM, Ψ, characterized by A(t) and associated STM Φ, and cost function

defined by Q(t), we have [46]:

(1) P(t) = Ψ(t, τ) ◦ P(τ) := Ψ(t, τ) + Φ(τ, t)T P(τ)Φ(τ, t)

(2) Ψ(t1, t3) = Ψ(t1, t2) ◦ Ψ(t2, t3) := Ψ(t1, t2) + Φ(t2, t1)T Ψ(t2, t3)Φ(t2, t1).

Notice that Property 2 of ATM is equivalent to Property 2 of STM and similarly allows us to

evaluate the co-state.

Proposition 2. The relation P(t) at all t ∈ [T0,TM] depends on the current mode schedule

{Σ,T }, the STM Φ j(· ,T0) and the ATM Ψ j(· ,TM) and is given by P(t) := %(t, Σ,T) where

%(t, Σ,T) =

M∑
i=1

{[
1(t − Ti−1) − 1(t − Ti)

]
·

[
Ψσi(t,TM) + Φσi(t,T0)−T Φσi(Ti,T0)T [P(Ti)

−Ψσi(Ti,TM)]Φσi(Ti,T0)Φσi(t,T0)−1
]}

subject to P(TM) =P1,

(2.21)

46

1(·) is the step function defined in (2.8) and Ti , σi are the ith switching time and corresponding

active mode as defined in Section 2.2.1.

Proof. From the ATM properties 1 and 2, P(t) at the ith switching time is

P(Ti) = Ψ(Ti,TM) ◦ P(TM)

= Ψ(Ti,TM) + Φ(TM,Ti)T P(TM)Φ(TM,Ti)
(2.22)

where Ψ(Ti,TM) is the adjoint-transition matrix corresponding to A(t, Σ,T) as defined above.

From ATM property 2, this is equal to

Ψ(Ti,TM) =Ψσi+1(Ti,Ti+1) ◦ · · · ◦ ΨσM (TM−1,TM)

=

M∑
m=i+1

Φ(Tm−1,Ti)T Ψσm(Tm−1,Tm)Φ(Tm−1,Ti).
(2.23)

As in the previous case, we aim to derive an expression for the evaluation of P(t) at arbitrary

time instances. Again, we will represent P(t) as a piecewise function of time:

(2.24) P(t) =



ΨσM (t,TM) ◦ P(TM), TM−1 ≤ t < TM

ΨσM−1(t,TM−1) ◦ P(TM−1), TM−2 ≤ t < TM−1

...
...

Ψσ1(t,T1) ◦ P(T1), T0 ≤ t < T1

For a more compact representation of P(t), we employ unit step functions to get

P(t) =

M∑
i=1

{
[1(t − Ti−1) − 1(t − Ti)][Ψσi(t,Ti) ◦ P(Ti)]

}
(2.25)

47

where, from ATM property 2,

(2.26) Ψσi(t,Ti) = Ψσi(t,TM) + Φσi(Ti, t)T Ψσi(Ti,TM)Φσi(Ti, t).

Combining ATM property 1 with (2.21) and (2.26), we end up with the expression

P(t) =

M∑
i=1

{
[1(t − Ti−1) − 1(t − Ti)]·

[Ψσi(t,TM) + Φσi(Ti, t)T [P(Ti) − Ψσi(Ti,TM)]Φσi(Ti, t)]
}(2.27)

with Φσi(Ti, t) = Φσi(Ti,T0)Φσi(t,T0)−1. This completes the proof. �

Prior to the iterative optimization, the ATM operators Ψ j(t,TM) are solved offline for all t ∈

[T0,TM] and for all different modes j = 1, ...,N. Thus, given a mode schedule, the calculation

of P(t) via (2.21) requires no additional integrations.

Calculating the descent direction using the mode insertion gradient. An iterative optimiza-

tion method computes a new estimate of the optimum by taking a step in a search direction from

the current estimate of the optimum so that a sufficient decrease in cost is achieved. The mode

insertion gradient d(t) defined above, has a similar role in the mode scheduling optimization

as the gradient does for finite-dimensional optimization. It has been shown in [38, 62, 63] that

−dk(t) is a descent direction.

Proposition 3. An element of dk(t) is given by

dk
i (t) := χ(t, Σ(uk),T (uk))T%(t, Σ(uk),T (uk))

[Ai(t) − Aσk(t)(t)]χ(t, Σ(uk),T (uk))
(2.28)

where i = {1, ...,N}.

48

Proof. After the definition for the state and co-state, an equivalent expression for the mode

insertion gradient may be obtained from (2.15),(2.21) and (2.9). �

Update rule. A new estimate of the optimal switching control uk+1 is obtained by varying

from the current iterate uk in the descent direction and projecting the result to the set of admis-

sible switching control trajectories. For this purpose, we employ the max-projection operator

(2.6) and get a new estimate of the optimum,

uk+1(t) = Q(uk(t) − γkdk(t))

xk+1(t) := χ(t, Σ(uk+1),T (uk+1))
(2.29)

where Q is given by (2.7). For choosing a sufficient step size γk, we may utilize a projection-

based backtracking process as described in [40].

The reader is referred to [38, 39] for a more detailed description of these algorithm steps,

along with the associated proofs for convergence.

Calculating the optimality condition. The optimality function θk ∈ R is [38]

(2.30) θk := dk
i0(t0)

where

(2.31) (i0, t0) = min
i∈{1,...,N},t∈[T0,TM]

di(t).

The limit of the sequence of optimality functions is proven to go to zero as a function of iteration

k in [38]. This allows us to utilize θk also as a terminating condition for the iterative algorithm.

49

2.3.2. A Receding-Horizon Approach

Section 2.3.1 provides an offline approach for computing an open-loop optimizer for the prob-

lem in Section 2.2.2. Here, we follow a receding-horizon approach in order to achieve closed-

loop optimization over an infinite time horizon.

Receding-horizon control strategies (often referred to as MPC strategies [33, 54, 68, 69])

have become quite popular recently, partly due to their robustness to model uncertainties or to

sensor measurement noise. This chapter’s approach enables real-time closed-loop execution

of finite-horizon optimal control algorithms. Based on our performance evaluation in the next

section, the finite-horizon SIOMS is well-suited for receding-horizon linear switched-system

control because it is fast and accurate.

A receding-horizon scheme for optimal mode scheduling can be implemented as follows.

From the current time t and measured state x(t) as the initial condition in (2.1), use SIOMS to

obtain an optimal switching control ut(τ) for τ ∈ [t, t + T] where T := (TM − T0) in Algorithm

T0

T0+δ
τ

TΜ

TM+δ

Φ(τ,T0) Φ(τ,TM)

Ψ(τ,TM) Ψ(τ,TM+δ)
Given:

Ψ(τ,TM+δ)

Φ(τ,T0+δ)
Compute:

Figure 2.1. An illustration of the operators update step in a receding-horizon
scheme. A differential equation needs to be integrated only over a limited time
interval δ rather than the time horizon (TM − T0) := T .

50

1. Apply the calculated control for time duration δ with 0 < δ ≤ T to drive the system from x(t)

at time t to x(t + δ). Set t ← t + δ and repeat. This scheme requires execution of the optimal

mode scheduling algorithm every δ seconds.

Following Algorithm 1, SIOMS requires an offline calculation of operators before the online

iterative process is executed. However, in order for SIOMS to be efficient in a receding-horizon

approach, it is undesirable to recalculate each STM and ATM every δ seconds for the next T

seconds. Instead, each STM and ATM of the previous time interval [T0,TM] are updated for the

new information on [TM,TM + δ] only (Fig. 2.1). Such an approach is feasible because of the

following lemma.

Lemma 1. Suppose Φ(t,T0) and Ψ(t,TM) are known for all t ∈ [T0,TM]. Assuming also that

Φ(t,TM) and Ψ(t,T ′M) are known for all t ∈ [TM,T ′M], the STM and ATM for the time interval

t ∈ [T ′0,T
′
M] with T0 < T ′0 and TM < T ′M are given by

(2.32) Φ(t,T ′0) =


Φ(t,T0)Φ(T ′0,T0)−1, T ′0 ≤ t < TM

Φ(t,TM)Φ(TM,T0)Φ(T ′0,T0)−1, TM ≤ t ≤ T ′M

and

(2.33) Ψ(t,T ′M) =


Ψ(t,TM) ◦ Ψ(TM,T ′M), T ′0 ≤ t < TM

Ψ(t,T ′M), TM ≤ t ≤ T ′M.

Proof. The proof of Lemma 1 is a straightforward consequence of STM property 2 and

ATM properties 1 and 2 in Section 2.3.1. �

51

Despite its simplicity, Lemma 1 is the key to efficient real-time execution of a receding-

horizon hybrid control scheme. Using Lemma 1 with T ′0 = T0 + δ and T ′M = TM + δ, we

formulate Algorithm 2 that allows for real-time closed-loop SIOMS execution. The proposed

formulation requires a numerical integration over the limited time interval δ rather than the full

time horizon T (step 3.1 in Algorithm 2). A graphical representation of the operators update

every δ seconds (step 3 in Algorithm 2) is given in Fig. 2.1.

As mentioned in the introduction, this thesis does not address stability of the receding-

horizon SIOMS algorithm. Many papers offer a detailed stability analysis for receding-horizon

algorithms, e.g. [54,70,71], with only a few focusing on switched systems in particular [72,73].

The latter establish stability criteria that rely on hysteresis and dwell-time conditions. How-

ever, as is obvious from our main example in Section 2.5, we wish to give special consideration

to applications where SIOMS is used for system control with hybrid inputs by expressing the

problem in a switched system framework. The foundation of a stability proof for this SIOMS

implementation is given in [74] where authors provide stability conditions on the design pa-

rameters of model predictive control algorithms with input discontinuities. In short, conditions

are imposed on the time horizon T , the terminal and running cost in (2.4) and the terminal

constraint set.

2.4. Open-Loop Implementation and Evaluation

In this section, SIOMS is implemented in a standard open-loop manner (see Algorithm 1)

and its performance is evaluated in terms of i) execution time, ii) error of approximation and iii)

computational complexity.

52

Algorithm 2 Receding-Horizon SIOMS

� Initialize current time t, finite horizon T and control duration δ.
� Solve for Φ j(τ, t) and Ψ j(τ, t + T) ∀ j ∈ {1, ...,N} and τ ∈ [t, t + T].

Do every δ seconds while control ut(τ) is applied:
1. Update T0 ← t, TM ← t + T and set x(T0) = x(t).
2. Run online part of Algorithm 1 to get ut(τ) for τ ∈ [t, t + δ].

3.1 Solve for Φ j(τ,TM) and Ψ j(τ,TM + δ) ∀τ ∈ [TM ,TM + δ]. *
3.2 Get Φ j(τ,T0 + δ) and Ψ j(τ,TM + δ) ∀ j ∈ {1, ...,N} and τ ∈ [T0 + δ,TM + δ] from known Φ j(τ,T0)

and Ψ j(τ,TM) using Lemma 1. *
3.3 Update Φ(τ,T0)← Φ(τ,T0 + δ) and Ψ(τ,TM)← Ψ(τ,TM + δ). *

* In a real-time application, step 3 can be executed at any time when processing requirements are low, without
increasing the amount of time needed for calculation of control (i.e. steps 1-2).

1.00.5 1.5 2.0

u1(t)

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

Iterations

Trajectory after 30 iterations
Initial Trajectory

1.0

0.5

0.0

-0.5

q(t)

t

1.00.5 1.5 2.0
t

1.0

0.0

J
1.0

0.8

0.6

0.4

0.2

0 5 10 15 20 25 30

(a) (b)

Figure 2.2. Spring-Mass-Damper vibration control: (a) Optimal trajectory and
switching control and (b) the cost versus iteration count.

As a baseline example, we use SIOMS to apply switched stiffness vibration control on an

unforced spring-mass-damper system. A linear time-invariant system is particularly suited for

evaluation purposes as an analytical solution exists and can be compared with the computed

numerical solution. Variants of this example system have been used extensively in literature for

the evaluation of hybrid controllers [75, 76]. Denoting by ki the variable spring stiffness and by

53

m and d the mass and damping coefficient, the system equations take the form in (2.2) with

(2.34) Ai(t) =

 0 1

−
ki
m − d

m


and N = 2 i.e. two possible modes. The state vector is x = [q(t), q̇(t)]T , where q(t) is the mass

position. System parameters are defined as m = 1, d = 2, k1 = 30, and k2 = 70. Our objective is

to find the mode schedule that minimizes the system vibration and is accordingly characterized

by the quadratic cost functional (2.4) with Q = diag[1, 0.1], P1 = 02×2 and [T0,TM] = [0, 2]. As

an initial estimate u0(t), the system is in mode 2 with an initial condition x0 = [1, 0]T and cost

J0 ≈ 0.98.

Fig. 2.2a shows the optimal switching control and corresponding optimal q(t) trajectory

after 30 SIOMS iterations. The cost is reduced to J ≈ 0.38 (Fig. 2.2b).

2.4.1. Execution Time and Approximation Error

The execution time of iterative optimal control algorithms might be prohibitive for real-time

applications [51]. It is often the case that appropriate numerical techniques for integrating the

state and adjoint equations, (2.1) and (2.10), improve execution times. However, there is a

trade-off to consider—a fast numerical ODE solver might be prone to approximation errors. In

open-loop SIOMS (Algorithm 1), no differential equations need to be numerically solved as

part of the online iterative process. Hence, we will show that both the online execution time and

approximation error can be kept low at the same time.

Referring to Algorithm 1, a set of operator trajectories is pre-calculated and stored offline,

covering the full time horizon [T0,TM]. In practice, the exact number of stored samples N

54

◆ ◆ ◆● ◆● ◆● ◆● ◆● ◆● ◆● ◆● ● ◆● ● ◆● ●

■

■

■

■
■

■ ■ ■ ■ ■ ■ ■ ■
◆

0.0

0.5

1.0

1.5

2.0

● ● ●
● ●

● ● ● ● ●
●

●
●

■
■
■

■
■ ■

■

■
■
■

■

■

■

◆

◆
◆

◆
◆

◆
◆

◆
◆
◆

◆

◆

◆

● SIOMS

Forward Euler

◆

■

100 200 500 1000 2000 5000 1 × 104 2 × 104

0.5

1.0

5.0

10.0

Number4of4Samples

E
xe

cu
ti

on
4T

im
e4

(s
)

(a)

(b)

Improved Euler

● SIOMS

Forward Euler

◆

■

Improved Euler

Number4of4Samples

A
p

p
ro

xi
m

at
io

n
4E

rr
or

4(
R

M
aS

)

100 200 500 1000 2000 5000 1 × 104 2 × 104

Figure 2.3. Variation of (a) online execution times and (b) approximation errors
(2-norm of the root-mean-squared differences between the analytic and com-
puted state values) with respect to the selected number of samples evaluated
across 3 different optimization methods. SIOMS can achieve both objectives
(i.e. fast execution and high approximation accuracy) for a wide range of sample
sizes.

needs to be determined to reflect the processor’s computational capacity and memory availabil-

ity.3 We use the mass-spring-damper to illustrate how the SIOMS execution time and error of

approximation vary across different choices of sample sizes (Fig. 2.3).

For comparison purposes, we additionally evaluate the performance of the projection-based

mode scheduling algorithm in [38] using the same example employing two different numerical

techniques, namely the Forward and Improved Euler methods, for the integration of the state

3Interpolating methods may be used for intermediate time instances.

55

and adjoint equations. In contrast to SIOMS where expressions exist for the state and co-state

evaluation ((2.15) and (2.21)), here, the solution to the state and co-state equations, (2.2) and

(2.10), is approximated in every algorithm iteration. The Forward Euler method provides the

following approximation to the state and co-state trajectories of a general linear time-varying

switched system:

x(th+1) = (I + ∆t · A(th, Σ,T))x(th), x(t0) = x0

ρ(th) = (I + ∆t · A(th+1, Σ,T))Tρ(th+1) + ∆t · Qx(th+1),

ρ(tN) = P1x(tN)

(2.35)

where I is the n × n identity matrix, th+1 = th + ∆t with ∆t the step size and A(t, Σ,T) is defined

in (2.3). The Euler method is simple but can be unstable and inaccurate. On the other hand, Im-

proved Euler (i.e. two-stage Runge Kutta) maintains simplicity but with reduced approximation

errors. It applies the following approximation:

x(th+1) =
[
I +

∆t
2

A(th) +
∆t
2

A(th+1)(I + ∆t · A(th))
]
x(th), x(t0) = x0

ρ(th) =
[
I +

∆t
2

A(th+1)T +
∆t
2

A(th)T (I + ∆t · A(th+1)T)
]
ρ(th+1)

+∆t(I +
∆t
2

A(th)T)Qx(th+1), ρ(tN) = P1x(tN)

(2.36)

where I is the n × n identity matrix and th+1 = th + ∆t with ∆t the step size. It is assumed for

notational simplicity that A(·) := A(· , Σ,T) defined in (2.3). Notice that both approximation

methods for the state and co-state, (2.35) and (2.36), depend on the step size ∆t as opposed to

SIOMS state and co-state expressions (2.15) and (2.21) that are independent of a step size.

In the following example, the execution time and error of approximation are measured

against the selected number of samples N . The step size ∆t is constant so that the samples

56

are evenly-spaced. For the Forward and Improved Euler methods, the number of samples N

determines the fixed step size ∆t used for online integration of (2.1) and (2.10) resulting in

the approximations (2.35) and (2.36). However, in SIOMS the number of samples N does not

determine the step size used in the offline numerical integration—instead, the STM and ATM

equations, (2.14) and (2.20), are numerically solved4 and the resulting trajectories are sub-

sampled with the desired sampling frequency 1/∆t to create the final stored data points. Note

that we are only able to perform this additional sub-sampling interpolation because it does not

affect the total execution time of the online algorithm portion. The fact that the sub-sampling

process is applied on smooth trajectories produced by the continuous vector fields in (2.14) and

(2.20)—along with the fact that the expressions for evaluating the state and co-state, (2.15) and

(2.21), do not depend on any discretization step size—guarantees that approximation accuracy

of each sample does not drop as the number of samples decreases.5 Regardless of the particular

choice of ∆t, the role of ∆t has the same impact on all three representations of state and co-state

evolution (SIOMS, Forward and Improved Euler)—in each case, ∆t determines the number of

samples N (that can be) available (without interpolation) during each iteration. All methods

were implemented in MATLAB, on a laptop with an Intel Core i7 chipset.

The results are summarized in Fig. 2.3. Figure 2.3a illustrates the variation of online execu-

tion time with respect to the selected number of samples. Execution time refers to the number

of seconds required for 10 algorithm iterations—no significant change in cost is observed in

subsequent iterations as seen in Fig. 2.2b. In all cases, the final optimal cost was found to be in

4For this example, equations (2.14) and (2.20) are solved by a fixed-step Improved Euler’s method (i.e. two-stage
Runge Kutta) with step size equal to 10−4.
5Choosing to use interpolating methods might be concerning with regard to approximation accuracy of the full state
and co-state trajectories. Regardless, there are two ways to keep approximation errors low: i) by using higher-order
interpolating methods and ii) by using a larger number of samples. With SIOMS, we can select a large number of
samples without dramatically increasing the execution time (Fig. 2.3).

57

the range 0.45-0.5. Both Euler methods exhibit a similar rising trend with the execution time

reaching a maximum of 13 seconds when 20,001 samples are used (i.e. step size of 0.0001 secs).

With SIOMS, however, a significantly lower increase rate is observed with a maximum online

execution time at only approximately 1.3 seconds. The reasoning for this observed difference

is that with Euler methods, all samples of the state and co-state trajectories must be calculated

in every iteration whereas in SIOMS one only needs to calculate the state and co-state values

necessary for the procedures of the algorithm (e.g. computation of new switching times) using

the expressions (2.15) and (2.26) respectively.

The variation of approximation error with respect to the number of samples is depicted in

Fig. 2.3b. Here, by approximation error we refer to the 2-norm of the root-mean-squared (RMS)

differences between the analytic and computed state values for all states at sample points. As

explained earlier, the error with SIOMS remains approximately zero (≈ 0.0002) regardless of

the sample size. The trade-off between computation time and approximation error is partic-

ularly obvious with the Forward Euler’s method, where the error only approaches zero when

a maximum number of samples is employed by which time the corresponding execution time

is prohibitive. Interestingly, Improved Euler’s method starts with a lower error (≈ 0.07) and

drops to its minimum value of ≈ 0.0002 when 1600 samples and above are used. With the

lowest approximation error (≈ 0.0002), Improved Euler can achieve a minimum execution time

of approximately 3 seconds compared to 0.2 seconds achieved by SIOMS. With low execution

time (≈ 0.2 with 100 samples used), Improved Euler can achieve a minimum error close to 0.1

compared to 0.0002 achieved by SIOMS.

58

2.4.2. Computational Complexity

In Section 2.3, we showed that all the state and co-state information needed in Algorithms 1 and

2, is encoded in the STM, Φ j(t,T0), and ATM, Ψ j(t,TM), ∀ j ∈ {1, ...,N} which are solved for all

t ∈ [T0,TM] prior to the optimization routine. Therefore, the calculation of xk(t) and Pk(t) and

consequently the optimality condition θk relies simply on memory calls and matrix algebra. No

additional differential equations need to be solved for during optimization.

The algorithm complexity can be discussed in terms of the number of matrix multiplications

involved in each iteration. Recall that at each iteration, x(t) is given by (2.15) and P(t) by (2.21),

but the total number of state and co-state evaluations depends on the number of time instances

the descent direction (2.28) must be evaluated (e.g. for the calculation of θk in (2.31)). Taking

this into consideration, we will look at the algebraic calculations required for the evaluation of

the state, co-state and descent direction at a single time instance t.

First, for executional efficiency, one may calculate all the state and co-state values at the

switching times, x(Ti) and P(Ti), given the current mode schedule (Σ(uk),T (uk)) at the be-

ginning of each iteration. To compute the state, begin with x(T0) = x0 and then recursively

calculate

(2.37) x(Ti) = Φσi(Ti,Ti−1)x(Ti−1)∀i ∈ {1, ...,M − 1}.

Using STM property 2 and following a similar approach as in the derivation of (2.15), this

computation comes down to 2(M − 1) matrix multiplications, assuming that all Φ j(t,T0)−1 for

all j ∈ {1, ...,N} have also been stored in memory. Similarly, begin with P(TM) = P1 and then

59

recursively calculate

P(Ti) =Ψσi+1(Ti,TM) + Φσi+1(Ti+1,Ti)T

[P(Ti+1) − Ψσi+1(Ti+1,TM)]Φσi+1(Ti+1,Ti)
(2.38)

for all i ∈ {1, ...,M − 1}. Note that the derivation of the above expression is identical to the

derivation of (2.21). Knowing that all Φσi+1(Ti+1,Ti) have already been calculated in (2.37),

another 2(M − 1) multiplications are required for the calculation of P(t). To summarize, the

standard computational cost of the algorithm comes down to a total of 4(M − 1) multiplications

per iteration.

Now, to evaluate equation (2.15) and (2.21) at any random time t during the optimization

process, we only need 6 additional multiplications, 2 for the state x(t) and 4 for the relation P(t).

Therefore, to evaluate the descent direction at any random time, 9 multiplications are required

in total, including the algebra involved in (2.28).

Finally, each iteration of Algorithm 1 involves 4(M − 1) multiplications for the calculation

of x(Ti) and P(Ti), and 9λ additional multiplications where λ is the number of evaluations of

the expression (2.28) for the descent direction.

2.5. Closed-Loop Simulation and Experimental Implementation

In this section, SIOMS is implemented in a closed-loop manner (see Algorithm 2) and is

tested on a cart and suspended mass system in simulation and on an experimental setup.

The system model under concern is linear time-varying with two configuration variables,

q(t) = [y(t), ζ(t)]T , where y(t) is the horizontal displacement of the cart and ζ(t) is the rotational

angle of the string as seen in Fig. 2.4. The length of the string varies with time. Denoting by h(t)

60

Magnetic wheel

Ball of mass m

String of length h(t)

ζ(t)

y(t)

Gravity, g

Figure 2.4. The experimental setup consists of an one-dimensional differen-
tial drive mobile robot with magnetic wheels (i.e. cart) and a ball suspended by
a string. The string changes length by means of an actuated reeling system at-
tached on the robot. The system configuration is measured by a Microsoft Kinect
at ≈ 30 Hz. The full state is estimated using an Extended Kalman Filter. The Ro-
bot Operating System (ROS) is used for collecting sensed data and transmitting
control signals (i.e. robot acceleration values). See more in [1, 2].

the time-varying string length, g the gravity acceleration and by m and c the mass and damping

coefficient, the linearized system equations around the equilibrium x = 0, take the form in (2.2)

with

(2.39) Ai(t) =



0 1 0 0 0

0 0 0 0 −αi

0 0 0 1 0

0 0 −
g

h(t) −
c

mh(t)2 −
1

h(t)αi

0 0 0 0 0


,

61

0 5 10 15 20 25 30 35

0.10

0

0.5

1.0

0

-0.10

0 5 10 15 20 25 30 35
-0.5

0 5 10 15 20 25 30 35

Timeb(s)b

A
ng

le
bθ

(t
)

Closed-LoopbControl
Open-LoopbControl

C
ar

tbP
os

iti
on

bd
(t

)
C

lo
se

d-
lo

op
α(

t)

Disturbance

0
0.5

-0.5

0 5 10 15 20 25 30 35

0
0.5

-0.5

Settlebtimes Settlebtimes

O
pe

n-
lo

op
α(

t)

Figure 2.5. Open-loop SIOMS (Algorithm 1 with TM = 40 s) vs Closed-loop
SIOMS (Algorithm 2 with δ = 0.5 and T = 3 s) in simulation.

(2.40) h(t) = sin(t) + 2

and N = 3 i.e. three possible modes. The cart’s horizontal acceleration α is directly controlled

and can switch between the values α1 = 0, α2 = −0.5 and α3 = 0.5. Notice we have augmented

the state-space from R4 to R5 in order to transform the originally affine model to the linear form

in (2.2). The augmented state vector is x = [y, ẏ, ζ, ζ̇, ũ] where ũ is the auxiliary state variable.

System parameters are defined as m = 0.124 kg, c = 0.05 and g = 9.8 m/s2.

Our objective is to find the mode schedule that minimizes the angle oscillation while the

cart remains in a neighborhood near the origin and is accordingly characterized by the quadratic

cost functional (2.4) with Q = diag[0, 0, 10, 1, 0] and P1 = diag[0.1, 0.01, 10, 1, 0]. The system

starts at an initial condition x0 = [0.5, 0, 0.1, 0, 1]T .

62

Open-Loop Trajectories Bundle

Timex(t)

Open-Loop Optimal Cost
Distribution

OptimalxCost

xA
ng

le
xθ

(t
)x

O
cc

ur
en

ce
s

Closed-Loop Optimal Cost
Distribution

Closed-Loop Trajectories Bundle

(a)

(b)

18
16
14
12
10

8
6
4
2

2 2.5 3 3.5 4 4.5 5 5.5
xx10-3

0.1

0.08

0.06

0.04

0.02

0

-0.02
0 1 2 3 4 5 6

xA
ng

le
xθ

(t
)x

0.1

0.08

0.06

0.04

0.02

0

-0.02

Timex(t)
0 1 2 3 4 5 6

OptimalxCost

O
cc

ur
en

ce
s

18
16
14
12
10

8
6
4
2

2 2.5 3 3.5 4 4.5 5 5.5
xx10-3

Figure 2.6. Robustness to uncertainty in the damping coefficient through
Monte-Carlo analysis. Angle trajectories bundle and optimal cost distribution
for (a) open-loop SIOMS (Algorithm 1 with T0 = 0 and TM = 6) and (b) closed-
loop SIOMS (Algorithm 2 with δ = 0.2 and T = 3).

2.5.1. Simulation Results

We apply Algorithm 2 to the optimal control problem stated previously and compare its per-

formance with Algorithm 1 in terms of (1) disturbance rejection and (2) robustness to system

parameter uncertainties. For real-time SIOMS execution, both algorithms were implemented in

Python.

Disturbance rejection. We ran Algorithm 2 with parameters δ = 0.5 and T = 3 s for a total

of 40 seconds. A disturbance is applied at time ≈ 14 s. Each run of Algorithm 1 (i.e. 5 SIOMS

iterations) lasted on average 0.04 s of CPU time. Note that the algorithm was implemented in

63

a real-time manner—starting the system simulation/integration from t = 0 s, a new switching

control is calculated and applied every δ = 0.5 seconds using information about the current

system state. For comparison, we additionally ran a one-time open-loop SIOMS (Algorithm 1)

with T0 = 0 s and TM = 40 s. The cost is reduced from J0 ≈ 1.96 to J ≈ 0.58 after 15 iterations;

the optimal switching control was pre-calculated and later applied to the system.

The results are illustrated in Fig. 2.5. Starting at an initial value of 0.1 rad, the angle has a

settle time6 of about 2.5 s with closed-loop control compared to 5 s when open-loop SIOMS is

applied. As expected, the disturbance triggers a high angle oscillation with a settle time > 20 s,

as the effect is not taken into account by the open-loop controller. The receding-horizon SIOMS,

however, results in a much lower settle time of 2.5 s, providing an efficient real-time response

to the random disturbance. The last 2 diagrams in Fig. 2.5 show the switched cart acceleration

α with respect to time as calculated by each algorithm. In close-loop control where the most

reliable performance is observed, a total of 65 switches occur with an average mode duration

of ≈ 0.42 s and a minimum mode duration (i.e. period during which the mode remain fixed) of

≈ 0.02 s.

Robustness to model uncertainties. In a subsequent comparison, we examine the robustness

of Algorithm 2 to model uncertainties and compare its performance to Algorithm 1. In par-

ticular, we perform a Monte-Carlo analysis where both algorithms are run 100 times in the

following scheme: the optimal switching control is calculated using the system model in (2.39)

and is subsequently applied to an equivalent system with randomly added noise in the damping

parameter, i.e. cactual = 0.05 + ω where ω is a random real number in the range [−0.05, 3.0] so

that cactual ∈ [0, 3.05].

6Settle time is defined here as the time from the arrival of the disturbance until the angle reaches and stays within
the settle boundary from −0.025 rad to 0.025 rad surrounding the origin.

64

We demonstrate the results in Fig. 2.6. The diagrams on the left show the resulting angle

trajectories for t ∈ [0, 6] of all algorithm runs. It can be observed that open-loop SIOMS is more

sensitive to changes in the damping coefficient compared to closed-loop SIOMS that exhibits

a more robust performance. The distribution of optimal costs across all runs is given in the

remaining diagrams of Fig. 2.6. For both open-loop and closed-loop SIOMS, the optimal cost is

calculated as in (2.4) over the resulting trajectories x(t) for all t ∈ [0, 6]. The mean optimal cost

in open-loop SIOMS is ≈ 0.0037 compared to ≈ 0.0027 in the closed-loop implementation.

In addition, with receding-horizon SIOMS (Algorithm 2) the standard deviation is 0.08 · 10−3

which is significantly lower than the standard deviation 0.51·10−3 observed in open-loop SIOMS

(Algorithm 1).

2.5.2. Experimental Results

In this section, the performance of the closed-loop hybrid controller (Algorithm 2) is evaluated

experimentally on a real cart and suspended mass system (Fig. 2.4). More information about

this experimental platform can be found in [1, 2]. Due to geometric constraints and model

discrepancies, a few changes in the parameters were made as follows: h(t) = 0.4sin(t) + 1 in

(2.40), c = 0.001 in (2.39), δ = 0.4 and T = 5 s in Algorithm 2. The same objective as

in simulation was pursued i.e. real-time angle regulation with the robot position maintained

close to the origin. The weight matrices in (2.4) were set as Q = diag[0, 0, 1000, 0, 0] and

P1 = diag[1, 0, 100, 0, 0]. We ran 2 sets of experiments to illustrate the features of the hybrid

controller based on Algorithm 2.

65

In Experiment 1, the SIOMS controller is initially inactive and we perturb the string angle

by setting a predefined oscillatory trajectory to the cart/robot7. After approximately 6.6 seconds,

the controller is activated to optimally drive the angle to zero using Algorithm 2. One example

trial of Experiment 1 is illustrated in Fig. 8.6. During the perturbation, the angle exhibits an

oscillatory response with peak amplitude at 0.25 rad. Once receding-horizon SIOMS is applied,

the string angle starts approaching the origin with a settle time of 4.8 seconds and the robot

moves slightly to the left before returning to the origin. For comparison purposes, Fig. 8.6 also

7A video of the experiment is available in https://vimeo.com/nxrlab/sioms1.

0

0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4

0.4 5 10 15

F
il

te
re

d-
A

ng
le

-
θ(

t)
F

il
te

re
d-

C
ar

t-P
os

it
io

n-
d(

t)
C

on
tr

ol
-

α(
t)

Time-(s)-

Perturbation CONTROL

Receding-horizon-SIOMS
No-control

0.0

0.5

0.5

0 5 10 15

20

20

0 5 10 15 20

0.3
0.2
0.1
0.0
0.1
0.2

0.4

Experiment 1

Settle-time

Figure 2.7. An example trial of Experiment 1. First, the robot follows a sinu-
soidal trajectory perturbing the string angle. Approximately 6.6 seconds later,
receding-horizon SIOMS is applied in real time and drives the angle back to the
origin in approximately 4.8 seconds. Without control, the angle exhibits high
oscillations with minimal decay.

66

0.3

0.2

0.1

0.0

0.1

0.2

0.3

1.0

0.5

0.0

0.5
0I 5 10 15 20I 25 30 35 40 45

0I 5 10 15 20I 25 30 35 40 45

0I 5 10 15 20I 25 30 35 40 45

F
il

te
re

dI
A

ng
le

I
θ(

t)
F

il
te

re
dI

C
ar

tIP
os

it
io

nI
d(

t)
C

on
tr

ol
I

α(
t)

0.0
0.5

disturbance

0.5

Receding-horizonISIOMS

TimeI(s)I

Experiment 2

disturbance disturbance disturbance

settle time settle time settle time settle time

Figure 2.8. An example trial of Experiment 2. SIOMS controller is always
active while a person applies random disturbances by pushing the suspended
ball four times sequentially. The controller reacts in real time to regulate the
angle. Approximate settle time is at 6 seconds.

Table 2.1. We ran 12 trials of Experiment 1 with 4 different perturbation levels.

Perturbation 1 Perturbation 2 Perturbation 3 Perturbation 4
peak angle = 0.18rad peak angle = 0.25rad peak angle = 0.33rad peak angle = 0.4rad

Trial 1 2 3 1 2 3 1 2 3 1 2 3
switches / second 2.80 3.20 2.60 2.36 2.61 2.80 3.88 2.77 2.46 2.89 2.59 2.66

average mode duration (s) 0.34 0.27 0.32 0.31 0.35 0.32 0.38 0.33 0.35 0.31 0.32 0.34
settle time (s) 2.9 3.6 4.2 3.4 4.2 4.8 7.2 7.5 6.9 9.4 8.6 9.1

shows the angle trajectory for the case when no control was applied following the perturbation

(i.e. α(t) = 0). One may observe that the uncontrolled system is highly underdamped with no

settle time achieved in a time horizon of ≈ 14 seconds. Note that the sinusoidal change in peak

amplitude and frequency is a result of the time-varying string length.

We repeated Experiment 1 for four different perturbation levels, each characterized by the

peak angle amplitude achieved. Three trials per perturbation were run i.e. twelve trials in total.

As performance metrics, we used a) the number of switches per second, b) the average mode

67

duration and c) the settle time for the string angle. Our goal was to verify the reliability and effi-

cacy of the controller in noisy conditions induced by sensor and model deficiencies. The results

are given in Table 2.1. Throughout the trials, the number of switches per second ranges from

2.3 to 3.8. The average mode duration also exhibits low variation among different trials with

a range from 0.27 to 0.38 seconds. As expected, settle times increase with higher perturbation

levels but remain fairly close among trials of the same perturbation.

In Experiment 2, we sought to evaluate the performance of the hybrid controller when ran-

dom disturbances occur in real time. To achieve this, the experiment is initialized at y = 0,

ζ = 0, α = 0 and zero velocities. With the receding-horizon SIOMS controller activated, a

person pushes the suspended mass to create real-time disturbances. The controller responds to

the disturbance to regulate the angle and drive it back to zero8. An example trial of Experiment

2 is presented in Fig. 8.7 where four consecutive disturbances of varied amplitudes are applied.

One may observe that the controller regulates the angle with settle times of approximately 6

seconds in all four cases. Furthermore, as a result of the terminal cost applied at y(t), the robot

does not deviate significantly from the origin.

8A video of the experiment is available in https://vimeo.com/nxrlab/sioms2.

68

CHAPTER 3

Control Alphabet Policies

This chapter presents a method for synthesis of control alphabet policies, given contin-

uum descriptions of physical systems and tasks. First, we describe a model predictive control

scheme, called switched sequential action control (sSAC), that generates global state-feedback

control policies with low computational cost. During synthesis, sSAC alphabet policies are

directly encoded into finite state machines using a cell subdivision approach. As opposed

to existing automata synthesis methods, controller synthesis is based entirely on the original

nonlinear system dynamics and thus does not rely on but rather results in a lower-complexity

symbolic representation. The method is validated for the cart-pendulum inversion problem, the

double-tank system and the SLIP model. The approach presents an opportunity for real-time

task-oriented control of complex robotic platforms using exclusively sensor data with no online

computation involved.

3.1. Introduction

This chapter constructs control alphabet policies (CAP) that achieve desired performance

objectives, given a (nonlinear) system and finite set of constant control symbols. Symbolic

control has been popular in the areas of robot control and motion planning [77] as a means

to provide solutions for control on embedded systems with limited computational power [4].

69

Common symbolic control approaches include linear temporal logic (LTL) [78] and motion de-

scription languages (MDLs) [79]. Here, as in MDLs, we synthesize symbolic policies consid-

ering discretization at the controls level, i.e., symbols denote control modes forming a control

alphabet. For example, in a helicopter-like vehicle, tasks like “land”, “ascend”, and “hover”

might correspond to alphabet policies composed of constant control modes.

Our objective is to synthesize simple control alphabet policies that can be stored in finite

state machines and realized with digital computer tools (e.g. [80]) inexpensively, i.e. without

requiring online control calculation. The solution to the problem of CAP synthesis for a wide

range of systems and control objectives will benefit automation systems in terms of computing

power allocation and compactness by boosting their multi-tasking capacity (power allocation)

and promoting miniaturization (compactness), in the fields of aviation [17], manufacturing [18],

and robotic locomotion [19] among others.

The proposed control alphabet policies (abbreviated as CAP) are structured as finite state

machines during the synthesis process. Figure 3.1 shows how our approach (in red) compares

to common methodologies for controller automata sunthesis (in blue). The latter [3–6] gener-

ate lower-complexity symbolic representations of continuous systems (i.e. bisimulation [6] or

symbolic model [4]) and compute the policy on the system abstraction. On the contrary, this

work proposes that CAP synthesis (illustrated in blue) is entirely based on the original continu-

ous nonlinear system dynamics instead of their lower-complexity abstractions. As a result, our

objective is to provide solutions even for cases where a discrete system approximation is hard

or impossible to obtain to aid in the controller synthesis. Subsequently, state-space abstractions

70

are extracted based on the numerical global control policy. However, note that these state par-

titions do not aim to be a bisimulation of the actual system (as is formally defined in [6]) but a

method for inexpensive representation of state-feedback controls and fast policy execution.

In order to achieve this alternative scheme, it is imperative that we formulate a method for

state-feedback global control synthesis that is computationally inexpensive and can be encoded

in finite states machines. Common numerical approaches in hybrid control [16,24,25,32] output

open-loop time-dependent control trajectories that do not favor the synthesis of global state-

feedback control alphabet policies1 while they exhibit high execution times. To overcome these

issues, we propose a numerical algorithm for global symbolic control which we call switched

sequential action control (sSAC). The algorithm is based on sequential action control (SAC), a

recent model-based optimal control scheme described in detail in [81–84] and relies on hybrid

systems theory to select the next symbol that optimally improves the task objective instead of

optimizing it.

The final step of the proposed synthesis process generates state-space partitions based on

an sSAC control policy, using a cell subdivision approach, typically used for computation of

invariant sets [85]. As opposed to [4], the approach employs a multi-resolution grid, so that

the distribution of state space partitions is non-uniform. As a result, the number of discrete

state partitions doesn’t grow exponentially with respect to the dimension of the state space.

Furthermore, since the non-uniform partitions are hyper-rectangles that intrinsically satisfy the

control policy (see Definition 2 and 3), the guard equations of the finite state machines can be

directly represented as nested state inequalities for fast controller execution.

1In other words, common mode scheduling algorithms do not naturally assign a symbolic action u at any state x.

71

For method validation, we construct control alphabet policies for cart-pendulum inversion,

double-tank fluid levels control and forward hopping using the spring-loaded inverted pendulum

(SLIP) model. When used for cart-pendulum inversion, we show that this automated numerical

process—with sSAC and two symbols—generates structurally identical results to the bang-

bang analytical control law published in [86]. The last two examples illustrate CAP synthesis in

systems with hybrid dynamics. CAP synthesis for the SLIP model indicates alternative uses of

the CAP policies as embedded “background” controllers around which online controllers (e.g.

sSAC or SAC) work to achieve high-level objectives. For example, a CAP finite state machine

embedded in a robotic biped can be used to inexpensively coordinate walking, while high-level

controllers complete more complex tasks (similar to the hypothesis that spinal cord circuitry

coordinates locomotion in humans and other vertebrates [87]).

B
is

im
ul

at
io

n
/

S
ym

bo
lic

 m
od

el

System
Abstraction

Compute policy
on system abstraction Controller FSM

System

E
xtract state

abtractions from
 policy

State policy with

Compute policy
on original system

Figure 3.1. A diagram showing how our approach (in red) compares to common
automata synthesis methodologies [3–6] (in blue).

72

3.2. Symbolic Control Calculation

For the rest of this chapter, we consider continuous-time nonlinear systems with n states

x : R→ X ⊆ Rn and m inputs u : R→ U ⊂ Rm following equations of the general form

(3.1) ẋ = f (x, u).

At any time t, input u(t) can be one of the N constant-value control vectors from the set

U = {u1, ..., uN} ⊂ R
m. The state is sometimes denoted as t 7→ x(t; t0, x0, u) when we want to

make explicit the dependence on the initial time, initial state, and corresponding control signal.

Assumption 1. The elements of dynamics vector (3.1) are real, bounded, continuously dif-

ferentiable in x, and continuous in t and u.

Definition 1. A symbol is a constant-value control vector ui ∈ R
m that belongs in the sys-

tem’s alphabet, i.e. control set U.

To calculate state-dependent control symbols, we introduce switched sequential action con-

trol (sSAC), a variation of sequential action control (SAC) in [81], that performs global closed-

loop symbolic control using the symbols in U. The algorithm follows a receding-horizon ap-

proach; controls are obtained by repeatedly solving online an open-loop symbolic control prob-

lem P every ts seconds (with sampling frequency 1
ts

), every time using the current measure of

the system state xcurr. However, it differs from common receding-horizon schemes in two ma-

jor points: a) P does not search for a control trajectory over the full time horizon T but rather

selects a single symbolic control action uk∗ ∈ U to be applied for a short amount of time λ, and

b) open-loop solution optimally improves the performance objective (3.2) instead of optimizing

73

it. P improves general tracking objectives of the form

(3.2) J(x(·)) =

∫ t0+T

t0
l(x(t)) dt + m̄(x(t0 + T)) ,

with incremental cost l(x(t)), terminal cost m̄(x(t0 + T)), initial time t0 and time horizon T . The

open-loop problem P is

P(t0, x0,T, J) :(3.3)

Find k∗ ∈ {1, 2, ...,N} and τ, λ ∈ R such that

J(x(t; t0, x0, usS AC)) < J(x(t; t0, x0, ude f ault))

with usS AC(t) =


uk∗ τ ≤ t ≤ τ + λ

ude f ault else

subject to (3.1) with t ∈ [t0, t0 + T] and x(t0) = x0.

The term ude f ault refers to a default (nominal) control symbol. It is often ude f ault = 0 so that

problem P outputs the optimal symbolic action relative to doing nothing (allowing the system

to drift for a horizon into the future). Alternatively, ude f ault may be an optimized feedforward

controller providing a nominal trajectory around which sSAC would provide feedback.

The solution usS AC(t) of problem P generates a switch of duration λ in the dynamics (3.1)

from f (x, ude f ault) to f (x, uk∗). The triplet (k∗, τ, λ)—i.e. a single symbol uk∗ , k∗ ∈ {1, 2, ...,N}

along with its associated application time τ and duration λ—defines a symbolic sSAC control

action. As the receding horizon strategy progresses, P(t0, x0,T, J) is solved for the current

time t0 using the measured state x0, and the output control usS AC(t) is applied for ts seconds

74

with 0 < ts ≤ T . The process is then repeated at the next sampling instance, i.e. t0 ← t0 + ts.

This closed-loop receding horizon strategy, results in a sequence of symbolic actions, forming a

piecewise constant control signal ucl(t) with state response xcl(t). With regard to CAP synthesis,

note that in each cycle iteration and with ude f ault determined, sSAC only takes as input the

current state x0 and outputs a single control symbol uk∗ or ude f ault to be applied for a finite

duration at t0. We take advantage of this natural state-dependence of sSAC controls in order to

achieve synthesis of control policies in Section 3.3.

3.2.1. Calculating a Control Actions Schedule

To make explicit the dependence on action duration λ, application time τ and symbol k∗, we

write inputs u : R × R+ × R × {1, 2, ...,N} → U of the form of usS AC(t) in (5.8) as

u(t; λ, τ, k∗) =


uk∗ τ ≤ t ≤ τ + λ

ude f ault else.

When λ = 0, it is u(t; 0, ·, ·) ≡ ude f ault, i.e. no action is applied. Accordingly, we define

J̄(λ, τ, k∗) := J(x(t; t0, x0, u(t; λ, τ, k∗))) so that the performance cost depends directly on the ap-

plication parameters of a sSAC action. Using this notation, the open-loop problem P searches

for the triplet (k∗, τ, λ) such that J̄(λ, τ, k∗) < J̄(0, ·, ·). There exists an open, non-zero neighbor-

hood, V = N(λ → 0), where the change in cost ∆J := J̄(λ, τ, k∗) − J̄(0, ·, ·) is locally modeled

by Taylor expansion as

(3.4) ∆J ≈
dJ̄(·, τ, k∗)

dλ+
λ

75

for finite durations λ ∈ V . The quantity dJ̄(·,τ,k∗)
dλ+ —called mode insertion gradient and written

dJ
dλ+

∣∣∣
τ,k∗

for brevity—measures the first-order sensitivity of cost function (3.2) to application of

symbol uk∗ for infinitesimal duration λ→ 0+ at time τ. It is calculated as ([62, 88])

(3.5)
dJ
dλ+

∣∣∣∣∣
t,k

= ρ(t)T (f (x(t), uk) − f (x(t), ude f ault)) ∀t ∈ [t0, t0 + T].

The adjoint variable ρ : R → Rn provides the sensitivity of (3.2) to state variations along a

predicted trajectory x(t) ∀ t ∈ [t0, t0 + T]. The adjoint satisfies2

ρ̇ = −Dxl(x)T − Dx f (x, ude f ault)Tρ

subject to ρ(t0 + T) = Dxm̄(x(t0 + T))T .(3.6)

Expression (3.4) indicates that the difference ∆J depends on the value of the mode insertion

gradient dJ̄(·,τ,k∗)
dλ+ in (3.5) and is parameterized by the application time τ and duration λ.

Using the above, we can compute a schedule, u∗ : {t | t ∈ [t0, t0 + T]} → U, corresponding

to the symbols that would optimally improve performance if applied for some duration at an

arbitrary time t ∈ [t0, t0 + T]. To achieve optimal cost improvement, i.e. ∆J < 0 in (3.4) or

equivalently J(x(t; t0, x0, usS AC)) < J(x(t; t0, x0, ude f ault)) in P, the schedule selects at each time

t the symbol number k that drives (3.5) the closest to a specified negative value, αd ∈ R
−.

Therefore, based on the simulation of (3.1) and (3.6), the control schedule is calculated as

u∗(t) = arg min
uk ,k=1,...,N

{[dJ
dλ+

∣∣∣∣∣
t,k
− αd

]2
+ ‖uk‖

2
R

}
, t ∈ [t0, t0 + T].(3.7)

2Dx f (·) denotes the partial derivative ∂ f (·)
∂x .

76

The matrix R > 0 ∈ Rm×m provides an optional3 metric on control effort. Parameter αd deter-

mines how smooth or aggressive the sSAC response will be, which is particularly useful when

we have a large number of symbols and the controller is used in human-in-the-loop applications

(e.g. see [82]). In any other situation, αd can be eliminated with no change on the controller’s

effect.

3.3. Control Alphabet Policies

The objective of this chapter is to generate control policies for inexpensive symbolic control.

The resulting control laws are essentially hybrid automata, known to describe (discrete) switch-

ing conditions across a finite number of (continuous) dynamic modes [89]. Here, to stress the

importance of the control alphabet policies (CAP) as standalone symbolic controllers relying

on sensor data only, we use the following definition.

Definition 2. A control alphabet policy (CAP) is a 3-tuple 〈U, L,T〉 where4:

— U is the alphabet i.e a set of N symbols;

— L is a finite set of state space partitions that satisfy the sSAC control policy, i.e. L = {Li ⊂

X, i = {1, 2, ...} : usS AC(0)
∣∣∣
P(·,xm,·,·)

= usS AC(0)
∣∣∣
P(·,xn,·,·)

∀xm, xn ∈ Li};

— T : U × L→ U is a (deterministic) transition function encoding a state-feedback control

policy. This can be illustrated as a finite directed multigraph (U, L), with elements in U being

the vertices and elements in L the edges.

3The weight on ui is optional because there is only a finite number of control symbols.
4From automata literature, control alphabet policies are similar in structure to labeled transition systems (LTS).

77

In this section, we describe a cell subdivision method that utilizes a non-uniform grid to

extract state abstractions based on the symbolic control calculation methodology in Section

3.25.

Algorithm 3 Compute Control Alphabet Policy

Initialize layer k = 0, desired maximum level kmax, time horizon T , number of test points p ∈ N, set of
state space partitions L = ∅, and set of compact sets to be divided Σ(0) = {Ω} with Ω ⊆ X ⊆ Rn and

Σ(k) = ∅ ∀ k > 0.

(1) For all compact sets Σ(k, j) ⊂ Rn, j = 1, ... in Σ(k):
(a) Define a hyper-grid C(k, j) on Σ(k, j) with P(k, j) ∈ N cells and initialize labels `(C(k, j)

i) =

Null, i = 1, ..., P(k, j) (unlabeled grid cells).
(b) For every grid cell C(k, j)

i ⊂ Ω, i = 1, ..., P(k, j):
� Select p test points x∗ from the cell interior or boundary.
� For each point x(s)

∗ ∈ R
n, s = 1, ..., p, solve P(0, x(s)

∗ ,T, J) in (5.8). Then, u(s) =

usS AC(0) ∈ U.
� If u(s1) = u(s2) ∀ s1, s2 ∈ {1, 2, ..., p} or k = kmax,

label grid cell C(k, j)
i such that `(C(k, j)

i) = mode({u(s) ∈ U : s = 1, ..., p});
add C(k, j)

i to set L;
else

add C(k, j)
i to set Σ(k+1).

(2) k ← k + 1
(3) Repeat from (1) until Σ(k) = ∅ and

⋃
Li∈L Li = Ω.

3.3.1. State abstractions using cell subdivision

Definition 3. Consider a compact set Ω ⊂ Rn to a be a subset on the state space X ⊆ Rn.

A hyper-grid C on Ω divides Ω in a family of equally-sized n-orthotopes or hyper-rectangles6

Ci, i = 1, ..., P, P ∈ N called cells, such that
⋃

Ci∈C Ci = Ω and Ci ∩C j = ∅ ∀Ci,C j ∈ C, i , j.

Each hyper-grid C is fully defined by n sets of values x̄i = {xmin
i , xmin

i + δi, xmin
i + 2δi, ..., xmax

i } that

in turn define the partitioning of each state with δi the size of the ith cell dimension, so that each

5Note that the approach of this section can be applied without modification using any other global policy that
outputs state-dependent controls based on a finite control alphabet.
6A n-orthotope or hyper-rectangle is the generalization of a rectangle for n dimensions.

78

state i has qi =
xmax

i −xmin
i

δi
partitions. It is then P = {qi}

n. To each cell Ci, associate a label

`(Ci) ∈ Rm which can take values in U or be Null (i.e. cell is unlabeled).

Using the above definition, the complete process is given in Algorithm 3. The algorithm7

takes as input a subset of the state space Ω ⊆ X and outputs a partition L of Ω, i.e.
⋃

Li∈L Li =

Ω and Li ∩ L j = ∅ ∀Li, L j ∈ L, i , j. It is structured in layers starting from layer 0, with

each new cell subdivision corresponding to a new layer. Initially, a standard—coarse—grid is

applied on a state-space subset (layer 0). For each cell in the grid, if the labeling criterion is

not satisfied, the cell is further subdivided to a finer grid of cells (e.g. layer 1) and the process

repeats with finer layers until all cells are labeled whereafter partition L has been fully specified.

The p test points in Step b can be the vertices, middle point and edge middle points of the cell

as well as random interior points drawn from a distribution. A lower limit at the number of test

points is pmin = 2n + 1, i.e. the vertices and center point of the n-orthotope. Selection of number

of test points p is determined by the trade-off between desired accuracy level i.e. resolution

(p ↑) and computational cost i.e. control algorithm runs (p ↓).

The algorithm terminates when a maximum layer k = kmax is reached, wherein the set of

compact sets to be divided (unlabeled cells) is empty i.e., Σ(k) = ∅. The algorithm must be

terminated when k = kmax < ∞, so that all cells lying on controller’s switching manifolds are

labeled and the boundaries of state partitions are resolved. The selected maximum level kmax

determines the lowest possible cell size of the resulting multi-resolution grid, which denotes

the policy precision. The following proposition provides a method for selecting kmax when the

desired precision is known.

7 In Algorithm 1, step b, mode(A) denotes the value that appears most often in the set A.

79

Proposition 4. In Algorithm 1, let the initial 0-level hyper-grid C(0) comprise P(0) = Pinit

cells with qinit
i ≥ 2 partitions for each state i. In addition, let δ(kmax)

i denote the desired ith cell

dimension at maximum level kmax for all i ∈ {1, ..., n}. Then, the maximum layer kmax can be

calculated as

(3.8) kmax = max
i∈{1,...,n}

{
min

j

{
k j ∈ N : k j ≥ logqinter

i

xmax
i − xmin

i

qinit
i δ(kmax)

i

}}
.

Proof. At a specified level k, the size of the ith cell dimension is computed as δi =
xmax

i −xmin
i

qinit
i (qinter

i)kmax

(this result follows directly from the practice of subdivision in Algorithm 1). Solving for k gives

us a lower limit for the level k with respect to desired precision δi as in (3.8). Then for each

state i, we select the minimum natural number k j that satisfies the lower limit. Finally, kmax is

the maximum k j across all states i = 1, ..., n.

�

The computational cost of the algorithm primarily depends on the number of required con-

trol algorithm runs, i.e. how many times we need to solve the open loop problem P(·, ·, ·, ·)

in Section 3.2. If a fine uniform grid was used for state space discretization, the number of

algorithm runs would be equal to the total number of grid points. However, here we use a

multi-resolution grid, that is constructed starting from a coarse uniform grid at level 0 with each

cell further subdivided to smaller cells until labeled. This can significantly reduce the number

of grid points that require symbolic control calculation. The more cells are labeled at level

k < kmax, the less runs are executed. In this case, the exact number of algorithm runs is not

known a priori and depends on how many cells will be labeled at each level (according to the

labeling criterion). As a reference point, the following proposition provides an upper limit for

80

the number of executed control algorithm runs that is only reached in the worst case scenario

when all cells are labeled at the maximum level kmax.

Proposition 5. In Algorithm 1, let the initial 0-level hyper-grid C(0) comprise P(0) = Pinit

cells with qinit
i ≥ 2 partitions for each state i, and each lower-level hyper-grid C(k, j) comprise

P(k, j) = Pinter cells with qinter
i ≥ 2 partitions for each state, for all j ∈ N and k > 0. Then, if

p = 2n + r test points (i.e. 2n n-orthotope vertices and r additional points from the cell interior)

are selected for each cell C(k, j)
i ∀ k, j, i, then the maximum possible number of control algorithm

runs in Section 3.2 (i.e. worst-case scenario if all cells are labeled at level kmax) is

runs =

n∏
i=1

[
qinit

i (qinter
i)kmax + 1

]
+ (1 + (Pinter)kmax)Pinitr.(3.9)

Proof. The first term computes the number of vertices of the hyper-grid C(kmax) with qi =

qinit
i (qinter

i)kmax partitions for each state i at maximum level k = kmax. As C(kmax) consists of P(kmax) =

(1+(Pinter)kmax)Pinit cells, the second term quantifies the additional number of runs due to interior

test points r. �

So if the test points are p = 2n+1, (i.e. the vertices and center point of each n-orthotope cell),

and the number of inner cells is Pinter = 2n with qinter
i = 2 partitions for each state i at each level

k, the maximum number of algorithm runs is equal to
∏n

i=1

[
qinit

i 2kmax + 1
]

+ (1 + 2nkmax)Pinitr.

This number increases exponentially with both the number of levels kmax and the number of

dimensions n. However, since we are using a multiple-level non-uniform grid, the actual num-

ber of control algorithm runs is expected to be significantly lower as more cells are labeled at

levels k < kmax. Whether the methodology is scalable to higher dimensions largely depends on

81

0 1 2 3 4 5 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−2

2

0 1 2 3 4 5 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−2

2

0 1 2 3 4 5 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−2

2

x1

x2

un
la
be
le
d

0 1 2 3 4 5 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−2

2

A2

A1 A1

A1

A1

A1
A1

A2

A2

A2

A2

A2

A2

A2 A1

A1

Figure 3.2. Control alphabet policies for cart-pendulum inversion. Phase plane
plots showing consecutive layers of the cell subdivision strategy described in
Algorithm 1 (layer 0 to layer 4) for synthesis of a two-symbol CAP with U =

{u1, u2} = {5,−5}. The CAP finite state machine is also visualized. Vertices are
the control symbols in U and each edge label Ai corresponds to the union of grid
cells labeled with the symbol ui.

the sparsity of controls over the system’s state space and differs among choice of systems and

symbols.

3.4. Example: Cart-Pendulum Inversion

3.4.1. Energy Tracking

This section demonstrates how to numerically synthesize control alphabet policies that globally

lead to pendulum swing-up using full state feedback and a specified finite number of symbols.

The reduced cart-pendulum system has n = 2 state variables, the angle between the vertical and

82

Angle

A
ng

le
 v

el
oc

it
y

0 2π
-5

5

A1
A1

A1A1

A2A2

A2 A2

A3

A3 A3

A3

A4

A4

A4

A4

(a) (b)

>0

<0

=0

Angle

A
ng

le
 v

el
oc

ity

0 2π
-5

5

(c)

Figure 3.3. Control alphabet policies for cart-pendulum inversion using energy
tracking cost. (a) Cart-pendulum system. (b) Phase plane plot and finite state
machine showing the four-symbol CAP with U = {u1, u2, u3, u4} = {−5,−2, 2, 5}.
(c) Numerical evaluation of the Lyapunov derivative on the control policies. De-
rivative is negative (stable) except for the gray lines θ̇ = 0 and cosθ = 0, where
it is zero. These lines correspond to system singularities and are not concern-
ing with regard to stability, as it happens that the vector field always drives the
system out of these regions (non-invariant sets).

u4:= 2

u3:= -2

u2:= -5

u1:= 5

u5:= 1

u6:= -1

Figure 3.4. Control alphabet policies for cart-pendulum inversion using energy
tracking cost: A six-symbol policy with U = {u1, u2, u3, u4, u5, u6} =

{−5,−2,−1, 1, 2, 5}.

the pendulum θ and the rate of change of the angle θ̇. Denoting by h the pendulum length, g the

gravity acceleration and µ the mass, the system equations take the form in (3.1) with

(3.10) f (x, u) =

 θ̇

g
h sinθ + u

hcosθ

 , x = [θ, θ̇]

83

Angle

A
ng

le
 v

el
oc

it
y

0 2π
-8

8

-5 0 5

Initial state

Final state

(a)

(b)

u

(c)

u1:= 5

u2:= 0u3:= -5

Figure 3.5. Control alphabet policy for cart-pendulum inversion using state
tracking cost. (a) Phase plane plots showing the sSAC-generated 2-symbol con-
trol policy, along with the cell subdivision result from Algorithm 1. (b) Illustra-
tion of the control automaton. Vertices are control symbols and each edge label
Ai corresponds to the union of grid cells labeled with the symbol ui (see Algo-
rithm 1). (c) Monte Carlo test: A bundle of 100 closed-loop trajectories (blue
curves) with marked initial and final states.

where u ∈ R is the acceleration of the cart (i.e. m = 1). The pendulum is inverted when

(θ, θ̇) = (0, 0). The system parameters take values h = 2, µ = 1 and g = 9.81. Using this model,

we synthesize control alphabet policies for symbolic cart-pendulum inversion by tracking the

energy of the pendulum at the upright position. The energy of the uncontrolled pendulum

(u = 0) is E(θ, θ̇) = 1
2µh2θ̇2 + µgh(cosθ − 1) so that E0 = 0 at the upright unstable equilibrium.

84

For sSAC controls computation, we use the cost function (3.2) with t0 = 0,

(3.11) l(x(t)) = 0 and m̄(x(t f)) =
1
2

(E(θ(t f), θ̇(t f) − E0)2.

In addition, for the open-loop problem P, we used the parameters: T = 1.2, ude f ault = 0,

αd = −5J, R = 0.3.

Figures 3.2, 3.3 and 3.4 illustrate the resulting sSAC state-dependent controls data for en-

ergy tracking using two symbols U = {−5, 5}, four symbols U = {−5,−2, 2, 5} and six symbols

U = {−5,−2,−1, 1, 2, 5}. It is noteworthy that the two-symbol control policy is structurally

identical to the analytical bang-bang solution provided in8 [86], albeit a result of a completely

automated numerical procedure.

The computation was done on the compact set Ω = [0, 2π] × [−5, 5] with a starting grid

(layer 0) consisting of P(0) = 81 grid cells and q(0)
i = 9 partitions in each state i. In finer layers,

cells were subdivided in grids of P(k, j) = 4 ∀ k > 0, j ∈ N cells. With p = 5 test points per

cell and maximum level kmax = 4, a total of 3428 sSAC runs for the two-symbol policy and

8981 runs for the four-symbol policy were performed, compared to 41842 runs that would be

required if all cells were labeled at maximum level 4 (computed using the expression in (3.9)).

The resulting CAP are verified for Lyapunov stability next.

Lyapunov stability. For stability verification of the control laws, we use the Lyapunov func-

tion from [86], V = |E − E0| with dV
dt = sign(E)Ė and Ė = µ · h · u · cosθ · θ̇. We numerically

verified the value of the Lyapunov derivative for all states x ∈ [0, 2π][−5, 5] (using a state-space

discretization of grid size 0.01), and for both control policies u. The result (i.e. sign(dV
dt)∀x) is

identical for both policies and is illustrated in Fig. 3.3c. The Lyapunov function decreases (i.e.

8The bang-bang control law in [86] is u = |ui|sign((E − E0)θ̇cosθ).

85

dV
dt < 0) as long as θ̇ , 0 and cosθ , 0 (gray lines). Implementation-wise, these lines (where

dV
dt = 0) are not concerning with regard to stability, as it happens that the vector field always

drives the system out of these regions (non-invariant sets). Scattered black points (dV
dt > 0)

on the switching manifold are due to numerical noise generated by the grid discretization and

numerical integration in sSAC.

3.4.2. State tracking

In this section, we generate automata for symbolic cart-pendulum inversion using a state track-

ing cost function. In particular, for sSAC controls computation, we use the cost function (3.2)

with t0 = 0,

(3.12) l(x(t)) = ‖x(t) − x̄‖2Q and m̄(x(t f)) = ‖x(t f) − x̄‖2P

and x̄ = [0, 0] for the upright equilibrium. The weight matrices are Q = Diag({1000, 10}) and

P = 02×2.

Figure 3.5a, illustrates the resulting sSAC state-dependent controls data for state tracking

using three symbols U = {−5, 0, 5}. The corresponding automaton is shown in Fig. 3.5b. Note

that employing a larger number of symbols does not generate significantly different control poli-

cies in this state-tracking case9. This can be viewed as an indication that a maximum of three

symbols are needed for cart-pendulum inversion. Since a Lyapunov function is not easy to ana-

lytically obtain for state tracking, we perform a Monte Carlo analysis to verify the automaton.

3.4.2.1. Monte Carlo test. To verify the state-tracking automaton in inverting the pendulum,

we ran a Monte Carlo simulation with 1000 trials. For each trial, the system (3.10) starts from

9This is mainly because the symbols are restricted to be constant control vectors.

86

a random initial state x0 and t = 0 and is integrated forward using Euler integration with fixed

time step ∆t. For every step, control u is generated by the automaton using the current state

xcurr and the automaton transition function T (see Definition 1). The trial terminates when the

system enters a region of attraction around the upright equilibrium10 i.e. |xcurr − x̄| < ε, or when

a time limit is exceeded i.e. t > tmax. A trial is marked as unsuccessful if the system does not

enter the region of attraction before tmax. The rate of success was 100% in 1000 trials. Fig. 3.5c

shows a bundle of 100 out of 1000 automaton-generated system trajectories (blue curves) with

the initial and final states of each trial marked in yellow and red respectively. One can observe

that although the initial states are scattered, all final states are close to the upright equilibrium,

i.e. x f in = [0, 0] or x f in = [2π, 0].

3.5. Example: Two-Tank System

This section synthesizes control alphabet policies that track desired fluid levels at a double-

tank system. Figure 3.6a shows the configuration of the system that consists of two tanks

T1 and T2, with T1 elevated at a height h with respect to T2. This tank configuration is a

common laboratory setting and variants of it have been extensively used for evaluation of control

methodologies [24, 56]. The inflow and outflow rates to the tanks are controlled by the valves

V1, V2, and V3, that can only be open with flow rate Vi = 1 or closed so that Vi = 0. The states

x1 and x2 are the fluid levels of tanks T1 and T2 respectively. According to Toricelli’s law, a

10Note that once the region of attraction has been reached, the system can switch to a linearized controller (e.g.
Linear Quadratic Regulator - LQR) for stabilization. This option will be addressed in the future, when more
complex symbols are considered.

87

3
 v

alv
es

Three valves

Open-loop cost reduction
in 100 trials

Initial states
Final states(a) (b)

Figure 3.6. Control alphabet policies for tracking desired fluid levels in a
double-tank system. (a) The two-tank configuration. (b) Case A: Phase plane
plot showing the CAP policy with u = [V1,V2,V3] and N = 8 symbols. Desired
state is xd = [0.8, 0.2]. Figures on the right show Monte Carlo results with toler-
ance ε = 0.1 (depicted as a circle). A 100% rate of success was achieved. Blue
trajectories show reduction of open-loop cost J in (3.2) over time for a sample
of 100 trials. Note that J was only calculated for verification purposes and was
not part of the control calculation. Smaller figure shows a phase plane plot with
the initial trial states in green and the final states in red for 500 trials.

Two valves

Open-loop cost reduction
in 100 trials

Initial states
Final states

Figure 3.7. Control alphabet policies for tracking desired fluid levels in a
double-tank system. Case B: Phase plane plot showing the CAP policy with
u = [V1,V3], V2 = 0.2 and N = 4 symbols. Desired state is xd = [0.4, 0.6].
Monte Carlo test was performed with tolerance ε = 0.05. A 100% rate of suc-
cess was achieved. In all trials, open-loop cost J in (3.2) was decreased over
time. Smaller figure shows a phase plane plot with the initial trial states in green
and the final states in red for 500 trials.

88

simplified model of the system consists of the nonlinear vector field

(3.13) f (x, u) =




V1 − V2

√
x1 − x2 + h

V2
√

x1 − x2 + h − V3
√

x2

 , if x2 > h


V1 − V2

√
x1

V2
√

x1 − V3
√

x2

 , else.

There is a (continuous) switch at the dynamics when Φ = x2 − h crosses zero. The height takes

value h = 0.5. For sSAC controls computation, we use the cost function (3.2) with t0 = 0,

(3.14) l(x(t)) = ‖x(t) − xd‖
2
Q and m̄(x(t f)) = ‖x(t f) − xd‖

2
P

where xd is the desired state. The weight matrices are Q = Diag({1, 1}) and P = Diag({100, 100}).

In addition, for the open-loop problem P, we used the parameters: T = 0.5, ude f ault = 0m×1,

αd = −5J.

To explore the potential of CAP synthesis using sSAC, we synthesized policies for two

different cases of control authority: A. with u = [V1,V2,V3], so that all valves are controlled

and B. with u = [V1,V3], so that only two valves are controlled and the middle valve has a

constant flow rate V2 = 0.2. The resulting policies and more details on each example case are

given in Fig. 3.6 and Fig. 3.7.

For both control scenarios, we ran Monte Carlo tests with 1000 trials simulating system

dynamics (3.13) from random initial states in the set [0.1, 0.9] × [0.1, 0.9]. During simulation,

control u is generated by the CAP at 1000 Hz using the current state xcurr and the CAP transition

function T (see Definition 2). A trial terminates when the system is sufficiently close to the

89

desired state as specified by tolerance ε i.e. |xcurr − xd| < ε (successful trial), or when a time

limit is exceeded i.e. t > tmax (failed trial). Specifying a tolerance is consistent with previous

results about quantized systems [90], stating that one can only implement feedback strategies

that bring closed-loop trajectories arbitrarily close to the desired state. For both cases A and B,

the rate of success was 100% in 1000 trials.

Computation of both policies (Algorithm 1) was done on the compact set Ω = [0, 1]× [0, 1]

with a starting grid (layer 0) consisting of P(0) = 81 grid cells and q(0)
i = 8 partitions in each

state i. In finer layers, cells were subdivided in grids of P(k, j) = 4 ∀ k > 0, j ∈ N cells. With

p = 5 test points per cell and maximum level kmax = 4, a total of 7, 621 sSAC runs for case A

and 3, 965 runs for case B were performed, compared to 41, 842 runs that would be required if

all cells were labeled at maximum level 4 (computed using the expression (3.9)). Interestingly,

we repeated the calculation for kmax = 5, wherein a total of 17, 125 sSAC runs for case A and

9, 474 runs for case B were performed, compared to 166, 546 runs that would be required if

all cells were labeled at maximum level 5. Therefore, although the worst-case scenario sSAC

calculations increased exponentially, the actual number of calculations only almost doubled

compared to the case with kmax = 4.

3.6. Example: Planar SLIP Hopper

This final section synthesizes control alphabet policies for hopping on vertical ground using

a 2-D spring-loaded inverted pendulum (SLIP) model (fig. 3.8); a model that is common in

analysis and control synthesis of dynamic hopping and running [84, 91].

The state, x = [ẋm, zm, żm, y], consists of the horizontal velocity, the vertical position and ver-

tical velocity of the center of mass followed by the horizontal displacement of “toe” (i.e. spring

90

Figure 3.8. Control alphabet policy for hopping forward using the SLIP model.
(a) The SLIP configuration and an illustration of SLIP hopping during a suc-
cessful Monte Carlo trial. (b) On the left is the finite state machine with N = 5
symbols. The indicator function Φ is included at the finite state machine edges.
On the right is a phase plane plot of zm with respect to y, showing the policy for
ẋm = 0.1 and żm = −3. The switching manifold Φ = 0 only depends on zm and
y and is plotted too. Note the cells on the manifold are assigned two labels (i.e
colors) one for Φ > 0 and one for Φ < 0.

endpoint) with respect to the mass position. Horizontal position xm is not included because we

assume a uniform vertical ground.

The dynamics of the SLIP are hybrid and include two phases: 1) a flight phase where the toe

endpoint is in the air and 2) a stance phase where the toe is in rolling contact with the ground.

91

Successful Trials

C
A

P
C

A
P

+
 s

S
A

C

Average horizontal velocity

Successful
Trials

(a) (b) (c)

Figure 3.9. Control alphabet policy for hopping forward using the SLIP model.
(a) We ran a Monte Carlo test with 200 trials, 193 of which were successful by
only using the CAP for control. The other 7 trials relied on sSAC to account for
states out of CAP range, i.e. for x < Ω. (b) Histogram of the average hopper
velocities across trials. The mean of the Gaussian fit is 0.39 with 0.16 standard
deviation. (c) The bundle of zm trajectories for all trials.

The system’s vector field is:

(3.15) f (x, u) =





0

żm

−g

−u f


, Φ(x) > 0



(k(`0 − `) + us)y 1
µ`

żm

(k(`0 − `) + us)zm
1
µ` − g

ẋm


, Φ(x) ≤ 0

where g = 9.81 is the acceleration due to gravity, µ = 1 is the mass of the hopper, and k = 90

is the spring constant. The control vector is u = [u f , us] where u f controls the relative velocity

of the toe ẏ along the x axis in flight mode and us applies force along the spring axis in stance

92

mode. Both inputs can take the values {−1, 0, 1} so that there are N = 5 symbols in total (see

Fig. 3.8b). The length, `, of the SLIP model matches the resting length of the spring, ` = `0 = 1,

in flight and ` =
√

y2 + z2
m in the stance phase. The transition between flight and stance is state-

based and determined by zero crossings of an indicator function, Φ(x) = zm −
`0zm
`

. To avoid

approximating Φ during CAP synthesis with multi-resolution n-orthotopes (which would be

computationally expensive), we modify the CAP structure so that the transition function T in

Definition 2 includes the indicator function as T : U × L × Φ→ U.

For sSAC controls calculation, we employ the cost function in (3.2) and (3.14), with weight

matrices Q = 04×4 and P = Diag({120, 150, 0, 0}). Our objective is to synthesize a CAP that

controls the SLIP model to hop forward with low velocity without falling. Therefore, we set

xd = [0.5, 1.6, 0, 0]. In addition, for the open-loop problem P, we used the parameters: T = 0.6,

ude f ault = 02×1, αd = −20000. Because it is difficult to encode the SLIP behavior in a finite state

machine for a wide range of states, we explore the efficacy of the CAP both as a standalone

controller and as an inexpensive finite state machine that works in conjunction with sSAC to

achieve a desired performance. We will see that even in the second case, computational cost of

control is significantly reduced using the CAP, as sSAC is only activated for a small percentage

of time. This example brings forth alternative applications of control alphabet policies where

the latter are used as embedded “background” controllers around which online controllers (e.g.

sSAC or SAC) work to achieve high-level objectives. For example, a CAP embedded in a biped

can be used to inexpensively maintain an upright position, while high-level controllers complete

more complex tasks.

The resulting finite state machine and a 2-dimensional section of the state partitions are

shown in Fig. 3.8b. For CAP verification, we ran a Monte Carlo tests with 200 trials simulating

93

system dynamics (3.15) from random initial states in the set [0.01, 0.1]×[1.2, 0.7]×[−0.4, 0.4]×

[−0.1, 0.1] from time t0 = 0 to t f = 6. During simulation, control u is generated by the CAP at

1000 Hz using the current state xcurr and the CAP transition function T : U × L × Φ→ U that

takes into account the current value of the indicator function. A trial is marked as successful

if the hopper does not fall (i.e. zm > 0) with positive average velocity (ẋm > 0). 93.5%

of the trials were successful using only the CAP for control calculation. For the rest 6.5%,

sSAC was activated to compute controls for states out of the CAP range, i.e. for x < Ω. The

mean percentage of time during which sSAC was active per trial was 14.3%, i.e. 0.85 out

of 6 time units on average, indicating that online sSAC runs did not significantly increase the

computational cost.

CAP computation (Algorithm 1) was done on the compact set Ω = [−0.2, 0.8] × [0.4, 2] ×

[−4, 4]× [−0.2, 0.2] with a starting grid (layer 0) consisting of P(0) = 800 grid cells and q(0)
1,3 = 5,

q(0)
2 = 16, q(0)

4 = 2 partitions in each state. In finer layers, cells were subdivided in grids of

P(k, j) = 16 ∀ k > 0, j ∈ N cells. With p = 17 test points per cell and maximum level kmax = 3,

a total of 3, 100, 288 sSAC runs were performed, compared to 6, 964, 033 runs that would be

required if all cells were labeled at maximum level 3 (computed using the expression (3.9)).

94

Part 2

Real-Time Information-Driven Exploration for

Symbols

95

CHAPTER 4

Introduction

In this chapter, we introduce the idea of information-driven exploration for automated sys-

tems. We start by motivating the need for exploration based on symbolic automation. Fur-

thermore, we list the requirements that an exploration strategy must meet so that it suitable

for tracking and learning symbols in real time. Finally, a thorough investigation of existing

exploration strategies is provided, along with current ergodic control approaches.

4.1. Why Exploration?

The reader might notice that symbols are used with varied meanings throughout this thesis

(from constant control actions, to moving targets and shapes). However and according to the

symbol definition provided in Section 1.2, it is always true that a quantity can be identified

as a symbol as long as it can be associated with unique information. In accordance with this,

it is imperative that we have a way of learning this information (when a symbol alphabet is

unavailable) and tracking this information (once a symbol alphabet has been built). Both tasks

can be achieved through information-driven exploration. To elaborate, consider the example

case where an agent is searching for a circular-shaped object on a two-dimensional field. If the

symbol information signature is simply the object shape, an agent must perform exploration

proportionally to this spatial information density i.e. explore more around the areas where the

object is expected to be based on its unknown shape.

96

In Part 1, we focused on acting with symbols, where symbols are defined as discrete control

actions. But when building control policies for cart-pendulum inversion and SLIP walking (see

Sections 3.4 to 3.6), we saw that symbols are in fact more than numbers; they are abstract shapes

on the n-dimensional state space encompassing information about a state-dependent control

policy. We used a multi-resolution grid to extract these symbols but consider this: what would

we intuitively do if we were asked to sense bumps, engraved on a surface, using only the sense

of touch on our single finger? If we followed the multi-resolution grid idea, we would point,

briefly touch and then immediately remove our finger from pre-specified grid points on the

surface. But this is far from what we would do in practice: we would probably start sweeping

our finger along the surface focusing on areas where a bump is sensed. In other words, we

would explore the surface driven by a dynamically-varying expected information density. The

state space is not much different from the engraved surface and the bumps from discrete control

symbol areas. Getting inspiration from the real world, we can abstractly explore the state space

using information about potential boundary locations. An example of this process is described

in Chapter 7.

To sum up, the ability to perform information-driven exploration is necessary for achieving

symbol extraction and detection regardless of the nature of symbols.

4.2. Exploration Challenges and Contribution

This part of the thesis considers the problem of real-time motion planning for area search,

coverage and target localization. Although the above operations are often considered separately,

they essentially all share a common objective: tracking a specified distribution of information

across the terrain. Our approach deviates from common solutions of space grid decomposition

97

in area coverage [92–96] and/or information maximization in target localization [8–11,97–100]

by employing the metric of ergodicity to plan trajectories with spatial statistics that match the

terrain spatial distribution in a continuous manner. By following this approach, we can establish

a unified framework that achieves simultaneous search and localization of multiple targets (e.g.

localizing detected targets while searching for new targets when the number of total targets is

unknown) without added complexity. Previous work [101–103] has suggested using ergodic

control for the purpose of motion planning for search and localization (albeit separately). How-

ever, due to its roots to optimal control theory, ergodic control has been associated with high

computational cost that makes it impractical for real-time operations with varying information

distribution. The contribution of this work is a model predictive control (MPC) algorithm based

on hybrid systems theory that exhibits low execution times even for high-dimensional systems

with complex nonlinear dynamics while providing stability guarantees over both dynamic states

and information evolution. To the best of our knowledge, this work includes the first application

of an online ergodic control approach in real-time experimentation—here, using the sphero ro-

bot [104].

Ergodic theory relates the time-averaged behavior of a system to the set of all possible

states of the system and is primarily used in the study of fluid mixing and communication. We

use ergodicity to compare the statistics of a search trajectory to a terrain spatial distribution—

the distribution may represent probability of detection for area search, regions of interest for

area coverage and/or expected information density for target localization. The idea is that in

an efficient exploration strategy, the trajectory followed by a robot should spend more time

exploring regions of space with higher information, as encoded in the terrain distribution.

98

To formulate the ergodic control algorithm, we employ hybrid systems theory to analytically

compute the next control action that optimally improves ergodicity, in a receding-horizon man-

ner. The algorithm—successfully applied to autonomous visual rendering in [23]—is shown to

be particularly efficient in terms of execution time and capable of handling high-dimensional

systems. The overall contribution of this work combines the following features in a coherent

manner.

Real-time execution: When planning motions for robotic agents performing search and

localization, real-time optimal control in a receding-horizon format, allows for closed-loop

model-based motion planning, while circumventing uncertainty on the vehicle dynamics [105].

In Chapter 6, we demonstrate in simulation real-time reactive control for a quadrotor model

in SE(3) as well as a robotic fish-like vehicle. In Section 8.2.2, we show in experimentation

how an ergodically controlled sphero robot can localize projected targets in real time using

bearing-only measurements.

Adaptive performance: In real-world applications such as automated surveillance, search-

and-rescue and target tracking, terrain spatial distributions may change dynamically to incorpo-

rate new information. For example, when tracking solar radiation [106] the distribution varies to

reflect changing weather conditions; when tracking a target, it changes dynamically every time

the belief on target’s state is updated. The proposed algorithm reactively adapts to changing

distribution of information across the workspace.

Nonlinear agent dynamics: Planning trajectories that satisfy the vehicle’s dynamics en-

sures that the vehicle will not have to accomplish hard or infeasible maneuvers that will slow

down the exploration procedure. In addition, it allows us to take advantage of the agent’s dy-

namics in order to cover regions of interest more efficiently—for example, plan paths that use

99

the natural surging and swaying motions of a robotic fish instead of canceling them. As op-

posed to geometric point-to-point approaches [95, 107, 108], the proposed algorithm controls

agents with complex nonlinear dynamics, such as robotic fish [109], unmanned aerial vehicles

(UAVs) [110, 111], etc., taking advantage of their dynamical features to achieve efficient area

exploration.

Stability of information states: We establish requirements for ergodic stability of the closed-

loop system resulting from the receding-horizon strategy in Section 5.3.

Multi-objective control capacity: In real-world complex operations, area exploration might

not be the only control objective that the robotic agent has to accomplish. For example, a

UAV can localize a target while executing a perching motion [112, 113], or a robot cleaner

can cover a given area while identifying and avoiding obstacles [114]. To facilitate this, the

proposed algorithm can work in a shared control scenario by wrapping around controllers that

implement other objectives. This dual control problem solution is achieved by encoding the

non-information related (secondary mission) control signal as the nominal control input unom
i in

the algorithm (see Algorithm 4). In the simulation examples, we show how this works by wrap-

ping ergodic iSAC around a PD controller for height regulation in order to control a quadrotor

to explore a terrain.

Multi-agent distributability: Formulating the multi-robot exploration task as an ergodic pro-

cess is a promising approach for resolving the issue of task allocation across multiple controllers

(e.g. swarm robots) [115]. Here, we show how ergodic control is distributable to N > 1 agents

with no added computational complexity. Each agent computes control actions locally using

their own processing unit but still shares information globally with the other agents after each

algorithm cycle.

100

Generalizability and robustness in multiple-targets localization: It is common for the com-

plexity of sensor motion planning strategies to scale with respect to the total number of tar-

gets, as a separate motion needs to be planned for each target [12, 116]. As opposed to this,

the proposed ergodic control approach controls the robotic agents to track a universal non-

parameterized information distribution across the terrain instead of individual targets indepen-

dently, thus being completely decoupled from the estimation process and independent of the

number of targets. Through a series of simulation examples and Monte Carlo experimental

trials, we show that ergodically controlled agents with limited sensor ranges can reliably de-

tect and localize static and moving targets in challenging situations where a) the total number

of targets is unknown; b) a model of prior target behavior is not available; c) agents acquire

bearing-only measurements; d) a standard Extended Kalman Filter (EKF) is used for bearing-

only estimation.

Joint area coverage and target localization: Planning routes that simultaneously optimize

the conflicting objectives of search and tracking is particularly challenging. A common ap-

proach is to optimize an objective function that includes a weighted combination of the individ-

ual objectives [117, 118]. However, performance is highly dependent on the choice of weights

and in addition the optimization of such cost functions is generally time-consuming. To address

this issue, we propose an ergodic control approach where the dual objective is encoded in the

spatial information distribution that the statistics of the robotic agents trajectories must match.

101

4.3. Review of Exploration Strategies

4.3.1. Area Search and Coverage

An area search function is required by many operations, including search-and-rescue [119,120],

hazard detection [108], agricultural spraying [121], solar radiation tracking [106] and moni-

toring of environmental phenomena, such as water quality in lakes [122]. In addition, com-

plete area coverage navigation that requires the agent to pass through every region of the

workspace [123] is an essential issue for cleaning robots [114, 124], autonomous underwater

covering vehicles [125,126], demining robots [127], automated harvesters [128], etc. Although

slightly different in concept, both applications—search and coverage—involve motion planning

for tracking a distribution of information across the terrain. For purposes of area search, this ter-

rain spatial distribution indicates probability of detection and usually exhibits high variability

in both space and time as it dynamically absorbs new information about the target’s where-

abouts. In area coverage applications, on the other hand, the terrain distribution shows regions

of interest and is normally near-uniform with possible occlusions.

A number of contributions in the area of robotic search and coverage decompose the explo-

ration space to reduce problem complexity. Grid division methods of various geometries, such

as Voronoi divisions [92–96], are commonly employed to accomplish this. While these methods

work well, their scalability to more complex and larger terrains where the number of discrete

divisions increases, is a concern. In addition, existing methods plan paths that do not satisfy the

robotic agents’ dynamics and thus are not feasible system trajectories. This raises the need for

an additional step where the path is treated as a series of waypoints and the agent is separately

controlled to visit them all [95, 107, 108]. This double-step process—first, path planning and

102

then, robot control— might result in hard-to-accomplish maneuvers for the robotic system, a

setback that inhibits and slows down the operation. Finally, decomposition methods often do

not respond well to dynamically changing environments—for example when probability of de-

tection across the workspace varies according to incoming data—because grid updates can be

computationally intensive. Therefore, most existing solutions only perform non-adaptive path

planning for search and coverage offline i.e. when the distribution of information is known

and constant. To overcome this issue when monitoring environments with changing distribu-

tions, an alternative solution is to control only the speed of the robotic agents over a predefined

path [129].

The algorithm described in Chapter 5 is distinguished from the aforementioned methods as

it provides a solution to the problem of area search and coverage without requiring any decom-

position of the workspace, by representing probability of detection as a continuous function

over the terrain. Furthermore, it performs online motion planning by reactively responding to

changes in the terrain spatial distribution in real time, while taking into account the agent’s

dynamics.

Multi-agent Coordinated Coverage: The objective of multi-agent coverage control is to

control the agents motion in order to collectively track a spatial probability-of-detection density

function [130] across the terrain. Shared information is a necessary condition for coordination

[131]. Several promising coverage control algorithms for mobile sensor networks have been

proposed. In most cases, the objective is to control the agents to move to a static position that

optimizes detection probability Φ, i.e. to compute and track the final states xi(t f) that maximize

the sum of
∫
F (‖x − xi(t f)‖)Φ(x)dx over all agents i where F indicates sensor performance.

Voronoi-based gradient descent [132, 133] is a popular approach but it can converge to local

103

maxima. Other approaches employ cellular decomposition [134], simulated annealing [135] or

game theory [136, 137] to achieve distributed coverage. The main drawback is that existing

algorithms do not consider time-dependent density functions Φ, so they are not suitable for

realistic applications where probability of detection varies.

Importantly, ergodic multi-agent coverage differs from the above coverage solutions in that

it aims to control the agents so that the spatial statistics of their full trajectories—instead of

solely their final states—optimize detection probability, i.e. the time-averaged integral C(x) =

1
t f−t0

t f∫
t0

δ[x − xi(t)], where δ is the Dirac delta, matches the spatial distribution Φ(x) as t f → ∞.

This means that if we capture a single snapshot of the agents ergodic motion, there is no guar-

antee that their current configuration will be maximizing the probability density. However, as

time progresses the network of agents is bound to explore the terrain as extensively as possible.

An advantage of the ergodic coverage control algorithm of this thesis is that it can be performed

online in order to cover terrains with time-dependent (or sensed in real time) density functions.

We show that multi-agent ergodic iSAC leads to a more time-efficient coverage than single-

agent iSAC with minimum additional time and space complexity. In particular, the current

implementation requires an established global communication network that allows all agents to

exchange information; in the examples, we assume that ergodicity knowledge is communicated

between vehicles using a wireless network.

4.3.2. Ergodic Control Algorithms

There are a few other algorithms that perform ergodic control in the sense that they optimize the

ergodicity metric in (5.5). Mathew et al. in [138] derive analytic ergodic control formulas for

simple linear dynamics (single and double integrator) by minimizing the Hamiltonian [139] in

104

the limit as the receding time horizon goes to zero. Although closed-form, their solution is not

generalizable to arbitrary nonlinear system dynamics and it also augments the state vector to

include the coefficients difference so that the final system dimensionality is nominally infinite.

Miller et al. [140] propose an open-loop trajectory optimization technique using a finite-time

horizon. This algorithm is ideal for generating optimal ergodic solutions with a prescribed time

window. However, it exhibits relatively high computational cost that does not favor real-time

algorithm application in a receding-horizon format. This approach has been used for offline

receding-horizon exploration of unknown environments [102] and localization of a single static

target [101, 103] in cases where real-time control is not imperative. De La Torre et al. [141]

propose a stochastic differential dynamic programming algorithm for ergodic exploration in the

presence of stochastic sensor dynamics.

105

CHAPTER 5

Ergodic Exploration Algorithm

This chapter introduces a model predictive control algorithm, based on hybrid systems the-

ory, that performs exploration driven by an information distribution. The algorithm is shown to

meet all the requirements listed in the previous chapter. In particular, stability guarantees are

provided in Section 5.3, while distributability to multiple agents is shown in Section 5.4.

5.1. Ergodicity

For area coverage and target localization using ergodic theory, the objective is to control an

agent so that the amount of time spent in any given area of a specified search domain is propor-

tional to the integral of a spatial distribution over that same domain. This section describes an

ergodicity metric that satisfies this objective.

Consider a search domain that is a bounded ν-dimensional workspace Xν ⊂ Rν defined as

[0, L1] × [0, L2] × ... × [0, Lν] with ν ≤ n. The spatial distribution over the search domain is

denoted as Φ(x) : Xν → R, and it can represent probability of detection in search area coverage

operations, such as search-and-rescue, surveillance, inspection etc. or expected information

density in target localization tasks as in Chapter 8. The spatial statistics of a trajectory xν(t) are

quantified by the percentage of time spent in each region of the workspace as

(5.1) C(x) =
1
T

t0+T∫
t0

δ[x − xν(t)]dt

106

where δ is the Dirac delta. We use the distance from ergodicity between the spatial statistics

of the time-averaged trajectory and the terrain spatial distribution as a metric. To drive the

spatial statistics of a trajectory xν(t) to match those of the distribution Φ(x), we need to choose

a norm on the difference between the distributions Φ(x) and C(x). As in [101], we quantify

the difference between the distributions, i.e., the distance from ergodicity, using the sum of

the weighted squared distance between the Fourier coefficients φk of Φ(x), and the coefficients

ck of the distribution C(x) representing the time-averaged trajectory. In particular, the Fourier

coefficients φk and ck are calculated respectively as

(5.2) φk =

∫
Xν

Φ(xν)Fk(xν)dxν

and

(5.3) ck =
1
T

t0+T∫
t0

Fk(xν(t))dt

where Fk is a Fourier basis function, as derived in [138]. Here, we use the following choice of

basis function:

(5.4) Fk(x) =
1
hk

ν∏
i=1

cos
(kiπ

Li
xi

)
,

where k ∈ K is a set of ν coefficient indices {k1, k2, ..., kν} with ki ∈ N so that K = {k ∈ Nν : 0 ≤

ki ≤ K}, K ∈ N is the highest order of coefficients calculated along each of the ν dimensions, ,

and hk is a normalizing factor [138]. It should be noted, however, that any set of basis functions

that is differentiable in the state and can be evaluated along the trajectory can be used in the

derivation of the ergodic metric. Using the above, the ergodic metric on xν ∈ Xν is defined as

107

in [101, 138, 140]

(5.5) E(xν(t)) =
∑
k∈K

Λk[ck(xν(t)) − φk]2

with Λk = 1
(1+||k||2)s and s = ν+1

2 , which places larger weight on lower frequency information so

that when K → ∞ the series converges.

5.2. Algorithm Derivation

We shall consider nonlinear systems with input constraints such that

ẋ = f (t, x, u) = g(t, x) + h(t, x) u ∀t(5.6)

with u ∈ U and

U :=
{
u ∈ Rm : umin ≤ u ≤ umax, umin < 0 < umax

}
,

i.e., systems that can be nonlinear with respect to the state vector, x : R→ X, but are assumed to

be linear (or linearized) with respect to the control vector, u : R→U. The state will sometimes

be denoted as t 7→ x
(
t; x(ti), u(·)

)
when we want to make explicit the dependence on the initial

state (and time), and corresponding control signal. Using the metric (5.5), receding-horizon

ergodic control must optimally improve the following cost at each time step ti:

(5.7) JE = Q
∑
k∈K

Λk

[1
ti + T − terg

0

ti+T∫
terg
0

Fk(x(t))dt

︸ ︷︷ ︸
ci

k

−φk

]2

where terg
0 is the user-defined initial time of ergodic exploration, x ∈ Xν and Q ∈ R weights the

ergodic cost against control effort weighted by R in (5.21). Henceforth, for brevity we refer to

108

the trajectory of the set of states to be ergodically explored as x(t) instead of xν(t), although it

should be clear that the ergodically explored states might or might not be all the states of the

system dynamics (ı.e., ν ≤ n).

To understand the challenges of optimizing (5.7), we distinguish between the dynamic states

of the controlled system, x ∈ Rn—e.g., the 12 states denoting position and heading in quadrotor

dynamics—and the information states ck(x(·)) in (5.3), i.e., the parameterized time-averaged

statistics of the followed trajectory over a finite time duration. The main difficulty in optimiz-

ing ergodicity is that the ergodic cost functional in (5.7) is non-quadratic and does not follow

the Bolza form—consisting of a running and terminal cost [142]—with respect to the dynamic

states. To address this, infinite-dimensional trajectory optimization methods that are indepen-

dent of the cost functional form have been employed [101] to optimize ergodicity. However, the

computational cost of such iterative methods is prohibitive for real-time control in a receding-

horizon approach. Another method involves change of coordinates so that the cost functional is

rendered quadratic with respect to the information states parameterized by Fourier coefficients.

This allows the use of traditional optimal control approaches e.g., LQR, DDP, SQP etc. (see

for example [141]). However, this approach entails optimization over an extended set of states

(the number of parameterized information states is usually significantly larger than the dynamic

states) which inhibits real-time execution. In addition, and perhaps more importantly, defining

a running cost on the information states results in unnecessarily repetitive integration of the dy-

namic state trajectories. To avoid this, an option would be to optimize a terminal cost only, but

this proves problematic in establishing stability of Model Predictive Control (MPC) algorithms

(see [74]).

109

To overcome the aforementioned issues, we seek to formulate an algorithm that a) computes

control actions that guarantee contraction of the ergodic cost at each time step b) naturally uses

current sensor feedback to compute controls fast, in real time. For these reasons, we choose to

frame the control problem as a hybrid control problem, similarly to Sequential Action Control

(SAC) in [81, 84]. By doing this, we are able to formulate an ergodic control algorithm that is

rendered fast enough for real time operation—as opposed to traditional model predictive control

algorithms that are usually computationally expensive [54]—for two main reasons: a) a single

control action is calculated at every time step using a closed-form algebraic expression and b)

this control action aims to optimally improve ergodicity (instead of optimizing it) by an amount

that guarantees stability with respect to x and ci.

Algorithm 4 Receding-horizon ergodic exploration (RHEE)

Inputs: initial time t0, initial state x0, terrain spatial distribution Φ(x), ergodic initial time terg
0 ,

final time t f

Output: closed-loop ergodic trajectory x̄cl : [t0, t f]→ X
Define ergodic cost weight Q, highest order of coefficients K, control weight R, search domain

bounds {L1, ..., Lν}, sampling time ts, desired rate of change αd, time horizon T .
Initialize nominal control unom, step i = 0.

� Calculate φk using (5.2).
� While ti < t f
� Solve open-loop problem PE(ti, xi,T, JE) to get u∗i :

(1) Simulate system (5.6) for t ∈ [ti, ti + T] under ude f
i to get x(t).

(2) Simulate (5.12) for t ∈ [ti, ti + T].
(3) Compute u∗sched using (5.22).
(4) Determine action application time tA and value uA by minimizing (5.23).
(5) Determine action duration λA using the line search process in Section 5.2.0.4 and

the condition in (5.9) with CE in (5.26).
� Apply u∗i to (5.6) for t ∈ [ti, ti + ts] to get x̄cl∀t ∈ [ti, ti + ts].
� Define ti+1 = ti + ts, xi+1 = x̄cl(ti+1).
� i← i + 1

end while

110

An overview of the algorithm is given in Algorithm 4. Once the Fourier coefficients φk

of the spatial distribution Φ(x) have been calculated, the algorithm follows a receding-horizon

approach; controls are obtained by repeatedly solving online an open-loop ergodic control prob-

lem PE every ts seconds (with sampling frequency 1/ts), every time using the current measure

of the system dynamic state x. The following definitions are necessary before introducing the

open-loop problem.

Definition 4. An action A is defined by the triplet consisting of a control’s value, uA ∈ U,

application duration, λA ∈ R
+ and application time, τA ∈ R, such that A := {uA, λA, τA}.

Definition 5. Nominal control unom : R → U, provides a nominal trajectory around which

the algorithm provides feedback. When applying ergodic control as a standalone controller,

unom(·) is either zero or constant. Alternatively, unom(·) may be an optimized feedforward or

state-feedback controller.

111

System

Feedback Open-loopPredict
problem

Compute optimal
action schedule

Determine
and

Determine action
duration

Figure 5.1. An overview of the ergodic control process. One major difference
between the proposed ergodic control algorithm and traditional MPC approaches
is that the open-loop problem can be solved without employing nonlinear pro-
gramming solvers [7] by using hybrid systems theory. In order to solve (5.8), the
algorithm follows four steps as illustrated above.

The open-loop problem PE that is solved in each iteration of the receding horizon strategy

can now be defined as follows1.

PE(ti, xi,T, J) :(5.8)

Find action A such that

JE
(
x(t; xi, u∗i (·))

)
− JE

(
x(t; xi, u

def
i (·))

)
< CE(5.9)

subject to

u∗i (t) =


uA τA ≤ t ≤ τA + λA

udef
i (t) else

,

and (5.6) with t ∈ [ti, ti + T] and x(ti) = xi.

where CE is a quantity that guarantees stability (see Section 5.3) and ude f
i and xde f

i are defined

below.

1From now on, subscript i will denote the i-th time step, starting from i = 0.

112

Definition 6. Default control udef
i : [ti, ti + T]→U, is defined as

udef
i (t) =


u∗i−1(t) ti ≤ t ≤ ti + T − ts

unom
i (t) ti + T − ts < t ≤ ti + T

,(5.10)

with ude f
0 (·) ≡ unom

0 (·), u∗i−1 : [ti−1, ti−1 + T] → U the output of PE(ti−1, xi−1,T, J) from

the previous time step i − 1—corresponding to x∗i−1(·)—and ts = ti − ti−1 the sampling pe-

riod (Fig. 5.1c). The system trajectory corresponding to application of default control will be

denoted as x
(
t; x(ti), udef (·)

)
or xdef (·) for brevity. The following proposition is necessary before

going though the steps for solving PE.

Proposition 6. Consider the case where the system (5.6) evolves according to default con-

trol dynamics f
(
t, x(t), udef

i (t)
)
, and action uA is applied at time τ (dynamics switch to f

(
t, x(t), uA))

for an infinitesimal duration λ → 0 before switching back to default control. In this case, the

ergodic mode insertion gradient ∂JE
∂λ

evaluated at t = τ measures the first-order sensitivity of the

ergodic cost (5.7) to infinitesimal application of control action uA and is calculated as2

(5.11)
∂JE
∂λ

∣∣∣∣∣
τ

= ρE(τ)
[
f (τ, xdef

i (τ), uA) − f (τ, xdef
i (τ), ude f

i (τ))
]

with

ρ̇E = −`(t, xdef
i)T − D2 f

(
t, xdef

i , udef
i

)T
· ρE(5.12)

subject to ρE(ti + T) = 0

and `(t, x) =
2Q

ti + T − terg
0

∑
k∈K

{
Λk

[
ci

k − φk
]∂Fk(x(t))

∂x(t)

}
.

2Di denotes derivative with respect to ith argument.

113

Proof. The proof of Proposition 6 is as follows. To make explicit the dependence on action

A, we write inputs u : R × R+ × R × U → U of the form of u∗i (t) in (5.8) as

u(t; λA, τA, uA) =


uA τA ≤ t ≤ τA + λA

ude f
i else.

When λA = 0, it is u(t; 0, ·, ·) ≡ ude f
i , i.e., no action is applied. Accordingly, we define

J̄E(λA, τA, uA) := JE(x(t; t0, x0, u(t; λA, τA, uA))) so that the performance cost depends directly

on the application parameters of an iSAC action. Assuming terg
0 = t0 and defining β :=

1
ti+T−t0

ti+T∫
t0

Fk(x(t))dt − φk, it is

(5.13)
∂JE
∂λ

=
∂JE
∂β

∂β

∂λ

where

(5.14)
∂JE
∂β

= 2Q
∑
k∈K

Λk

[1
ti + T − t0

ti+T∫
t0

Fk(x(σ))dσ

︸ ︷︷ ︸
ci

k

−φk

]

and

(5.15)
∂β

∂λ
=

1
ti + T − t0

ti+T∫
τ

∂Fk(x(t))
∂x(t)

∂x(t)
∂λ

dt

where the integral boundary changed from t0 to τ because the derivative of x(t) with respect to

λ is zero when t < τ. Then, expression (5.13) can be rearranged, pulling ∂JE
∂β

into the integral

114

over t, and switching the order of the integral and summation, to the following:

(5.16)
∂JE
∂λ

=

ti+T∫
τ

2Q
ti + T − t0

∑
k∈K

{
Λk

[
ci

k − φk
]∂Fk(x(t))

∂x(t)

}
︸ ︷︷ ︸

`(t,x)

∂x(t)
∂λ

dt

with3

(5.17)
∂x(t)
∂λ

= Φ(t, τ)
[
f (τ, x(τ), uA) − f (τ, x(τ), ude f

i (τ))
]

where Φ(t, τ) is the state transition matrix of the linearized system dynamics (5.6) with A = Dx f .

Therefore,

(5.18)
∂JE
∂λ

=

ti+T∫
τ

`(t, x) · Φ(t, τ)dt ·
[
f (τ, x(τ), uA) − f (τ, x(τ), ude f

i (τ))
]
.

Finally, notice that
ti+T∫
τ

`(t, x) · Φ(t, τ)dt is the convolution equation for the system

ρ̇E = −`(t, x)T − D2 f
(
t, x, ude f

i

)T
ρE(5.19)

subject to ρE(ti + T) = 0

where ` is defined in (5.16). Therefore, we end up with the expression for the mode insertion

gradient of the ergodic cost at time τ:

(5.20)
∂JE
∂λ

∣∣∣∣∣
τ

= ρE(τ)
[
f (τ, x(τ), uA) − f (τ, x(τ), ude f

i (τ))
]
.

This concludes the proof. �

3Expression (5.17) is a direct result of applying the fundamental theorem of calculus on the system equations (5.6).

115

The steps for solving PE are then listed and explained in the following.

5.2.0.1. Predict. In this step, the algorithm evaluates the system (5.6) from the current state xi

and time ti, with udef
i (t) for t ∈ [ti, ti + T]. In addition, it uses the predicted state trajectory to

backward simulate ρE that satisfies (5.12).

5.2.0.2. Compute optimal action schedule u∗s(·). In this step, we compute a schedule u∗s :

[ti, ti + T] → Rm which contains candidate infinitesimal actions. Specifically, u∗s(·) contains

candidate action values and their corresponding application times, but assumes λ → 0+ for all.

The final uA and τA will be selected from these candidates in step three of the solution process

such that uA = u∗s(τA), while a finite duration λA will be selected in the final step. The optimal

action schedule u∗s(·) is calculated by minimizing

Jus =
1
2

∫ ti+T

ti

[dJE
dλ

(t) − αd

]2

+ ‖us(t)‖2R dt,(5.21)

dJE
dλ

(t) = ρE(t)T
[
f
(
t, xdef

i (t), us(t)
)
− f

(
t, xdef

i (t), udef
i (t)

)]
where the quantity dJE

dλ (·) (see Proposition 6), called the mode insertion gradient [62], denotes

the rate of change of the cost with respect to a switch of infinitesimal duration λ in the dynamics

of the system. In this case, dJE
dλ (·) shows how the cost will change if we introduce a single infin-

itesimal switch from f
(
t, xdef

i (t), udef
i (t)

)
to f

(
t, xdef

i (t), us(t)
)

at some point in the time window

[ti, ti + T]. The parameter αd ∈ R
− is user specified and allows the designer to influence how

aggressively each action value in the schedule u∗s(t) improves the cost.

Based on the evaluation of the dynamics (5.6), and (5.12) completed in the prediction step

(Section 5.2.0.1), minimization of (5.21) leads to the following closed-form expression for the

116

optimal action schedule:

(5.22) u∗s(t) = (Λ + RT)−1 [
Λ udef

i (t) + h
(
t, xdef

i (t)
)T
ρE(t)αd

]
,

where Λ , h
(
t, xdef

i (t)
)T
ρE(t)ρE(t)T h

(
t, xdef

i (t)
)
. The infinitesimal action schedule can then be

directly saturated to satisfy any min/max control constraints of the form umin,k < 0 < umax,k ∀k ∈

{1, . . . ,m} such that u∗s ∈ U without additional computational overhead (see [81] for proof).

5.2.0.3. Determine application time τA (and thus uA value). Recall that the curve u∗s(·) pro-

vides the values and application times of possible infinitesimal actions that the algorithm could

take at different times to optimally improve system performance from that time. In this step the

algorithm chooses one of these actions to apply, i.e., chooses the application time τA and thus an

action value uA such that uA = u∗s(τA). To do that, u∗s(·) is searched for a time τA that minimizes

Jt(τ) =
dJE
dλ

∣∣∣∣∣
τ

,(5.23)

dJE
dλ

∣∣∣∣∣
τ

= ρE(τ)T
[
f
(
τ, xdef

i (τ), u∗s(τ)
)
− f

(
τ, xdef

i (τ), udef
i (τ)

)]
subject to τ ∈ [ti, ti + T].

Notice that the cost (5.23) is actually the ergodic mode insertion gradient evaluated at the op-

timal schedule u∗s(·). Thus, minimization of (5.23) is equivalent to selecting the infinitesimal

action from u∗s(·) that will generate the greatest cost reduction relative to only applying default

control.

5.2.0.4. Determine control duration λA. The final step in synthesizing an ergodic control

action is to choose how long to act, i.e., a finite control duration λA, such that condition (5.9)

is satisfied. From [62, 143], there is a non-zero neighborhood around λ → 0+ where the mode

insertion gradient models the change in cost in (5.9) to first order, and thus, a finite duration λA

117

exists that guarantees descent. In particular, for finite durations λ in this neighborhood we can

write

JE
(
x(t; xi, u∗i (·))

)
− JE

(
x(t; xi, unom

i (·))
)

= ∆JE ≈
dJE
dλ

∣∣∣∣∣
τA

λ.(5.24)

Then, a finite action duration λA can be calculated by employing a line search process [143].

After computing the duration λA, the control action A is fully specified (it has a value, an

application time and a duration) and thus the solution u∗i (t) of problem PE has been determined.

By iterating on this process (Section 5.2.0.1 until Section 5.2.0.4), we rapidly synthesize piece-

wise continuous, input-constrained ergodic control laws for nonlinear systems.

Algorithm 5 Reactive RHEE for varying Φ(x)

Define ergodic memory Merg, distribution sampling time tφ.
Initialize current time tcurr, current state xcurr.

While tcurr < ∞

(1) Receive/compute current Φcurr(x).
(2) terg

0 ← tcurr − Merg

(3) t f inal ← tcurr + tφ
(4) x̄cl = RHEE(tcurr, xcurr, t

erg
0 , t f inal,Φcurr(x))

(5) tcurr ← tcurr + tφ
(6) xcurr = x̄cl(t f inal)

end while

The Receding-Horizon Ergodic Exploration (RHEE) process for a dynamically varying

Φ(x) is given in Algorithm 5. The re-initialization of RHEE when a new Φ(x) is available

118

serves two purposes: first, it allows for the new coefficients φk to be calculated4 and second, it

allows the update of the ergodic initial time terg
0 .

The ergodic initial time terg
0 is particularly important for the algorithm performance because

it regulates how far back in the past the algorithm should look when comparing the spatial

statistics of the trajectory (parameterized by ck) to the input spatial distribution (parameterized

by φk). If the spatial distribution is regularly changing to incorporate new data (for example

in the case that the distribution represents expected information density in target localization

as we will see in Chapter 8), it is undesirable for the algorithm to use state trajectory data all

the way since the beginning of exploration. At the same time, “recently” visited states must be

known to the algorithm so that it avoids visiting them multiple times during a short time frame.

To specify our notion of “recently” depending on the application, we use the parameter Merg in

Algorithm 5 which we call “ergodic memory” and simply indicates how many time units in the

past the algorithm has access to, so that it is terg
0 = t0 − Merg every time RHEE is re-initialized

at time t0.

Remarks on computing ci
k. The cost JE in (5.7) depends on the full state trajectory from a

defined initial time t = terg
0 ≤ ti in the past (instead of ti as in common tracking objectives) to

t = ti + T , which could arise concerns with regard to execution time and computational cost.

Here, we show how to compute ci
k in a way that avoids integration over an infinitely increasing

time duration as ti → ∞. To calculate trajectory coefficients ci
k at time step ti with k ∈ K , and

thus cost JE, notice that:

4This corresponds to the general case when the distribution time evolution is unknown. If, however, Φ(x) is a
time-varying distribution with known evolution in time, we can pre-calculate the coefficients φk offline to reduce
the computational cost further.

119

ci
k =

1
ti + T − terg

0

ti+T∫
terg
0

Fk(x(t))dt =(5.25)

=
1

ti + T − terg
0

ti∫
terg
0

Fk(x(t))dt

︸ ︷︷ ︸
c̄(i)

k

+
1

ti + T − terg
0

ti+T∫
ti

Fk(x(t))dt

where recursively

c̄(i)
k =

ti−1 + T − terg
0

ti + T − terg
0

c̄(i−1)
k +

1
ti + T − terg

0

ti∫
ti−1

Fk(x(t))dt

∀ i ≥ 1, k ∈ K with c̄(0)
k = 0.

Therefore, only the current open-loop trajectory x(t) for all t ∈ [ti, ti +T] and a set of (K +1)ν

coefficients c̄(i)
k ∈ R are needed for calculation of ci

k and thus JE at the ith time step. Coefficients

c̄(i)
k ∈ R can be updated at the end of the ith time step and stored for use in the next time step at

ti+1. This provides the advantage that although the cost depends on an integral over time with an

increasing upper limit, the amount of stored data needed for cost calculation does not increase

but remains constant as time progresses.

5.3. Stability

In this section, we establish the requirements for ergodic stability of the closed-loop system

resulting from the receding-horizon strategy in Algorithm 4. To achieve closed-loop stability for

Algorithm 4, we apply a contractive constraint [144–147] on the cost. Contractive constraints

have been widely used in the MPC literature to show closed-loop stability as an alternative to

120

methods relying on a terminal (region) constraint [54,105,148]. First, we define stability in the

ergodic sense5.

Definition 7. Let Xν ⊂ Rν be the set of states to be ergodically explored. The closed-loop

solution xν(t) : R→ Xν resulting from an ergodic control strategy applied on (5.6) is ergodically

stable if the difference C(x)−Φ(x) for all x with C(x) defined in (5.1) (see Section 5.1) converges

to a zero density function 0(x). Using Fourier parameterization as shown in equations (5.2) and

(5.3), this requirement is equivalent to ck(xν) − φk(xν)→ 0 for all k as t → ∞.

The following assumptions will be necessary in proving stability.

Assumption 2. The dynamics f in (5.6) are continuous in u, piecewise-continuous in t, and

continuously differentiable in x. Also, f is compact, and thus bounded, on any given compact

sets X andU. Finally, f (·, 0, 0) = 0.

Assumption 3. Let Q be the set of trajectories x(·) : R→ X in (5.6) and Qd ⊂ Q the subset

that satisfies ck(x(·)) − φk = 0 for all k. Also, suppose L(x(·), u, t) : Q × Rm × R → R is defined

as follows:

L(x(·), u, t) :=
2Q

t − terg
0

∑
k

{
Λk

[
ck(x(·), t) − φk

]
·

·

[
Fk(x(t)) − ck(x(·), t) + f (x(t), u, t)T

t∫
terg
0

∂Fk(x(s))
∂x(s)

ds
]}

5Note how this definition differs from the definition of asymptotic stability about an equilibrium point as we now
refer to stability of a motion instead of stability of a single point.

121

where ck(x(·), t) = 1
t−terg

0

∫ t

terg
0

Fk(x(s))ds denote the Fourier-parameterized spatial statistics of the

state trajectory up to time t. Through simple computation, we can verify that L(xd(·), 0, ·) = 0

when xd(·) ∈ Qd. Then, there is a continuous positive definite—with respect to the set Qd—and

radially unbounded functionM : Q×R→ R+ such that L(x(·), u, t) ≥ M(x(·), t) for all u ∈ Rm.

Assumption 4. The ergodic open-loop problem improves the ergodic cost at each time step

by an amount specified by the condition (5.9) with CE defined as

(5.26) CE = −

∫ ti+T

ti−1+T
L
(
xdef

i (·), udef
i (t), t

)
dt.

Theorem 1. Let assumptions 1-3 hold for all time steps i. Then, the closed-loop system

resulting from the receding-horizon ergodic control strategy is ergodically stable in the sense

that ck(xν) − φk(xν)→ 0 for all k as t → ∞.

Proof. Note that the ergodic metric (5.7) can be written as JE = B(ti+T, x(·)) withB(t, x(·)) :=

Q
∑

k∈K Λk

[
ck(x(·), t) − φk

]2

where ck(x(·), t) = 1
t−terg

0

∫ t

terg
0

Fk(x(s))ds. Using this definition and

converting JE from Mayer to Lagrange form yields JE =
∫ ti+T

terg
0

L(x(·), u, t)dt with L(x(·), u, t) =

d
dtB(t, x(·)) resulting in the expression in Assumption 3. Going back to Assumption 4 and the

ergodic open-loop problem (5.8) in Section 5.2, we note that condition (5.9) with CE in (5.26)

is a contractive constraint applied in order to generate actions that sufficiently improve the cost

between time steps. To see that this is true, one can rewrite (5.9) as

(5.27) JE
(
x∗i (·)

)
− JE

(
x∗i−1(·)

)
≤ −

ti∫
ti−1

L
(
x∗i−1(·), u∗i−1(t), t

)
dt

122

since from (5.10), ude f
i (t) ≡ u∗i−1(t) in [ti, ti−1 + T]. This contractive constraint directly proves

that the integral
∫ t

terg
0
M(x(·), s)ds is bounded for t → ∞, which, according to a well known

lemma found, e.g., in [149], guarantees asymptotic convergence, i.e., that x(·)→ Qd or equiva-

lently that ck(x(·)) − φk → 0 as t → ∞. �

5.4. Extension to Multi-Agent Control

Assume we have N number of agents ζ = 1, ...,N, each with its own computation, collec-

tively exploring a terrain to track an assigned spatial distribution Φ(x). Each agent ζ performs

RHEE as described in Algorithm 4. At the end of each algorithm iteration i (and thus every ts

seconds), each agent ζ communicates the Fourier-parameterized statistics of their exploration

trajectories ci
k,ζ up to time ti to all the other agents. By communicating this information, the

agents have knowledge of the collective coverage up to time ti and can use this to avoid ex-

ploring areas that have already been explored by other agents. This ensures that the exploration

process is coordinated so that the spatial statistics of the combined agent trajectories collectively

match the distribution.

To use this information, each agent ζ updates its trajectory coefficients ci
k,ζ at time ti to

include the received coefficients ci−1
k, j from the previous algorithm iteration i − 1 so that now the

collective agent coefficients ci
k,ζ are defined to be:

ci
k,ζ = ci

k,ζ +
1

N − 1
·

N∑
j=1, j,ζ

ci−1
k, j(5.28)

where ci
k,ζ are the coefficients of the agent ζ state trajectory at time step ti calculated as in (5.25),

and ci−1
k, j are the coefficients of the remaining agents state trajectories at the previous time step

ti−1 also calculated as in (5.25). So now, agent ζ computes the ergodic cost (5.7) at ti based on

123

all the agents’ past trajectories and Algorithm 4 is guaranteed to compute a control action that

will optimally improve it. Note that expression (5.28) expands to:

ci
k,ζ =

1
ti + T − terg

0

ti+T∫
terg
0

Fk(xζ(t))dt+

1
(N − 1)(ti−1 + T − terg

0)

N∑
j=1, j,ζ

ti−1+T∫
terg
0

Fk(x j(t))dt(5.29)

with c0
k,ζ = 1

ti+T−terg
0

∫ t0+T

terg
0

Fk(xζ(t))dt where xζ(t) with ζ = 1, ...,N is the agent ζ state tra-

jectory. Therefore expression (5.28) calculates the combined statistics of the current agent’s

trajectory xζ(t), ∀t ∈ [terg
0 , ti + T] and of the state trajectories that all the other agents have exe-

cuted up to current time ti and temporarily intend to execute from ti (now) to ti−1 + T based on

their open-loop trajectories at the previous time step ti−1.

Computational complexity and communication requirements: This multi-agent ergodic con-

trol process exhibits time complexity O(1) (i.e., the amount of time required for one algorithm

cycle does not scale with N) because Algorithm 1 is executed by each agent in parallel in a

distributed manner. Computational complexity also remains constant for each agent (O(1), i.e.,

the total number of computer operations does not scale with N). However, each agent’s compu-

tational unit needs to communicate with a central transmitter/receiver through a (deterministic)

communication channel with receiving capacity that scales linearly in N (O(N)) and with con-

stant transmitting capacity (O(1)). In particular, at every time step ti, each agent needs to receive

(K + 1)ν coefficients corresponding to ci−1
k, j , by each of the remaining N − 1 agents. In addition,

each agent is responsible to transmit their own (K + 1)ν coefficients to the rest of the robot

124

HUB

Agent 1

Agent 2

Agent 3

Agent N

(K+1)ν
d. p. numbers per cycle

(N-1)(K+1)ν
d.p. numbers per cycle

Figure 5.2. Communication network for multi-agent ergodic exploration using
a hub configuration. Agents are equipped with independent computational units
for local control calculation but exchange information that may influence each
other’s subsequent actions. The HUB is simply a network component and has
no computational capacity. Assuming that a double precision (d.p.) number has
64 bits and an algorithm cycle completes in ts seconds, the transmitting bit rate
of each individual communication channel should be at least (K+1)ν·64

ts
bits/s and

receiving bit rate equal or higher than (N − 1) (K+1)ν·64
ts

bits/s.

network (see Fig. 5.2). Thus, assuming a constant highest order of coefficients K and number

of ergodic variables ν, transmitting capacity of each agent’s communication channel is constant

while its receiving capacity scales linearly with N. While, in this communication paradigm, we

assumed a star network configuration (Fig. 5.2), note that a fully connected network can also

be employed. In any case, the minimum amount of information needed by the team of agents

for coordinated exploration is N sets of (K + 1)ν coefficients per algorithm cycle. Because of

this requirement of collective data exchange between agents at each time step, multi-agent er-

godic exploration can be characterized as semi-distributed in that each agent executes RHEE

(Algorithm 4) independently but shares information with the other agents after each algorithm

cycle.

125

CHAPTER 6

Area Search and Coverage using Distribution-Driven Exploration

An area search function is required by many operations, including search-and-rescue [119,

120], hazard detection [108], agricultural spraying [121], solar radiation tracking [106] and

monitoring of environmental phenomena, such as water quality in lakes [122]. In addition,

complete area coverage navigation that requires the agent to pass through every region of the

workspace [123] is an essential issue for cleaning robots [114, 124], autonomous underwater

covering vehicles [125,126], demining robots [127], automated harvesters [128], etc. Although

slightly different in concept, both applications—search and coverage—involve motion planning

for tracking a distribution of information across the terrain. For purposes of area search, this ter-

rain spatial distribution indicates probability of detection and usually exhibits high variability

in both space and time as it dynamically absorbs new information about the target’s where-

abouts. In area coverage applications, on the other hand, the terrain distribution shows regions

of interest and is normally near-uniform with possible occlusions.

This Chapter provides an extensive list of examples where Algorithm 4 performs area search

and coverage. The examples aim to highlight the efficiency of the algorithm and its adaptability

to a variety of search scenarios, including agents with different dynamical features, time-varying

probabilities-of-detection and multi-agent coverage.

126

0 - 20s

Ergodic trajectory on approximated Φ(x)

Trajectory spatial statistics

0 - 40s 0 - 60s

104

103

102

10
0 20 40 60

Time (s)

Receding-horizon
ergodic cost

10

Figure 6.1. Ergodic area coverage in an occluded environment (Algorithm 4
with time horizon T = 0.1s and sampling time ts = 0.02s). White regions
in Φ(x) (top row) indicate low to no probability of detection (occlusions), for
example due to sensor failure or physical entities obscuring visibility. Note that
occlusions are not obstacles that should be completely avoided. Bottom row
shows the spatial statistics Φi

x(x) of the followed trajectory from t = 0 to t = ti

calculated as Φi
x(x) =

∑{K}ν
k={0}ν

{
Λkci

kFk(x)
}

with ν = 2 and K = 20. By the end of
the simulation at t = 60, the trajectory spatial statistics Φ60

x (x) closely match the
initial terrain spatial distribution Φ(x), accomplishing the objective of ergodicity
as expected. The ergodic cost (5.7) is shown to decrease on logarithmic scale
over time. Small cost fluctuations result from numerical errors.

6.1. Single-Agent Coverage

6.1.1. Motivating example - Double Integrator

In this first example, we control an agent to explore an occluded environment in order to achieve

a uniform probability of detection across a square terrain, using Algorithm 4. The shaded re-

gions (occlusions) O comprise a circle and a rectangle in Fig. 6.1 and they exhibit zero probabil-

ity of detection i.e. Φ(x) = 0∀x ∈ O. Such situations can arise in vision-based UAV exploration

127

with occlusions corresponding to shaded areas that limit visibility, or in surveillance by mobile

sensors where the shaded regions can be thought of as areas where no sensor measurements

can be made due to foliage. It is assumed that the agent has second-order dynamics with n = 4

states x = [x1, x2, x3, x4], m = 2 inputs u = [u1, u2], and f (x, u) = [x2, u1, x4, u2] in (5.6). Forcing

saturation levels are set as umin = −50 and umax = 50.

Snapshots of the agent exploration trajectory is shown in Fig. 6.1. As time progresses from

t = 0 to t = 60 the spacing between the trajectory lines is decreasing, meaning that the agent

successfully and completely covers the square terrain by the end of the simulation. This is also

reflected in the spatial statistics of the performed trajectory that eventually closely match the

desired probability of detection. A similar example was used by Mathew et al. in [138] for

evaluation of their ergodic control method that was specific to double integrator systems. Our

results serve as proof of concept, showing that ergodic iSAC—although designed to control

complex nonlinear systems—can still handle simple systems efficiently and achieve full area

coverage, as expected.

6.1.2. Unmanned Ground Vehicle

Here, we control an agent with simple Unmanned Ground Vehicle (UGV) dynamics to search a

terrain with respect to a bimodal Gaussian probability-of-detection distribution. The kinematic

UGV model has 3 states (n = 3 in system (5.6)), consisting of the position and orientation

[xc, yc, θc] of the vehicle. Control inputs are the translational and rotational velocities, u = [v, ω].

It is f (x, u) = [v · cos(θc), v · sin(θc), ω] in (5.6). The resulting ergodic trajectory is illustrated in

Fig. 6.2.

128

Figure 6.2. Bimodal Gaussian distribution coverage using a UGV. On the left,
the exploration trajectory is shown in red on top of the bimodal distribution that
indicates probability of detection. Middle figure shows the spatial statistics of
the ergodic trajectory, calculated as in Fig. 6.1 with K = 20. The objective
of ergodic exploration is for the trajectory spatial statistics (center) to match the
distribution Φ(x) (left). On the right, the open-loop ergodic control cost is shown
to reduce in time.

6.1.3. Unmanned Aerial Vehicle

We will utilize a 12-dimensional quadrotor model to demonstrate the algorithm’s efficiency

in planning trajectories for agents governed by higher-dimensional nonlinear dynamics. The

quadrotor model [150–152] has 12 states (n = 12 in system (5.6)), consisting of the position

[xq, yq, zq] and velocity [ẋq, ẏq, żq] of its center of mass in the inertial frame, and the roll, pitch,

yaw angles [φq, θq, ψq] and corresponding angular velocities [φ̇q, θ̇q, ψ̇q] in the body frame. Each

of the 4 motors produces the force ui, i = 1, ..., 4 (m = 4 in (5.6)), which is proportional to

the square of the angular speed, that is, ui = kω2. Saturation levels are set as umin = 0 and

umax = 12 in (5.6). Nominal control in Algorithm 4 is a PD (proportional-derivative) controller

that regulates the agent’s height to maintain a constant value.

129

Figure 6.3. Bimodal Gaussian distribution exploration by a quadrotor. The tra-
jectory spatial statistics (center) match closely the distribution under exploration
(left) as desired. The controllers adapts to changes in dynamics without any
modification required (compared to Fig. 6.2).

Fig. 6.3 shows the resulting ergodic trajectory of a quadrotor (UAV) that is controlled to

search a terrain with respect to a bimodal Gaussian distribution. Notice how the controller (Al-

gorithm 4) naturally adapts to the change in dynamics, compared to the UGV implementation

shown in Fig. 6.2. Fig. 6.4 shows the result of a quadrotor exploring a Gaussian distribution that

varies in time, using Algorithm 5. The algorithm adapts to changes in the distribution in real

time. This result verifies that the algorithm is efficient in tracking rapidly changing distributions

making it an ideal candidate for information-driven exploration for symbols, as we will see in

Part 3.

6.1.4. Robotic Fish-like Vehicle

This section applies Algorithm 4 to a robotic fish-like vehicle (Fig. 6.5a) developed by the

Smart Microsystems Lab at Michigan State University [109]. The robotic fish model has 6

states (n = 6 in system (5.6)), consisting of the planar position and orientation [X,Y, ψ], and

130

Terrain Distribution of information

0 1

t=10 t=20 t=30

t=40 t=50 t=60

Figure 6.4. Time-varying distribution exploration by a quadrotor, using Algorithm 5.

the translational and rotational velocity of the center of mass [Vx,Vy, ω], i.e. surge, sway and

yaw. The system has two control inputs (m = 2) that represent functions of the tail-beat pattern

parameters, i.e. bias, amplitude, and frequency of the tail beat, respectively. See [22] for a

detailed derivation of the robot dynamical equations.

Fig. 6.5 illustrates the resulting ergodic trajectories for searching a Gaussian distribution

in two different settings. Fig. 6.5b shows the ergodic trajectory executed by the robotic fish

without any constraints on control frequency. However, in the original system, implemented in

the lab, the rate of change of tail beat patterns can’t be higher than 1Hz. Fig. 6.5c illustrates

the resulting trajectory that satisfies this constraint. This example highlights how Algorithm 4

naturally incorporates the system dynamics and constraints in trajectory generation, so that the

resulting trajectories are always ergodic with respect to the distribution. This result is important

131

Min

Max

(a)

(b) (c)

Figure 6.5. (a) The robotic fish developed by the Smart Microsystems Lab at
Michigan State University, and its planar configuration. (b) Exploring a Gauss-
ian distribution using the robotic fish and Algorithm 4 without additional con-
straints. (c) Exploring a Gaussian distribution with added control frequency and
tail pattern constraints, as imposed by the experimental setup.

as the first indication that the algorithm is successful under realistic hardware limitations, such

as the control frequency constraint.

6.2. Multi-Agent Coverage

As pointed out previously, multi-agent exploration is semi-distributed in that each agent

executes RHEE (Algorithm 4) independently (using their own computational unit) but shares

information with the other agents prior to algorithm execution as a result of relationship (5.28).

Here, we use the 12-dimensional quadrotor model as in Section 6.1.3, to show examples of

multi-agent ergodic coverage. Fig. 6.6 presents two quadrotors searching a trimodal Gaussian

distribution. In Fig. 6.7, we use five aerial vehicles to collectively explore a terrain based on a

arbitrary distribution of information. In both examples, we notice that agents avoid exploring

132

Quadrotor 1
Quadrotor 2

t=100st=10s
0

1

E
rg

od
ic

 tr
aj

ec
to

ri
es

on

 a
pp

ro
xi

m
at

ed
 Φ

(x
)

T
ra

je
ct

or
ie

s
sp

at
ia

l
 s

ta
tis

tic
s

t=50s

Figure 6.6. Two quadrotors exploring a trimodal Gaussian distribution. The
resulting spatial statistics closely match the search distribution, as desired.

the same regions simultaneously and only return back to areas that the other agents has explored

after some time has passed. In addition, the spatial statistics of the collective agents exploration

closely match the initial distribution of information. It is important to notice here that each

agent is not separately assigned to explore a single distribution peak (as a heuristic approach

would entail) but rather all agents are provided with the same spatial distribution as a whole and

their motion is planned simultaneously in real time to achieve best exploration on the areas with

highest probability of detection.

This simulation example was coded in C++ and executed at a Linux-based laptop with

an Intel Core i7 chipset. Assuming that each quadrotor executes Algorithm 4 in parallel, the

execution time of the 120s simulation is approximately ∼ 70sl, running about two times faster

than real time.

133

0 20 40 60 80 100 120
40

60

80

100

120

140

160

180

200

220

240

Agent 1
Agent 2
Agent 3
Agent 4
Agent 5
Total

Ergodic trajectories on approximated Φ(x)

Trajectories spatial statistics

t=60st=6s t=30s t=120s

Ergodicity

0 1

Figure 6.7. Multi-agent UAV exploration (each agent executes Algorithm 4
with trajectory coefficients calculated as in (5.28) with N = 2, time horizon
T = 1.3s and sampling time ts = 0.1s). Five quadrotor models collectively
explore a terrain to track a spatial distribution Φ(x) (top row). Highest order
of coefficients is K = 12. Note that agents naturally avoid exploring the same
region simultaneously and only return back to already visited areas when suffi-
cient time has passed. Bottom row shows the spatial statistics of the combined
agent trajectories calculated as described in Fig. 6.1 caption. As expected, by
the end of simulation, the collective spatial statistics match closely the initial
spatial distribution. Plot on the right shows the ergodicity measure of trajec-
tories as they evolve in time. Ergodicity of each agent’s trajectory at time t is
calculated as

∑
k{Λk[1

t−terg
0

∫ t

terg
0

Fk(xζ(s))ds−φk]2} for the ergodic trajectories xζ(t)
with ζ = 1, ...,N. Total ergodicity of the collective trajectories is calculated as∑

k{Λk[1
t−terg

0

∫ t

terg
0

∑N
j=1 Fk(x j(s))ds − φk]2}.

134

Part 3

Sensing Symbols in Real Time

135

CHAPTER 7

Introduction: Abstract Sensing of Action Symbols

Chapter 3 in Part 1 proposed a method for generating finite state machines with action

symbols. In particular, we employed cellular decomposition techniques to subdivide the state

space to n-orthotopes (i.e. n-dimensional rectangles). To further reduce computational cost,

instead of using a multi-resolution grid, could we use informed samples of the state space

by performing abstract distributed exploration of the n-dimensional state space? Chapter 4.1

introduced this concept as motivation towards building a reliable exploration strategy.

Abstract exploration for sensing action symbols is about controlling abstract agents to per-

form search on the n-dimensional state space while taking measurements, i.e. computing con-

trol actions, at a certain frequency. This idea of exploring while taking measurements should

be familiar to the reader as a part of target localization maneuvering and sensing for UAVs and

other mobile robotic platforms. Where in target localization the terrain is usually the 2D ground

area where we expect the target to lie in, here the terrain is the bounded multi-dimensional state

space. Accordingly, where measurements are sensor inputs, here measurements correspond to

calculated control values for cost improvement (as though we had a sensor that could measure

a control value u when being at state x). Although no actual exploration and measurement ac-

quisition is performed in this process, we will use these terms in order to connect an abstract

concept to the concrete application of space exploration and target localization.

We provide a preliminary evaluation of this approach using the example of cart-pendulum

inversion. The cart-pendulum system, shown in Fig. 3.3(a), is assumed to have two states,

136

Figure 7.1. Control map for cart-pendulum inversion using infinite number
of symbols. X-axis is the angle θ with range [−π, π] and y-axis is the angle
velocity with range [-6,6]. Colors from yellow to blue correspond to scaled
control actions, i.e. cart acceleration values. The map is the result of abstract
ergodic exploration using Algorithm 4.

Time

L
ef

t
R

ig
ht

Angle

A
ng

le
 V

el
oc

it
y

Figure 7.2. Building a control map for cart-pendulum inversion using ergodic
exploration (Algorithm 4) and probabilistic classification methods for shape es-
timation. The exploration trajectory is ergodic with respect to a uniform distri-
bution.

pendulum angle θ and angle velocity θ̇, with dynamic equations given in 3.10. The objective is

to build a control map that maps 2-dimensional states to cart acceleration controls, so that angle

θ is driven to zero and the pendulum is inverted. Fig. 7.1 shows a control map that achieves

cart-pendulum inversion using an infinite set of symbols. The coloring is a result of an abstract

137

Figure 7.3. Two resulting θ trajectories of the cart-pendulum when the gen-
erated control map of Fig. 7.2 is used for online control. X-axis is “time” in
seconds and Y-axis is angle θ in rad. On the left, the cart-pendulum is initialized
at the downward position ([θ, θ̇] = [π, 0.05]]) and the control policy fails to invert
the system. On the right, the cart pendulum is initialized from a random position
and the control policy is successful.)

exploration trajectory on the 2-dimensional state space, generated using Algorithm 4 with Φ(x)

defined as a uniform distribution and double integrator dynamics. We can see that if we allow

the agent to explore long enough, the map will look exactly as though we had set a fine grid on

the state space and calculated the controls on each grid point. This observation is encouraging

in the sense that abstract exploration works, but disappointing when it comes to efficiency: so

what is the advantage of exploration versus cell decomposition if we end up acquiring the same

number of measurements in both cases?

To answer this question, notice that the coloring of the map in Fig. 7.1 indicates that sym-

bols are in fact more than numbers; they are abstract shapes on the n-dimensional state space

encompassing information about a state-dependent control policy. Therefore, we can afford to

modify our objective slightly: instead of computing a mapping from states to symbols, we now

aim to estimate the shape of symbols on the state space. This brings forth the need for an addi-

tional step in the exploration process that would allow us to build maps with much fewer sensing

138

Time

L
ef

t
R

ig
ht

Angle

A
ng

le
 V

el
oc

it
y

Min

Max

Figure 7.4. Building a control map for cart-pendulum inversion using ergodic
exploration (Algorithm 4) and probabilistic classification methods for shape es-
timation. The exploration trajectory is ergodic with respect to the likelihood of
crossing a symbol boundary. This likelihood distribution is shown on the right.
Notice how information-driven exploration in this example, compared to uni-
form exploration in Fig. 7.2, spends more time in areas where more information
can be extracted (i.e., the boundaries of symbol shapes).

points. The result of this approach is illustrated in Fig. 7.2, where three symbols are now used.

Here, we continue exploring the state space using Algorithm 4 on a uniform distribution but

now we use probabilistic classification methods to estimate the shape boundaries based on the

accumulated measurements (see Section 9.1.1 for further description of this methodology, now

used for estimation of physical object shapes). Fig. 7.3 shows the resulting angle trajectories

from two different initial position. In the first case, we initialize the cart-pendulum at the down-

ward stable equilibrium ([θ, θ̇] = [π, 0.05]]) . As we can see, the control policy fails to invert the

pendulum. However, choosing a random initial position in the second case, results in successful

cart-pendulum inversion with a small offset. This outcome indicates that uniform exploration

needs more time to more accurately refine the symbol boundaries on the state space.

To improve this result, instead of performing a uniform exploration, we can actively vary

the spatial distribution of exploration during the process of acquiring information about action

139

symbols. The results of this implementation are shown in Fig. 7.4. Here, we design the con-

troller to be ergodic with respect to the likelihood distribution of crossing a “shape” boundary.

This allows us to refine the shape estimate in significantly less time than before. In particu-

lar, Fig. 7.5 shows how the control policy is successful even when the system is initialized at

the downward position. We further evaluate the control policies resulting from uniform and

informed exploration, by performing a Monte Carlo test at two different instances during state-

space exploration: once at the start of exploration, when only 200 measurements have been

acquired and once after 2000 measurements have been acquired. Specifically, we run 1000 tri-

als for each policy, simulating the cart-pendulum system from random initial states with angles

in the range [1.5, 2π − 1.5] and angle velocities in the range [−2, 2]. The results are illus-

trated in Fig. 7.6. As we can see, informed exploration leads to 96.8% success with only 200

measurements acquired when uniform exploration only results in 53.6% success. After 2000

measurements, the informed exploration policy leads to 100% succesful trials. When using the

uniform exploration policy, on the other hand, we can see that trials starting from around the

downward equilibrium fail to converge to the upright equilibrium, resulting in 97.5% success

rate. Notice that the maps in both Fig. 7.2 and Fig. 7.4 are equivalent to the map generated using

cell subdivision in Chapter 3 (Fig.3.5). This indicates that abstract exploration in combination

with machine learning estimation techniques can be a valid and promising solution for building

control alphabet policies.

Next, we explore the possibility of the system itself exploring its state space in order to build

a task-specific policy. In particular, instead of abstractly exploring the state space using double

integrator dynamics, we generate dynamically feasible exploration trajectories, i.e. trajectories

that are constrained by the cart-pendulum system dynamics and thus the card pendulum can

140

Figure 7.5. The resulting θ trajectory of the cart-pendulum when the generated
control map of Fig. 7.4 is used for online control. X-axis is “time” in seconds
and Y-axis is angle θ in rad. The cart-pendulum is initialized at the downward
position ([θ, θ̇] = [π, 0]] and the control policy is successful in inverting the
system with a small offset.) Comparing this result with Fig. 7.3 indicates that
exploration with respect to a dynamically varying expected information density
results in better refinement of the symbol boundaries on the state space.

physically perform to self-explore its space space in practice. Although the concept is simi-

lar to our previous methodologies, incorporating more complex dynamics in ergodic control

complicates the exploration strategy and might as well render exploration of certain state space

regions infeasible. An example that highlights the challenges of this approach is illustrated in

Fig. 7.7. One can notice that the exploration trajectory covers the state space by following the

system’s vector field, orbiting around the stable equilibrium. However, actuation limits as well

as instability around the upward equilibrium don’t allow the system to adequately explore the

regions around the desired inverted state, resulting in an incomplete map.

141

Success rate 100% Success rate 97.5%

Informed Exploration Policy Uniform Exploration Policy

Angle

A
ng

le
 V

el
oc

it
y

Angle

A
ng

le
 V

el
oc

it
y

Success rate 96.8% Success rate 53.6%

Angle

A
ng

le
 V

el
oc

it
y

Angle

A
ng

le
 V

el
oc

it
y

N
u

m
b

er
 o

f
m

ea
su

re
m

en
ts

(~
ti

m
e

of
 e

xp
lo

ra
ti

on
)

20
0

20
00

Figure 7.6. Monte Carlo tests for evaluating the control policies resulting from
uniform and informed state-space exploration at two different instances during
exploration: at the start of exploration when only 200 measurements have been
acquired and after 2000 measurements have been acquired. Each dot on the
state-space maps corresponds to a single trial (1000 trials in total per map). Blue
dots indicate successful trials, while red indicates failed trials.

142

Figure 7.7. Control map for cart-pendulum inversion using three symbols and
dynamically feasible exploration trajectories. X-axis is the angle θ with range
[−π, π] and y-axis is the angle velocity with range [-5,5]. Colors correspond to
symbolic control actions, i.e. cart acceleration values. The map is the result
of abstract ergodic exploration using Algorithm 4 and cart-pendulum dynamics
(instead of double integrator dynamics in Fig. 7.2). Notice that the exploration
trajectory fails to accurately cover the state-space region around the unstable
equilibrium (θ = 0 and θ = 2π), resulting in an incomplete map around these
regions (compare with Fig. 7.2). This is due to the exploration dynamics that
don’t allow the system to “linger” around the unstable equilibrium to accurately
get information about the state-space region around it without violating actuation
and state constraints.

143

CHAPTER 8

Tracking Symbols: Bearing-Only Localization of Targets

As we will see later in Section 8.1, targets are uniquely associated with an information

signature that is extracted through their measurement model. According to the symbol definition

given in Section 1.2, this statement by itself is enough to identify any kind of target as symbol.

A target then is a symbol because it encompasses information about the way it is sensed. This

chapter presents how we can search for and track symbols with known measurement models

using information-driven exploration as introduced in Chapter 5. After deriving a methodology

for exploration that is efficient regardless of the information level, the next most crucial step

is generating the information signature based on a known measurement model and the current

estimate on symbol state.

Ergodic control for localization of static or moving targets is essentially an application of

reactive RHEE in Algorithm 5 with the following specifics: 1) the agent takes sensor measure-

ments every tm seconds while exploring the distribution in Step 4, and 2) belief of targets’ state

is updated online and used for computation of Φ(x) in Step 1. The frequency of measurements

fm = 1
tm

can be higher or equal to the frequency of Φ(x) update fφ = 1
tφ

, i.e. fm ≥ fφ. When

the target is static and frequency of measurements is relatively high (depending on the sensor

capacity), it is preferred that fm � fφ so that the agent has sufficient time to explore the current

EID and get useful measurements with high information. For moving targets, however, it is

desirable that fm ≈ fφ to ensure that the agent always explores the area taking into account the

best estimate of the target position.

144

8.0.1. Existing Strategies for Target Tracking

Target localization/tracking refers to the process of acquiring and using sensor measurements

to estimate the state of a single or multiple targets. One of the main challenges involved with

target localization is developing a sensor trajectory such that high information measurements

are acquired. To achieve this, some methods perform information maximization (IM) usu-

ally by compressing an information metric (such as Fisher Information Matrix (FIM) [111]

and Bayesian utility functions [9]) to a scalar cost function (e.g. using the determinant [11],

trace [10], or eigenvalue [153] of the information matrix) and then generating trajectories that

optimize this cost. The most general approaches to solving these problems involve numerical

techniques [154], classical optimal control theory [97], and dynamic programming [122, 155],

which tend to be either computationally intensive or application specific (e.g. consider only

static and/or constant velocity targets). As opposed to IM approaches that control the agent

to move to locations of maximum information, we propose ergodically exploring an expected

information density map as in [101]. Thus, the sensor will spend more time exploring regions

of space with higher expected information, where useful measurements are most likely to be

found. We will see that solving the target localization problem using ergodic exploration, al-

lows tracking multiple moving targets without added complexity as opposed to IM techniques

that would need to plan a motion for each target separately.

Compared to common IM techniques [8–11,97–99,156], ergodic exploration is more robust

to the existence of local maxima in the expected information density. While IM methods can

get stuck in a local maximum if not initialized properly, ergodic control is bound to explore

all density maxima. A common workaround to the negative effects of information maximiza-

tion algorithms is planning paths for agents with constant speed—this ensures that the agent

145

0

1

E
xp

ec
te

d
In

fo
rm

at
io

n
D

en
si

ty

Figure 8.1. Top-view illustration of the ergodic trajectory (green curve) per-
formed by an aerial vehicle while localizing a target (blue marker) in a square
terrain. Light green circle shows the camera sensor range around the current
UAV position. Red dots correspond to bearing-only measurements of the tar-
get. One can observe the benefits of trajectory optimization—pursued by our
approach—as opposed to path planning [8–11]. Although temporal frequency
of measurements is constant at 10Hz, the spacing between consecutive measure-
ments becomes smaller when the UAV approaches the target. This means that the
agent is controlled to slow down when higher information areas are encountered
and to speed up otherwise.

will not just reach the state with maximum information and remain there, but instead continue

moving [8–11, 100]. As a result, the agent’s velocity magnitude is arbitrarily selected and not

optimized, i.e. only path—and not trajectory—planning is performed. Additionally, the con-

stant speed assumption entails that the temporal frequency of sensor measurements must be

controlled/optimized separately. The approach presented in this chapter controls velocity pro-

portionally to the amount of expected information, thus allowing the agent to slow down when

higher information areas are encountered (reducing the “spatial” rate of measurements while

the temporal frequency remains constant) and speeding up otherwise (see Fig. 8.1).

Another challenging aspect of target localization is maintaining reliable performance in

sensor occlusion situations. These can be cases when the sensor has limited sensing range or

146

when physical entities block sensing capacity e.g. when high buildings and/or hills obscure

the target during vision-based localization by air [157]. In such cases, IM can converge to

an area where no target can be sensed, especially if there is high uncertainty over the target’s

true position. However, ergodically exploring the information density instead of tracking its

maximum, allows the sensor to eventually work around the occlusions even without knowledge

of their existence, and without the need for specialized occlusion avoidance techniques.

Because IM techniques tend to exhibit prohibitive execution times for moving targets, al-

ternative methods of diverse nature have been proposed for use in real-world applications. A

non-continuous grid decomposition strategy for planning parameterized paths for UAVs is pro-

posed in [157] with the objective to localize a single target by maximizing the probability of

detection when the target motion is modeled as a Markov process. Standoff tracking techniques

are commonly used to control the agent to achieve a desired standoff configuration from the

target usually by orbitting around it [12, 158, 159]. A probabilistic planning approach for lo-

calizing a group of targets using vision sensors is detailed in [160]. In [161], a UAV is used

to track a target in constant wind considering control input constrains, but the planned path

is predefined to converge to a desired circular orbit around the target. A rule-based guidance

strategy for localizing moving targets is introduced in [162]. In [163], the problem of real-time

path planning for tracking a single target while avoiding obstacles is addressed through a com-

bination of methodologies. In general, the above approaches focus on and are only applicable

in special real-world situations and don’t generalize directly to random multiple-target tracking

situations. For a complete and extensive comparison of ergodic localization to other motion

planning approaches, the reader is referred to [101].

147

In this chapter, we use as an example the problem of bearing-only localization. Many real-

world systems use angle-only sensors for target localization, such as submarines with passive

sonar, mobile robots with directional radio antenna [164], and unmanned aerial vehicles (UAVs)

using images from an optical sensor [112]. Bearing-only systems require some amount of

maneuver to measure range with minimum uncertainty [97]. Here, we show in simulation how

we can ergodically control quadrotor UAVs in real time to autonomously perform vision-based

bearing-only target localization using a gimballed camera. The majority of existing solutions

for UAV bearings-only target motion planning, produce circular trajectories above the target’s

estimated position [110, 165]. However, this solution is only viable if there is low uncertainty

over the target’s position. In addition, if the target is moving, the operator may not know what

the best vehicle path is.

Cooperative Target Localization: The greatest body of work in the area of cooperative tar-

get localization is comprised by standoff tracking techniques. Vector fields [12], nonlinear feed-

back [166] and nonlinear model predictive control [158] are some of the control methodologies

that have been used for achieving the desired standoff configuration for a target. The motion of

the robotic agents is coordinated in a geometrical manner: two robotic agents orbit the target at

a nominal standoff distance and maintain a specified angular separation; when more agents are

considered, they are controlled to achieve a uniform angular separation on a circle around the

target. The main concern in using this strategy is scalability to multiple targets, as the robots are

separately controlled to fly a circular orbit around each single target [167]. A dynamic program-

ming technique that minimizes geolocation error covariance is proposed in [168]. However, the

solution is not generalizable to multiple robotic agents and targets. The robots are controlled to

seek informative observations by moving along the gradient of mutual information in [156].

148

8.1. Expected Information Density

Exploration using Algorithm 4 is information-driven in that it controls agent to be ergodic

with respect to a distribution that represents expected information density. Here, we focus on

the part of calculating this distribution Φ(x) (for now on referred to as Expected Information

Density, EID) given the current targets belief and a known measurement model. It is important

to point out that the following process for computing the EID depends only on the measure-

ment model; the methodology for belief state representation and update can be arbitrary (e.g.

Bayesian methods, Kalman filter, particle filter etc.) and does not alter the ergodic target lo-

calization process. The objective is to estimate the unknown parameters αk ∈ R
M describing

the M coordinates of a target at time step k. A measurement z ∈ Rµ is made according to a

known measurement model z = Υ(α, x) + δ, where Υ(·) is a function of sensor configuration

and parameters, and δ represents zero mean Gaussian noise with covariance Σ, i.e. δ ∼ N(0,Σ).

As in [101], we will use the Fisher Information Matrix (FIM) [169, 170] to calculate the

EID. Often used in maximum likelihood estimation, Fisher information I(x,α) is the amount

of information a measurement provides at location x for a given estimate of α. It quantifies

the ability of a set of random variables, in our case measurements, to estimate the unknown

parameters. For estimation of parameters α ∈ RM, the Fisher information is represented as a

M × M matrix. Assuming Gaussian noise, the (i, j)th FIM element is calculated as

(8.1) Ii, j(x,α) =
∂Υ(α, x)
∂αi

T

Σ−1∂Υ(α, x)
∂α j

where Υ(α, x) : RM × Rn → Rµ is the measurement model with Gaussian noise of covariance

Σ ∈ Rµ. Since the estimate of the target position α is represented as a probability distribution

function p(α), we take the expected value of each element of I(x,α) with respect to the joint

149

distribution p(α) to calculate the expected information matrix, Φi, j(x). The (i, j)th element of

Φi, j(x) is then

(8.2) Φi, j(x) =

∫
α

Ii, j(x,α)p(α) dα.

To reduce computational cost, this double integration is performed numerically by discretization

of the estimated parameters on a grid and a double nested summation. Note that target belief

p(α) might incorporate estimates of multiple targets depending on the application. For that

reason, this EID derivation process is independent of the number of targets and method of

targets belief update.

In order to build a density map using the information matrix (8.2), we need to compress it

to a scalar function so that each state x is assigned a single information value. We will use the

following mapping:

(8.3) Φ(x) = det Φ(x).

The FIM determinant (D-optimality) is widely used in the literature, as it is invariant under re-

parameterization and linear transformation [171]. A drawback of D-optimality is that it might

result in local minima and maxima in the objective function, which makes optimization difficult

when maximizing information. In our case though, local maxima do not pose an issue as our

objective is to approximate the expected information density instead of maximizing it.

150

8.1.1. Remarks on Localization with Limited Sensor Range

The efficiency of planning sensor trajectories by maximizing information metrics like the Fisher

Information Matrix in (8.1) is highly dependent on the true target location [171]: if the true

target location is known, the optimized trajectories are guaranteed to acquire the most useful

measurements for estimation; if not, the estimation and optimization problems must be solved

simultaneously and there is no guarantee that useful measurements will be acquired especially

when the sensor exhibits limited range.

A limited sensor range serves as an occlusion during localization, in that large regions are

naturally occluded while taking measurements. Because of this, how we plan the motion of the

agent according to the current target estimate is critical; if, at one point, the current target belief

largely deviates from the true target position, the sensor might completely miss the actual target

(out of range), never acquiring new measurements in order to update the target’s estimate. This

would be a possible outcome if we controlled the agent to move towards maximum information

(IM). In this section, we explain how receding-horizon ergodic target localization (Algorithm 5)

with limited sensor range can overcome this drawback under a single assumption.

Assumption 5. Let r ∈ R+ be the radius defining sensor range so that a sensor positioned

at xs ∈ Xν can only take measurements of targets whose true target location αtrue ∈ R
ν satisfies

‖xs−αtrue‖ν < r. An occlusion O is defined as the region where no sensing occurs i.e., O = {xs ∈

Xν : ‖xs−αtrue‖ν > r}. At all times tcurr < ∞ in Algorithm 5, there is xq ∈ Xν that simultaneously

satisfies ‖xq − αtrue‖ν < r and Φcurr(xq) > 0, where Φcurr(x)∀x ∈ Xν is the expected information

density computed as in (8.3) at time tcurr.

151

Proposition 7. Let Assumption 5 hold. Also, let xν(·) : [tcurr,∞) → Xν denote the explo-

ration trajectory of an agent performing ergodic target localization (Algorithms 4 and 5) with

expected information density Φcurr(x)∀x ∈ Xν, equipped with a sensor of range r ∈ R. Then,

there will be time ts ∈ [tcurr,∞) where the agent’s state satisfies xν(ts) ∈ Xν \ O, so that new

measurements are acquired and Φcurr(x) is updated.

Proof. Due to Assumption 5, at time tcurr there is xq ∈ Xν \ O that satisfies Φcurr(xq) > 0.

According to Theorem 7 and Definition 7, it is C(x) − Φcurr(x) → 0 for all x ∈ Xν as t → ∞.

Therefore, at some time t ∈ [tcurr,∞), we know that C(xq) = Φcurr(xq) > 0 that is equivalent to

1
t−tcurr

∫ t

tcurr
δ[xq − xν(τ)]dτ > 0 from Eq. (5.1). This leads to the conclusion that xq ∈ xν(·) which

directly proves the proposition.

�

Assumption 4—stating that information density is always non-zero in an arbitrarily small

region around the true target—can be satisfied in various ways. For example, we can adjust the

parameters of the estimation filter to achieve a sufficiently low convergence rate. Alternatively,

in cases of high noise and variability, we can artificially introduce nonzero information values

across the terrain so as to promote exploration as in the simulation and experimental examples.

8.2. Results

8.2.1. Simulation Results

In the following examples, we will use the 12-dimensional nonlinear quadrotor model from

Section 6.1.3 to perform motion planning for vision-based static and moving target localization

with bearing-only sensing through a gimbaled camera that always faces in the direction of

152

0-5s
5-10s

0-10s
10-15s

0-15s
15-20s

0-20s
20-25s

0-25s
25-30s

0-30s
30-35s

0-5s

Target BeliefExpected Information Density
0 1 0 1

Figure 8.2. Bearing-only static target localization. Top row shows top-view
snapshots of the ergodic trajectory followed by the quadrotor in different time
windows along with the corresponding EID map. EID is updated every 5 seconds
and a new sensor measurement is taken every second. The quadrotor explores
the areas with highest information to acquire useful measurements. Although the
geometry of the paths is not predefined, the resulting trajectories follow a cyclic,
swirling pattern around the true target position, as one would naturally expect.
The target belief, illustrated in bottom, converges to a normal spatial distribution
with the mean at the true target position and low covariance.

gravity. Representing the estimate of target’s position as a Gaussian probability distribution

function, we use an Extended Kalman Filter (EKF) [172, 173] to update the targets’ position

belief based on the sensor measurements. We use EKF because it is fast, easy to implement

and regularly used in real-world applications but any other estimator (e.g. [174]) can be used

instead with no change to the process of Algorithm 5. Note for example that reliable bearings-

only estimation with EKF cannot be guaranteed as previous results indicate [175], so it might

be desirable to use a more specialized estimator.

It is assumed that the camera uses image processing techniques (e.g. [176]) to take bearing-

only measurements, measuring the azimuth and elevation angles from current UAV position

[xq, yq, zq] to the detected target’s position [xτ, yτ, zτ]. The corresponding measurement model

153

is:

(8.4) Υ([xτ, yτ, zτ], [xq, yq, zq]) =


tan−1

(xq−xτ
yq−yτ

)
tan−1

(zq−zτ√
(xq−xτ)2+(yq−yτ)2

)
 .

The measurement noise covariance is Σ = diag{[0.1, 0.1]}. As in the previous examples, a PD

controller serves as nominal control, regulating UAV height zq. In some of the next examples,

we assume that the sensor has limited range of view, depicted as a circle around the target. The

target transition model for EKF is expressed as αk = F(αk−1) + ε with ε representing zero mean

Gaussian noise with covariance C, i.e. ε ∼ N(0,C). We assume that no prior behavior model

of the target motion is available and thus the transition model is F(αk−1) ≡ αk−1. Importantly,

the camera sensor has limited range of view, completely disregarding targets that are outside of

a circle centered at the UAV position with constant radius (as depicted in Fig. 8.3).

8.2.1.1. Bearing-only localization of a static target. This first example aims to demonstrate

how the process of exploring, taking measurements and updating an EID to track a target works

in practice. The results are given in Fig. 8.2. The expected information density is updated every

5 seconds and a new sensor measurement is taken every second. The rate of change of EID is

intentionally kept low to show the performance of Algorithm 5 in exploring each distribution.

8.2.1.2. Bearing-only localization of a moving target with limited sensor range. Here, we

demonstrate an example where a quadrotor is ergodically controlled to localize a moving target,

with frequency of measurements fm = 20Hz and frequency of EID update at fφ = 10Hz. The 3D

target position [xτ, yτ, zτ] is localized so that M = 3. We assume that no prior behavior model of

the target motion is available and thus the transition model is F(αk−1) ≡ αk−1 with covariance

C = diag{[0.001, 0.001, 0.001]} (i.e modeled as a diffusion process). Top-view snapshots of

154

0

1

E
ID

0 45Time

X Y Z

Estimated X-Y-Z position over time

00

1 1 1

-0.5

t=4s t=15s t=25s t=35s t=45s

t=2s

0 45Time 0 45Time

Figure 8.3. Bearing-only localization of a moving target. Top: Top-view snap-
shots of the UAV trajectory (red curve) where the true target position (blue X-
mark) and path (blue curve), and the estimated target position (green X-mark)
are also illustrated. The quadrotor can acquire vision-based measurements with
a limited range of view that is illustrated as a light red circle around the cur-
rent UAV position. No prior behavior model of the target motion is available
for estimation using EKF. The limited sensor range serves as an occlusion as it
naturally occludes large regions while taking measurements. The highest order
of coefficients is K = 10. The quadrotor explores the areas with highest infor-
mation to acquire useful measurements. Although the geometry of the paths is
not predefined, the resulting trajectories follow a cyclic, swirling pattern around
the true target position, as one would naturally expect — like in standoff track-
ing solutions for example [12]. Bottom: The target estimate (solid blue curve)
is compared to the real target position (dashed blue curve) along with an illus-
tration of the belief covariance (light blue area around estimated position) over
time. The target belief converges to a normal spatial distribution with the mean
at the true target position and low covariance.

the UAV motion are shown in Fig. 8.3. The agent detects the target without prior knowledge

of its position, whereafter it closely tracks the target by applying Algorithm 5 to adaptively

explore a varying expected information density Φ(x). Although the geometry of the paths is

not predefined, the resulting trajectories follow a cyclic, swirling pattern around the true target

position, as one would naturally expect.

This simulation example was coded in C++ and executed at a Linux-based laptop with an

Intel Core i7 chipset. The execution time of the 45s simulation is approximately ∼ 25s. This

155

result is representative of the algorithm’s computational cost and execution time, because it in-

volves a high-dimensional, nonlinear system. The step that might arise concerns with regard

to execution time is the calculation of the distribution Fourier coefficients φk using relationship

(5.2) (first step in Algorithm 4). However, note that this computation can be reasonably fast if

we discretize the terrain on a grid and use a double nested summation. Some parameters that

can be tuned to further reduce the execution time are the control application period (or sampling

time) ts, the time horizon T and the highest order of coefficients K. Localization is slower than

pure exploration, mainly because it requires calculation of the expected information density

every tφ seconds using the expressions (8.1), (8.2) and (8.3). In practice however, calculation

of updated EID in target localization can occur in parallel while the sensor vehicle is ergod-

ically exploring a current EID and taking measurements, using of course a previous batch of

measurements.

8.2.1.3. Multi-agent simultaneous terrain exploration and target localization. This simu-

lation example is designed to demonstrate advanced features of the reactive RHEE algorithm by

promoting both search for undetected targets (exploration) and localization of detected moving

targets simultaneously, using two agents. This problem of when to explore for new information

(search) and when to exploit the current information to get the best desired performance (local-

ization) is widely known as the trade-off between exploration and exploitation [177]. Although

our algorithm does not explicitly decide when to explore or when to exploit, the agents will

naturally explore for new information while exploiting current information due to the fact that

the trajectory is ergodic with respect to the given distribution [178].

156

Figure 8.4. Multi-agent simultaneous exploration and targets localization. The
problem of exploration vs exploitation is addressed by controlling two agents to
localize detected targets while exploring for new undetected targets. The algo-
rithm scales to multiple target localization without any modification, as it tracks
a universal non-parametric information distribution instead of each target inde-
pendently. For cleaner representation, only the UAV trajectories of the past 5s
are shown in each snapshot. Highest order of coefficients is K = 10. Mean and
standard deviation of targets belief (not shown here) fluctuate in a pattern simi-
lar to the experimental results in Fig. 8.8. Light green and red circles around the
current UAV positions indicate the camera range of view. Notice that before all
targets are detected, the EID value is set at a middle level (gray color) in areas
where no high information measurements can be taken from the already detected
targets. This serves to promote exploration for more targets.

157

A maximum of 5 targets must be localized by 2 UAVs whereafter exploration is discontin-

ued and only localization is performed. Note that here we do not address the issue of coopera-

tive sensing filters [179] for multiple sensor platforms: instead, we use a centralized Extended

Kalman Filter for simplicity but any filter that provides an estimate of the target’s state can be

employed instead. Top-view snapshots of the multi-agent exploration trajectories are given in

Fig. 8.4. At t = 0 when 3 targets are present in the terrain but none of them have been detected

by the agents, the EID is a uniform distribution across the workspace. Information density is

set at a middle level i.e. Φ(x) = 0.5 for all x (gray coloring). By t = 5 all present (three)

targets have been detected and the EID map is computed based on Fisher Information using

expressions (8.1), (8.2) and (8.3). Note however that information levels are still set at a middle

level (instead of zero) in areas where information of target measurements is zero. This serves to

promote exploration in addition to localization. In this special case, the terrain spatial distribu-

tion encodes both probability of detection (for the undetected targets) and expected information

density (for the detected targets). This shows how we can manipulate the agents’ performance

simply by selecting an appropriate spatial distribution. At t = 7 the two last targets appear. By

t = 14 all 5 targets have been detected whereafter the spatial distribution only encoded expected

information density (note that Φ(x) = 0 for all x where information from measurements is zero).

This simulation example was coded in C++ and executed at a Linux-based laptop with

an Intel Core i7 chipset. Assuming that each quadrotor executes Algorithm 4 in parallel, the

execution time is approximately ∼ 30s. Note that in simulation Algorithm 4 was executed in

series for each agent and we only counted the maximum algorithm execution times among all

agents to derive a realistic approximation of the simulation time.

158

Robot

Projected targets

a

b

c

Figure 8.5. (a) The sphero SPRK robot is shown in the experimental setup.
The internal mechanism shifts the center of mass by rolling and rotating within
the spherical enclosure. RGB LEDs on the top of the sphero SPRK are utilized
to track the odometry of the robot through a webcam using OpenCV for motion
capture. The Robot Operating System (ROS, available online [13]) is used to
transmit and collect data at 20 Hz. A projection (b) is used to project the targets
onto the experimental floor shown in (c).

8.2.2. Experimental Results

We perform two bearing-only target localization experiments using a sphero SPRK robot [104]

in order to verify real-time execution of Algorithm 4 and showcase the robustness of the algo-

rithm in bearing-only localization. In addition to the robot, the experimental setup involves an

overhead projector and a camera, and is further explained in Fig. 8.5. The overhead camera is

used to acquire sensor measurements of current robot and target positions that are subsequently

transformed to bearing-only measurements as in (8.4). We additionally simulate a limited sen-

sor range as a circle of 0.2 m radius around the current robot position. As in the quadrotor

simulation examples, we use an Extended Kalman Filter for bearing-only estimation. In all

the following experiments, the ergodic controller runs at approximately 10Hz frequency, i.e.,

ts = 0.1s in Algorithm 4.

159

Time (s)

Success
criterion

Robot trajectories across trials

0

10

20

N
um

be
r

of
 lo

ca
li

ze
d

 ta
rg

et
s

Seconds

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20
0

0.6

0 50

Distance from true target position

a

b c

30

40

10 20 30 40 50 60 70 80 90100

Successes over time

Figure 8.6. Twenty trials of localizing 2 random targets using the sphero robot
at a 1m×1m terrain with simulated limited sensor range of 0.2m. a) Bar graph
showing the number of successful target localizations in specified time intervals.
The localization of a target is successful when the `2-norm of the difference
between the target’s position belief and the real target position falls below 0.05,
i.e. ‖αbelie f −αtrue‖2 < 0.05. Over 50% of the targets (40 in total) are successfully
localized within the first 10 seconds and about 90% of the targets are localized
by 50 seconds. Even when target detection is delayed or EKF fails to converge
in a few iterations, the robot is successful in localizing all the targets by 100
seconds. b) The distance of the mean target estimate from true target position
over time across all trials that were complete by the first 50 seconds. Distance
remains constant for as long as the target is outside of the sensor range or it has
not be detected yet. c) Top-view snapshots of the robot trajectories across trials.

8.2.3. Experiment 1

In this Monte Carlo experiment, we perform twenty trials of localizing two static targets ran-

domly positioned in the terrain. For each trial, we consider the localization of a target successful

when the `2-norm of the difference between the target’s position belief and the real target posi-

tion falls below 0.05, i.e. ‖αbelie f − αtrue‖2 < 0.05. To promote variability, initial mean estimates

160

0

1

t = 0s 0s-40s 40s-80s 80s-120s 120s-160s 160s-20s 200s-240s 240s-280s

1
ta

rg
et

2
ta

rg
et

s
3

ta
rg

et
s

Figure 8.7. Experimental trials localizing 1, 2, and 3 moving targets using the
sphero robot. The top-view snapshots depict the robot trajectories over a time
window of 40 seconds (in red) as well as the targets and their past trajectories
(in green). The spatial distribution indicates the targets belief p(α). The robot
robustly localizes the moving targets by tracking the expected information den-
sity.

of target positions are also randomly selected for each trial. Initial distribution Φ(x) is uniform

inside the terrain boundaries.

The robot simultaneously explores the terrain for undetected targets and localizes detected

targets until both targets have been detected, whereafter only localization based on Fisher Infor-

mation is performed. As in the simulation example of Section 8.2.1.3, we achieve simultaneous

exploration and localization by setting the probability of detection (i.e. distribution Φ(x)) across

the terrain at a nonzero value. For most trials, targets are successfully localized in less than 60

seconds. We see that even in the few cases when target detection is delayed due to limited sen-

sor range or when EKF fails to converge (as expected for bearing-only models [175]) (see trials

with time to successful localization higher than 60s in Fig. 8.6a), the robot manages to even-

tually localize both targets by fully exploring the EID instead of moving towards its maximum

161

0

1
0

1

68Time (s)

X

Y

Target 1

Target 2

Target 3
0

1
0

1
X

Y

0

1
0

1
X

Y

Figure 8.8. Localization of 3 moving targets using the sphero SPRK robot.
The target estimates (solid curves) are compared to the real target locations
(dashed curves) along with an illustration of the belief covariance (shaded area
around estimated position) over time. Because the targets are constantly mov-
ing and the sensor range is limited, the standard deviation of the targets belief
fluctuates as time progresses. The agent localizes each target alternately; once
variance on one target estimate is sufficiently low, the agent moves to the next
target. Importantly, this behavior is completely autonomous, resulting naturally
from the objective of improving ergodicity. Note that we can only decompose
the targets belief into separate target estimates because of our choice to use EKF
where each target’s belief is modeled as a normal distribution. This would not
be necessarily true, had we used a different estimation filter (e.g., particle filter).
Bottom row shows top-view snapshots of the robot and target’s motion. A video
of this experiment is available in the supporting multimedia files.

as in information maximization techniques. This result validates Proposition 7 that provides

convergence guarantees even with poor target estimates and limited sensor range.

8.2.4. Experiment 2

With this experiment, we aim to demonstrate the robustness of the algorithm in localizing in-

creasing number of moving targets. The resulting robot trajectories for localizing 1, 2 and 3

162

targets are shown in Fig. 8.7, while Fig. 8.8 shows the results for localizing 3 targets moving

at a different pattern. As in the simulation examples, the motion of each target is modeled as a

diffusion process. Note that because the targets are constantly moving and the sensor range is

limited, the standard deviation of the targets belief fluctuates as time progresses (see Fig. 8.8).

The agent localizes each target alternately; once variance on one target estimate is sufficiently

low, the agent moves to the next target. Importantly, this behavior is completely autonomous,

resulting naturally from the objective of improving ergodicity.

163

CHAPTER 9

Learning Symbols: Tactile Exploration and Estimation of Physical Object

Shapes

In Chapter 8, we made an important assumption when searching for targets-symbols: we

assumed that their measurement model, and thus information signature, is known with some

uncertainty. This however is hardly ever true. In most cases, we are searching for symbols that

have not be identified as such yet and thus their information signature is unknown. Consider

for example a mobile robot, equipped with range sensors, moving in an unknown environment

while measuring distance from the closest wall. Initially and since we have no previous knowl-

edge of the terrain morphology, the measurements are merely abstract signals. However, as the

robot keeps exploring and accumulates information, it essentially builds the information signa-

ture of a “symbol” that was previously unknown to it. This symbol is the sensed shape of the

physical objects encountered in the terrain. The information signature associated with the sym-

bol can then be communicated to a network of robots, to be added to their internal database (i.e.,

alphabet) of known and identifiable symbols. For the rest of this chapter, a symbol s is, then,

defined as an information signature that uniquely identifies a single physical object or a setting

of multiple physical objects on the 2- or 3- dimensional space, based on their shape properties.

9.1. Symbol Identification using Ergodic Tactile Exploration

This section describes how the information-driven exploration process developed in Chap-

ter 5 is crucial in achieving real-time shape estimation using the method proposed by Abraham

164

et al. in [180]. Tactile exploration—often used in conditions where visual sensing may be

limited—employs the sense of touch to search for objects. The richness of touch as a sens-

ing modality is underscored by the development of novel tactile sensors for use in a myriad

of applications ranging from robot-assisted tumor detection, to texture recognition, and feature

localization. These advances in tactile sensor technology require corresponding advances in

active exploration algorithms and the interpretation of tactile-based sensor data.

In this work, we assume that only binary (collision or no-collision) measurements are reg-

istered by an agent. This aims to outline how exploration with Algorithm 4 successfully es-

timates shapes even with low-resolution sensing. In particular, it shows that a binary form of

tactile sensing (i.e., collision detection) has enough information for shape estimation, when

combined with an active exploration algorithm that automatically takes into account regions of

shape information.

The proposed algorithm automatically encodes dynamical constraints without any overhead

spatial discretization or motion planning. In addition, the algorithm incorporates sensor mea-

surement information to actively adjust shape estimates and synthesize tactile information based

control actions. As a result, the algorithm automatically adjusts the control synthesis for multi-

ple objects in an environment. Finally, ergodic exploration uses non-contact motion data (sensor

motion not in contact with an object) to improve the shape estimate.

The measurement model of a symbol s for collision detection measurements (i.e., the map-

ping from agent states x to sensor measurements z) is

(9.1) Υ(s, x) =


1 φs(x) ≤ 0

0 φs(x) > 0

165

where φs(x) is a boundary function that determines a transition state. Then, measurements are

taken according to

(9.2) z = Υ(s, x) + δ

where δ represents zero mean Gaussian noise with covariance Σ, i.e., δ ∼ N(0,Σ). Our objective

is to determine the measurement model Υ(s, x), and thus identify symbol s, through exploration.

9.1.1. Binary Measurements for Shape Estimation

A major advantage of identifying symbols using ergodic exploration is that the process is inde-

pendent of the probabilistic classification method used for shape estimation. Here, given a set

of measurements zk ∈ [0, 1] at time indexed by k sampled at the corresponding set of agent state

xk , shape estimation is accomplished by binary classification using support vector machines

[181–183]. In particular, a decision boundary is approximated as φ(x) ≈
∑

k αkzkK(xk, x) + b,

where K(xk, x) is the kernel basis function that determines the basis shape of the decision bound-

ary and the parameters αk and b are optimized parameters based on the set of zk and xk. Because

arbitrary shape is desired, a Gaussian kernel basis is chosen, such that K(xk, x) = exp− (xk−x)2

σ2 . A

kernel of this form maps data into infinite dimensional feature space which provides flexibility

for decision boundaries.

Another option for shape estimation is the use of radial basis function neural networks [184].

This would not change the ergodic exploration process and would generate results similar to

support vector machines described above.

9.1.1.1. Expected Information Density. Exploration using Algorithm 4 is information-driven

in that it controls agent to be ergodic with respect to a distribution that represents expected

166
T
im
e

a b c d

Figure 9.1. Estimating the 2D shapes of (a) a circle, (b) an ellipse, (c) a rectan-
gle, and (d) a triangle using ergodic exploration and contact sensors. The current
shape estimate in each snapshot is drawn in red. The trajectories performed by
the agent are ergodic with respect to the varying collision likelihood distribution
shown on the right column for each shape.

information density. In Section 8.1, we calculated the expected information density using the

Fisher Information of the symbol measurement model. Here, however, the measurement model

is unknown. Therefore, we design the controller to be ergodic with respect to the likelihood

distribution of getting a collision measurement. The posterior probability estimate for collision

measurements is calculated via Platt scaling [185], defined as P(zk = 1|x) = 1
1+exp Aφs(x)+B where

A and B are computed through a regression fit and φs(x) is the current estimate of the boundary

function at the k-th time step. This probability is used to update the expected information

density at each time step.

9.1.2. Exploration Outcome: Information Signature of Symbols

For physical objects to be fully sensed and regarded as symbols, there needs to exist some

way of identifying them no matter how many times they are explored possibly under differ-

ent circumstances—e.g., with potential distractor objects on the field. There are a couple of

167

quantities resulting from exploration that are unique to the object s being explored and thus

can be used as information signatures that are directly associated with specific symbols. The

most obvious is the measurement model Y(s, x) that relates sensor measurements to the object

under exploration s and the current robot state x. This identifier is coupled with the object

shape in two- or three-dimensional exploration. In SVM classification, the measurement model

is extracted based on the calculated boundary φ(x) associated with s. Interestingly, information

included in measurement models—just like object shape—is invariant under transformation or

scaling.

Although this is the most reasonable choice for defining a symbol identity—especially since

here symbols are object shapes, ergodic exploration provides us with an additional option be-

cause of its distributed nature. Specifically, the spatial statistics of the object exploration trajec-

tory C(x) = 1
T

t0+T∫
t0

δ[x− xν(t)]dt parameterized with Fourier coefficients ck = 1
T

∫ t0+T

t0
Fk(xν(t))dt

are unique to each symbol/object shape. Therefore, we could detect previously explored sym-

bols based on a dictionary of exploratory robot trajectories and their statistics. What makes

this approach interesting is that, in addition to shape information, we also incorporate informa-

tion about the robot agent’s dynamics in the symbol identity so that detection can be successful

even for complex shapes that are hard to estimate using binary classification or other machine

learning techniques.

9.1.3. Results

9.1.3.1. Simulation Results. In this section, simulation examples in both 2D and 3D are pre-

sented to highlight the advantages for using Algorithm 5 for shape estimation.

168

Max

Min

t1 t2 t3

tfinal

E
xp

ec
te

d
In

fo
rm

at
io

n
D

en
si

ty

Figure 9.2. Estimating the shape of a sphere using collision measurements.
Actual sphere is depicted in light red and the estimated shape in light green. The
agent’s trajectory up to the current time step is also shown, with the collision
measurements highlighted in red. The agent is controlled to be ergodic with
respect to the likelihood distribution, illustrated at the bottom row. The final
shape matches closely the sensed sphere.

2D Examples: Symbol identification through active shape estimation in R2 is done with

double integrator dynamics given as ẋ = f (x, u) = [ẋ, ẏ, u1, u2]T with the state x = [x, y, ẋ, ẏ]T

and x, y the 2D position coordinates of the agent. Fig. 9.1 shows the process of estimating four

common shapes using ergodic exploration. The expected information density, calculated as the

likelihood of acquiring collision measurements, is also shown for each step. We can see that

the ergodic controller (Algorithm 5) naturally adapts to changes in the distribution Φ(x) as the

shape estimate changes in time. Algorithm 5 explores the current shape estimate online without

the requirement of a pre-optimized exploration trajectory. Distributed-information exploration

(as opposed to maximum-information) allows us to pursue non-collision measurements, in ad-

dition to collision measurements. Furthermore, the ergodic controller is shown to be reliable

even when operating in unmodeled environments: although control calculation in Algorithm 4

169

Time Max

Min

Figure 9.3. Estimating the shape of a torus using collision measurements. Ac-
tual object is depicted in red and the estimated shape in light green. The agent’s
trajectory up to the current time step is also shown, with the collision measure-
ments highlighted in red. The agent is controlled to be ergodic with respect to
the likelihood distribution, illustrated at the bottom row. The final shape matches
closely the sensed torus.

assumes a collision-free environment, the controller is reactive and responds to collisions online

as they happen.

3D Examples: Symbol identification through active shape estimation in R3 is done with

double integrator dynamics given as ẋ = f (x, u) = [ẋ, ẏ, ż, u1, u2, u3]T with the state x =

[x, y, z, ẋ, ẏ, ż]T and x, y, z the 3D position coordinates of the agent. Fig. 9.2 and 9.3 show

the results of estimating the shapes of a sphere and a torus, respectively, using collision mea-

surements. In both cases, the resulting 3D shapes closely match the objects explored. The

results in Fig. 9.4 indicate how Algorithm 5 can successfully explore and estimate the shapes of

multiple objects on the terrain without indefinitely focusing on a single object. This is due to the

170

Time

Max

Min

Figure 9.4. Estimating the shapes of two objects simultaneously using collision
measurements. The final shapes matches closely the sensed objects. Ergodic
exploration promotes estimation of multiple symbols because it is distribution-
driven.

fact that the exploration algorithm tracks an information distribution instead of the maximum

information.

9.1.3.2. Experimental Results. We use the sphero SPRK robot, shown in Fig. 9.5, to explore

a terrain and estimate the 2D shapes of physical objects. The robot is equipped with a collision

detection feature that we use to acquire binary (collision/no-collision) measurements in real

time. Our objective is to “learn” an unknown environment—i.e., extract the measurement model

Υ(s, x) and store it as a symbol, so that a robot can subsequently use it to localize itself based

on the symbol configuration. This last process of estimating a previously-explored symbol’s

transformation (and, thus, the robot pose with respect to this symbol) highlights the power of

171

Figure 9.5. The sphero SPRK robot and the experiment setup (the Roomba
robot is used only as the object of estimation). The sphero SPRK internal
mechanism shifts the center of mass by rolling and rotating within the spheri-
cal enclosure. RGB LEDs on the top of the sphero SPRK are utilized to track
the odometry using a Microsoft Kinect. The robot is equipped with a collision
detection feature that we use to acquire binary (collision/no-collision) measure-
ments in real time. The Robot Operating System (ROS, available online [13]) is
used to transmit and collect data at 20 Hz.

information equivalence, in that it enables exploration and detection of information signatures

independently of the factor of transformation.

Fig. 9.6 shows snapshots of the sphero robot estimating the circular shape of a Roomba. The

robot is controlled to be ergodic with respect to the likelihood distribution Φ(x) in Algorithm 5,

calculated as indicated in Section 9.1.1.1, and also shown in Fig. 9.6.

In the next experiment, the sphero robot estimates the shape of multiple objects (represent-

ing one symbol) positioned in the terrain. The results are shown in Fig. 9.7. Notice how the

172

Min

Max
Time

Figure 9.6. Estimating the shape of a circular object using the sphero robot and
collision measurements. A picture of the experimental setup is shown in Fig. 9.5.
The shape estimate at each snapshot is drawn in red. Bottom row shows the
collision likelihood distribution. The sphero is controlled to be ergodic with
respect to this distribution.

symbol estimate is gradually evolving as the robot acquires more collision and no-collision

measurements. Although the final estimate is not a perfect outline of the object shapes, it can

still be used as the symbol information signature that would allow a robot to detect the symbol’s

transformation in a different configuration.

9.2. Information Equivalence in Ergodic Exploration

9.2.1. Why Information Equivalence Matters (but only Combined with Exploration)

We define the concept of information equivalence in automated systems, as follows:

Definition 8. Two candidate symbols s1 and s2 are ”information equivalent” when an in-

formation optimizing control u—and corresponding exploration trajectory—is the same across

the state x measured with respect to the local symbol frame (that is, u1(x) = u2(x)).

173

Min

Max
Time

Figure 9.7. Bottom: Photo of the experiment setup. Top: Time series of the
exploration and estimation process from left to right. The red boundaries indicate
the estimated shapes at each time step. Sphero robot is shown as a green circle.
The robot trajectory up to current time is also shown.

The importance of information equivalence stems from the need to perform decision and

control tasks in a manner that is independent of factors such as scaling and transformation.

In Section 8.1, we showed how to compute the information signature of a target using Fisher

information. This information is equivalently explored in all settings; it is transformation inde-

pendent in the context of exploration. The concept of information equivalence, in this case, al-

lowed us to track the target using the same information regardless of its state or the agent’s state.

Therefore, information equivalence matters but it only does because we hold the knowledge of

174

exploring with respect to different levels of information in a distributed manner (see Part 2). In

this section, we go further into investigating how the concept of information equivalence allows

us to track symbols that have been generated through exploration (using the methodology de-

scribed in Section 9.1). In particular, we take the extracted information signature (consisting

primarily of the symbol’s measurement model) and use it to estimate the symbol transformation

(translation and rotation) during a new exploration process, possibly by a different agent.

9.2.2. Exploration for Estimating Symbol Transformation

Let xW ∈ X be the state of a dynamical agent which ergodically explores a symbol on a ν-

dimensional terrain with respect to a world coordinate frameW. A symbol s can be a single

physical object or a setting of multiple physical objects on the 2− or 3−dimensional space (ν = 2

and ν = 3 respectively). We assume that the symbol has been previously explored by an agent,

resulting in the extraction of the symbol measurement model Υ(s, xS) that maps robot states xS

with respect to the symbol coordinate frame S to robot sensor measurements. The objective is

to estimate the transformation TWS ∈ S E(ν) from the world coordinate frameW to the symbol

coordinate frame S. Due to information equivalence, a measurement is always made according

to the symbol measurement model Υ(s, xS), regardless of the transformation TWS. However,

we can only measure the agent’s state xW in the world frame and thus we express measurements

z as follows:

(9.3) z = Υ(s,T−1
WS
· xW) + δ,

where δ represents zero mean Gaussian noise with covariance Σ, i.e., δ ∼ N(0,Σ).

175

a b
Figure 9.8. Estimating symbol transformation: Illustration of the problem state-
ment. (a) A symbol is initially explored by an agent to extract its information
signature (i.e. measurement model) with respect to the symbol coordinate frame.
(b) An agent explores the extracted symbol acquiring measurements with re-
spect to a world coordinate frame. The agent’s objective is to estimate the Eu-
clidean transformation from the world coordinate frame to the symbol’s coordi-
nate frame, so that it can localize itself in the environment using the unmodified
symbol as reference.

9.2.2.1. Expected Information Density. We focus on calculating the expected information

measurement EID(x) given the current belief on transformation TWS and the measurement

model (9.3). It is important to point out that the following process for computing the EID

depends only on the measurement model, meaning that the methodology for belief state rep-

resentation and update can be arbitrary (e.g., Bayesian methods, Kalman filter, particle filter

etc.).

As in [101], we will use the Fisher Information Matrix (FIM) [169, 170] to calculate the

EID. Often used in maximum likelihood estimation, Fisher information I(x, q) is the amount

of information a measurement provides at location x for a given estimate of q. It quantifies

the ability of a set of random variables, in our case measurements, to estimate the unknown

parameters. We know that transformation TWS can be parameterized by q ∈ Rµ with µ = 1
2ν(ν+

176

1), denoting the translational and rotational degrees of freedom. Then, the Fisher information

is represented as a µ × µ matrix and the (i, j)th FIM element is calculated as

(9.4) Ii, j(xW, q) =
∂Υ(s,T−1

WS
(q) · xW)

∂qi

T

Σ−1∂Υ(s,T−1
WS

(q) · xW)
∂q j

Since the estimate of transformation parameters q is represented as a probability distribution

function p(q), we take the expected value of each element of I(xW, q) with respect to the joint

distribution p(q) to calculate the expected information matrix, Φi, j(xW). The (i, j)th element of

Φi, j(xW) is then

(9.5) Φi, j(xW) =

∫
q

Ii, j(xW, q)p(q) dq.

To reduce computational cost, this integration is performed numerically by discretization of the

estimated parameters on a grid and a nested summation.

In order to build a density map using the information matrix (8.2), we need a metric so that

each state x is assigned a single information value. We will use the following mapping:

(9.6) Φ(xW) = det Φ(xW).

The FIM determinant (D-optimality) is widely used in the literature, as it is invariant under re-

parameterization and linear transformation [171]. A drawback of D-optimality is that it might

result in local minima and maxima in the objective function, which makes optimization difficult

when maximizing information. In our case though, local maxima do not pose an issue as our

purpose is to approximate the expected information density using ergodic trajectories instead of

maximizing it.

177

9.2.2.2. Transformation Estimate Update. To update the transformation estimate, we use

the contact manifold particle filter introduced in [186]. Contact sensors are unique because they

discriminate between contact and no-contact configurations. As a result, the set of symbol states

that activates the sensor constitutes a lower-dimensional contact manifold in the space of the

transformation. This causes conventional state estimation methods, such as the particle filter,

to perform poorly during periods of contact due to particle starvation. The manifold particle

filter avoids particle starvation during contact by adaptively sampling particles that reside on

the contact manifold from the dual proposal distribution.

9.2.2.3. Relation to Landmark-based Localization. A key component of a mobile robot sys-

tem is the ability to localize itself accurately. A prominent way of achieving this is by using

landmarks. Most early successful approaches proposed using artificial landmarks [187], such

as bar-code reflectors, ultrasonic beacons, etc. However, these methods require processed and

properly modified environments to function correctly. Lately, researchers have turned their

focus to using stable natural landmarks in unmodified environments [188,189]. The main chal-

lenge in achieving this is that the selected landmarks must be identifiable using the available sen-

sors, and subsequently, invariant to transformations (rotation and translation). When equipped

with visual sensors for example, robots can use scale-invariant image features generated by

known image processing techniques such as SIFT (scale-invariant feature transform) [188].

The method proposed in this chapter—first, exploration for information signature extrac-

tion and then, exploration for transformation estimation—is essentially a robot pose estimation

method using natural, previously explored, landmarks. Physical object shapes are recognized as

landmarks and the measurement model extracted during exploration is the signature that allows

178

Time

Min

Max

Figure 9.9. Estimating the transformation of a previously explored ellipse. The
actual ellipse (position and orientation) is shown in light red. The current trans-
formation estimate is shown as a light green ellipse. The position ([tx, ty]]) parti-
cle filters, also depicted here, are shown to converge to the center of the explored
ellipse.

us to track them under transformation using ergodic control. By estimating TWS in 9.3, we can

localize the robot based on a known landmark of an unmodified environment.

9.2.3. Results

9.2.3.1. Simulation Results. In this section, we apply the method described in Section 9.2.2

in order to estimate the transformation of previously explored symbols. Transformation is pa-

rameterized by the rotation angle θ and translation in x- and y-direction tx and ty, respectively,

so that q = [θ, tx, ty] in (9.5)) . The agent is controlled to be ergodic with respect to an expected

information density calculated as in (9.6). We use the contact manifold particle filter proposed

in [186] to update the transformation estimate using collision and no-collision measurements.

Fig. 9.9 shows the results of estimating the transformation of a previously explored ellipse. In

Fig. 9.10, we go further into estimating the transformation of a set of object shapes that serve

as one symbol (i.e. landmark). Notice how the agent adapts its exploration trajectory to the cur-

rent transformation estimate by being ergodic with respect to the expected information density

shown in the bottom row.

179

Min

Max

Time

Figure 9.10. Estimating the transformation of a set of objects representing a
single symbol (i.e. landmark). The actual symbol is drawn in red, while the
estimated symbol is drawn in green. The bottom row shows the position par-
ticle filters ([tx, ty]]). The agent estimates the symbol configuration by using
information equivalence to explore with respect to the information signature of
the symbol. Once the symbol transformation has been successfully estimated,
the agent can use it to localize itself with respect to the unmodified landmark
instead of a randomly generated world coordinate frame.

9.2.3.2. Experimental Results. Here, we use the experimental setup from Section 9.1.3.2, de-

picted in Fig. 9.5, in order to estimate the transformation of previously explored symbols using

collision measurements. First, the robot is controlled to ergodically explore a terrain in order

to estimate the transformation of the circular object originally explored in Fig. 9.6. The results

are shown in Fig. 9.11. Note how the robot adaptively explores with respect to the expected

information density of the estimated symbol transformation (drawn in purple). In Fig. 9.12,

the robot is controlled to estimate the transformation of the environment originally explored in

Fig. 9.6. As noted before, although the extracted information signature does not match exactly

the shape outline of the object, the robot is still able to successfully estimate the transformation

180

Time

Figure 9.11. The sphero SPRK robot estimates the transformation of the sym-
bol explored in Fig. 9.6 using collision measurements. Top row shows the actual
object, the robot trajectory up to current time, as well as the expected information
density calculated as in Section 9.2.2.1. Bottom row shows the configuration of
the estimated symbol at each time step (in white). The robot is successful in
estimating the current position of the circular object.

of the landmark/symbol. The reason is that controller tracks an information distribution instead

of the maximum information, and thus is more robust to information discrepancies. This ex-

ample is a preliminary indication that information-driven exploration can be the key to robot

self-localization using stable natural landmarks.

181

Time

Figure 9.12. The sphero SPRK robot estimates the transformation of the sym-
bol (a set of multiple physical objects) explored in Fig. 9.7 using collision mea-
surements. Top row shows the actual objects setup that is being estimated, the
robot trajectory up to current time, as well as the expected information density
calculated as in Section 9.2.2.1. Bottom row shows the configuration of the esti-
mated symbol at each time step (in white). The robot is successful in estimating
the current configuration of the symbol and thus can use it as a stable landmark
for self-localization.

182

0 20 40 60 80 100 120

-2

0

2

Rotation angle

0 20 40 60 80 100 120
0

0.5

1
X-Translation

0 20 40 60 80 100 120
0

0.5

1
Y-Translation

Figure 9.13. Time evolution of estimated symbol rotation and translation against
true symbol transformation (dashed lines). Fluctuations in estimated parameters
result from the contact manifold particle filter used for estimation, as new parti-
cles are generated once there is a contact.

183

CHAPTER 10

Conclusion

The contribution of this thesis spans three aspects of symbol-based automation, namely

action, exploration and sensing.

In symbolic action, our objective was to achieve fast and consistent, real-time mode sched-

uling by taking advantage of linearity of a switched system. In general, mode scheduling is

challenging due to the fact that both the mode sequence and the set of switching times must

be optimized jointly. We addressed this by introducing an algorithm (SIOMS) for scheduling

the modes of linear time-varying switched systems subject to a quadratic cost functional. By

solving a single set of differential equations offline, open-loop SIOMS required no online simu-

lations while closed-loop SIOMS only involved an integration over a limited time interval rather

than the full time horizon. The proposed algorithm is fast and free of the trade-off between ex-

ecution time and approximation errors. To verify the efficacy of receding-horizon SIOMS in

real-world applications, we performed a real-time experiment using ROS. Our experimental

work demonstrated that a cart and suspended mass system can be regulated in real time using

closed-loop hybrid control signals.

Furthermore, we presented a method for synthesis of control alphabet policies, given con-

tinuum descriptions of physical systems and tasks. During synthesis, symbolic policies were

directly encoded into finite state machines using a cell subdivision approach. As opposed to

existing automata synthesis methods, controller synthesis was based entirely on the original

nonlinear system dynamics and thus did not rely on but rather resulted in a lower-complexity

184

symbolic representation. The method was validated for the cart-pendulum inversion problem,

the double-tank system and the SLIP model. The approach presents an opportunity for real-time

task-oriented control of complex robotic platforms using exclusively sensor data with no online

computation involved.

In exploration, we exploited the advantages of hybrid systems theory to formulate a receding-

horizon ergodic control algorithm that can perform real-time exploration, adaptively using sen-

sor feedback to update the expected information density. In target localization, this ergodic mo-

tion planning strategy controls the robots to track a non-parameterized information distribution

across the terrain instead of individual targets independently, thus being completely decoupled

from the estimation process and the number of targets. We demonstrated—in simulation with a

12-dimensional UAV model and in experiment using the sphero SPRK robot—that ergodically

controlled robotic agents can reliably track moving targets in real time based on bearing-only

measurements even when the number of targets is not known a priori and the targets motion is

only modeled as a diffusion process. Finally, the simulation and experiment examples served

to highlight the importance of and to verify stability of the ergodic controls with respect to the

expected information density, as proved in our theoretical results.

Finally, in symbolic sensing, we showed how an agent can learn the information signa-

ture of unknown symbols, in the context of tactile exploration for estimating physical object

shapes. The ability to perform distribution-driven exploration online, allowed us to take ad-

vantage of information equivalence and track previously explored shapes/symbols with varied

configurations. This final result highlighted the importance of exploration in symbolic sens-

ing and opened the road for using previously explored symbols as natural landmarks for robot

self-localization.

185

References

[1] A. D. Wilson, J. Schultz, and T. D. Murphey, “Trajectory optimization for well-

conditioned parameter estimation,” IEEE Transactions on Automation Science and En-

gineering, vol. 12, pp. 28–36, 2015.

[2] ——, “Trajectory synthesis for Fisher information maximization,” IEEE Transactions on

Robotics, vol. 30, pp. 1358–1370, 2014.

[3] M. Mazo and P. Tabuada, “Symbolic approximate time-optimal control,” Systems & Con-

trol Letters, vol. 60, no. 4, pp. 256–263, 2011.

[4] G. Pola, A. Girard, and P. Tabuada, “Approximately bisimilar symbolic models for non-

linear control systems,” Automatica, vol. 44, no. 10, pp. 2508 – 2516, 2008.

[5] M. Broucke, M. D. Di Benedetto, S. Di Gennaro, and A. Sangiovanni-Vincentelli, “The-

ory of optimal control using bisimulations,” in Hybrid Systems: Computation and Con-

trol. Springer, 2000, pp. 89–102.

[6] A. Girard and G. Pappas, “Approximation metrics for discrete and continuous systems,”

IEEE Transactions on Automatic Control, vol. 52, no. 5, pp. 782–798, 2007.

186

[7] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-

search algorithm for large-scale nonlinear programming,” Mathematical programming,

vol. 106, no. 1, pp. 25–57, 2006.

[8] P. Skoglar, U. Orguner, and F. Gustafsson, “On information measures based on particle

mixture for optimal bearings-only tracking,” in IEEE Aerospace conference, 2009, pp.

1–14.

[9] F. Bourgault, A. Göktogan, T. Furukawa, and H. F. Durrant-Whyte, “Coordinated search

for a lost target in a Bayesian world,” Advanced Robotics, vol. 18, no. 10, pp. 979–1000,

2004.

[10] S. S. Ponda, R. M. Kolacinski, and E. Frazzoli, “Trajectory optimization for target lo-

calization using small unmanned aerial vehicles,” in AIAA Guidance, Navigation, and

Control Conference, 2009, pp. 10–13.

[11] Y. Oshman and P. Davidson, “Optimization of observer trajectories for bearings-only

target localization,” IEEE Transactions on Aerospace and Electronic Systems, vol. 35,

no. 3, pp. 892–902, 1999.

[12] T. H. Summers, M. R. Akella, and M. J. Mears, “Coordinated standoff tracking of moving

targets: Control laws and information architectures,” Journal of Guidance, Control, and

Dynamics, vol. 32, no. 1, pp. 56–69, 2009.

[13] (2014) Robot Operating System. Willow Garage. [Online]. Available: http:

//www.ros.org/

http://www.ros.org/
http://www.ros.org/

187

[14] S. Soatto, “Steps towards a theory of visual information: Active perception, signal-

to-symbol conversion and the interplay between sensing and control,” arXiv preprint

arXiv:1110.2053, 2011.

[15] A. Mavrommati, J. Schultz, and T. D. Murphey, “Real-time dynamic-mode scheduling

using single-integration hybrid optimization,” IEEE Transactions on Automation Science

and Engineering, vol. 13, no. 3, pp. 1385–1398, 2016.

[16] A. Mavrommati and T. D. Murphey, “Single-integration mode scheduling for linear time-

varying switched systems,” in American Control Conference, 2014, pp. 3948–3953.

[17] X. Deng, L. Schenato, and S. S. Sastry, “Flapping flight for biomimetic robotic insects:

Part II-flight control design,” IEEE Transactions on Robotics, vol. 22, no. 4, pp. 789–803,

2006.

[18] S. Lee and V. Prabhu, “A dynamic algorithm for distributed feedback control for man-

ufacturing production, capacity, and maintenance,” IEEE Transactions on Automation

Science and Engineering, vol. 12, no. 2, pp. 628–641, 2015.

[19] H.-W. Park, A. Ramezani, and J. Grizzle, “A finite-state machine for accommodating

unexpected large ground-height variations in bipedal robot walking,” IEEE Transactions

on Robotics, vol. 29, no. 2, pp. 331–345, 2013.

[20] A. Mavrommati and T. D. Murphey, “Automatic synthesis of control alphabet policies,”

in 2016 IEEE International Conference on Automation Science and Engineering (CASE).

IEEE, 2016, pp. 313–320.

188

[21] A. Mavrommati, E. Tzorakoleftherakis, I. Abraham, and T. D. Murphey, “Real-time

area coverage and target localization using receding-horizon ergodic exploration,” IEEE

Transactions on Robotics, Submitted, 2017.

[22] M. Castano, A. Mavrommati, T. D. Murphey, and X. Tan, “Trajectory planning and

tracking of robotic fish using ergodic exploration,” in American Control Conference,

Accepted, 2017.

[23] A. Prabhakar, A. Mavrommati, J. Schultz, and T. D. Murphey, “Autonomous visual ren-

dering using physical motion,” in Workshop on the Algorithmic Foundations of Robotics,

2016.

[24] Y. Wardi and M. Egerstedt, “Algorithm for optimal mode scheduling in switched sys-

tems,” in American Control Conference, 2012, pp. 4546–4551.

[25] S. Wei, K. Uthaichana, M. Žefran, R. A. DeCarlo, and S. Bengea, “Applications of nu-

merical optimal control to nonlinear hybrid systems,” Nonlinear Analysis: Hybrid Sys-

tems, vol. 1, no. 2, pp. 264–279, 2007.

[26] T. Johansen, I. Petersen, J. Kalkkuhl, and J. Lüdemann, “Gain-scheduled wheel slip con-

trol in automotive brake systems,” IEEE Transactions on Control Systems Technology,

vol. 11, no. 6, pp. 799–811, 2003.

[27] R. O’Flaherty and M. Egerstedt, “Low-dimensional learning for complex robots,” IEEE

Transactions on Automation Science and Engineering, vol. 12, no. 1, pp. 19–27, 2015.

189

[28] Y. Qiao, N. Wu, and M. Zhou, “Real-time scheduling of single-arm cluster tools subject

to residency time constraints and bounded activity time variation,” IEEE Transactions on

Automation Science and Engineering, vol. 9, no. 3, pp. 564–577, 2012.

[29] S. Mariéthoz, S. Almér, M. Bâja, A. Beccuti, D. Patino, A. Wernrud, J. Buisson,

H. Cormerais, T. Geyer, H. Fujioka, U. Jonsson, C.-Y. Kao, M. Morari, G. Papafotiou,

A. Rantzer, and P. Riedinger, “Comparison of hybrid control techniques for buck and

boost DC-DC converters,” IEEE Transactions on Control Systems Technology, vol. 18,

no. 5, pp. 1126–1145, 2010.

[30] S. Bhattacharya, A. Khanafer, and T. Basar, “Switching behavior in optimal communi-

cation strategies for team jamming games under resource constraints,” in IEEE Interna-

tional Conference on Control Applications, 2011, pp. 1232–1237.

[31] M. Kamgarpour, W. Zhang, and C. J. Tomlin, “Modeling and optimization of terminal

airspace and aircraft arrival subject to weather uncertainties,” in AIAA Guidance, Navi-

gation and Control Conference, 2011, pp. 6516–6521.

[32] H. Gonzalez, R. Vasudevan, M. Kamgarpour, S. S. Sastry, R. Bajcsy, and C. Tomlin, “A

numerical method for the optimal control of switched systems,” in IEEE Conference on

Decision and Control, 2010, pp. 7519–7526.

[33] K. Deng, Y. Sun, S. Li, Y. Lu, J. Brouwer, P. Mehta, M. Zhou, and A. Chakraborty,

“Model predictive control of central chiller plant with thermal energy storage via dy-

namic programming and mixed-integer linear programming,” IEEE Transactions on Au-

tomation Science and Engineering, vol. 12, no. 2, pp. 565–579, 2015.

190

[34] D. Gorges, M. Izak, and S. Liu, “Optimal control and scheduling of switched systems,”

IEEE Transactions on Automatic Control, vol. 56, no. 1, pp. 135–140, 2011.

[35] Y. Wardi, M. Egerstedt, and M. Hale, “Switched-mode systems: Gradient-descent algo-

rithms with Armijo step sizes,” Discrete Event Dynamic Systems, pp. 1–29, 2014.

[36] B. Passenberg, P. E. Caines, M. Sobotka, O. Stursberg, and M. Buss, “The minimum

principle for hybrid systems with partitioned state space and unspecified discrete state

sequence,” in IEEE Conference on Decision and Control, 2010, pp. 6666–6673.

[37] M. Zhang and S. Bhattacharya, “Scheduling and motion planning for autonomous grain

carts,” in IEEE International Conference on Robotics and Automation, 2015, pp. 3422–

3427.

[38] T. M. Caldwell and T. D. Murphey, “Projection-based optimal mode scheduling,” in IEEE

Conference on Decision and Control, 2013, pp. 5307–5314.

[39] ——, “Projection-based switched system optimization,” in American Control Confer-

ence, 2012, pp. 4552–4557.

[40] ——, “Projection-based switched system optimization: absolute continuity of the line

search,” in IEEE Conference on Decision and Control, 2012, pp. 699–706.

[41] Z. Sun and S. S. Ge, “Analysis and synthesis of switched linear control systems,” Auto-

matica, vol. 41, no. 2, pp. 181–195, 2005.

191

[42] W. Zhang and J. Hu, “On optimal quadratic regulation for discrete-time switched lin-

ear systems,” in International Workshop on Hybrid Systems: Computation and Control.

Springer-Verlag, 2008, vol. 4981, pp. 584–597.

[43] Y. Kouhi, N. Bajcinca, and R. G. Sanfelice, “Suboptimality bounds for linear quadratic

problems in hybrid linear systems,” in IEEE European Control Conference, 2013, pp.

2663–2668.

[44] A. Giua, C. Seatzu, and C. Van Der Mee, “Optimal control of switched autonomous linear

systems,” in IEEE Conference on Decision and Control, vol. 3, 2001, pp. 2472–2477.

[45] X. Xu and P. J. Antsaklis, “Optimal control of switched autonomous systems,” in IEEE

Conference on Decision and Control, vol. 4, 2002, pp. 4401–4406.

[46] T. M. Caldwell and T. D. Murphey, “Single integration optimization of linear time-

varying switched systems,” IEEE Transactions on Automatic Control, vol. 57, no. 6,

pp. 1592–1597, 2012.

[47] M. J. Neely, “Energy optimal control for time-varying wireless networks,” IEEE Trans-

actions on Information Theory, vol. 52, no. 7, pp. 2915–2934, 2006.

[48] M. Fanti, G. Iacobellis, A. Mangini, and W. Ukovich, “Freeway traffic modeling and

control in a first-order hybrid Petri net framework,” IEEE Transactions on Automation

Science and Engineering, vol. 11, no. 1, pp. 90–102, 2014.

[49] Q. Duan, J. Zeng, K. Chakrabarty, and G. Dispoto, “Real-time production scheduler for

digital-print-service providers based on a dynamic incremental evolutionary algorithm,”

192

IEEE Transactions on Automation Science and Engineering, vol. 12, no. 2, pp. 701–715,

2015.

[50] R. Vasudevan, H. Gonzalez, R. Bajcsy, and S. S. Sastry, “Consistent approximations for

the optimal control of constrained switched systems—Part 1: A conceptual algorithm,”

SIAM Journal on Control and Optimization, vol. 51, no. 6, pp. 4463–4483, 2013.

[51] ——, “Consistent approximations for the optimal control of constrained switched

systems—Part 2: An implementable algorithm,” SIAM Journal on Control and Opti-

mization, vol. 51, no. 6, pp. 4484–4503, 2013.

[52] E. Polak, Optimization: Algorithms and consistent approximation. Princeton University

Press, 1997.

[53] B. Brogliato and V. Acary, “Numerical methods for nonsmooth dynamical systems,” Lec-

ture Notes in Applied and Computational Mechanics, 2008.

[54] D. Q. Mayne, “Model predictive control: Recent developments and future promise,”

Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[55] H. Jing, Z. Liu, and H. Chen, “A switched control strategy for antilock braking system

with on/off valves,” IEEE Transactions on Vehicular Technology, vol. 60, no. 4, pp. 1470–

1484, 2011.

[56] O. Stursberg and S. Engell, “Optimal control of switched continuous systems us-

ing mixed-integer programming,” in 15th IFAC World Congress of Automatic Control,

vol. 15, no. 1, 2002, pp. 558–558.

193

[57] S. Garrido, M. Abderrahim, A. Gimenez, R. Diez, and C. Balaguer, “Anti-swinging input

shaping control of an automatic construction crane,” IEEE Transactions on Automation

Science and Engineering, vol. 5, no. 3, pp. 549–557, 2008.

[58] N. Sun, Y. Fang, and H. Chen, “A new antiswing control method for underactuated

cranes with unmodeled uncertainties: Theoretical design and hardware experiments,”

IEEE Transactions on Industrial Electronics, vol. 62, no. 1, pp. 453–465, 2015.

[59] P. Cruz, M. Oishi, and R. Fierro, “Lift of a cable-suspended load by a quadrotor: A

hybrid system approach,” in American Control Conference, 2015, pp. 1887–1892.

[60] R. Goebel, R. G. Sanfelice, and A. Teel, “Hybrid dynamical systems,” IEEE Control

Systems, vol. 29, no. 2, pp. 28–93, 2009.

[61] J. Lygeros, “An overview of hybrid systems control,” in Handbook of Networked and

Embedded Control Systems. Springer, 2005, pp. 519–537.

[62] M. Egerstedt, Y. Wardi, and H. Axelsson, “Transition-time optimization for switched-

mode dynamical systems,” IEEE Transactions on Automatic Control, vol. 51, no. 1, pp.

110–115, 2006.

[63] H. Gonzalez, R. Vasudevan, M. Kamgarpour, S. S. Sastry, R. Bajcsy, and C. J. Tomlin, “A

descent algorithm for the optimal control of constrained nonlinear switched dynamical

systems,” in International Conference on Hybrid Systems: Computation and Control,

2010, pp. 51–60.

194

[64] T. M. Caldwell and T. D. Murphey, “Single integration optimization of linear time-

varying switched systems,” in American Control Conference, 2011, pp. 2024–2030.

[65] B. D. Anderson and J. B. Moore, Optimal control: Linear quadratic methods. Courier

Corporation, 2007.

[66] H. Axelsson, Y. Wardi, M. Egerstedt, and E. Verriest, “Gradient descent approach to

optimal mode scheduling in hybrid dynamical systems,” Journal of Optimization Theory

and Applications, vol. 136, no. 2, pp. 167–186, 2008.

[67] J. P. Hespanha, Linear systems theory. Princeton University Press, 2009.

[68] P. Bouffard, A. Aswani, and C. Tomlin, “Learning-based model predictive control on

a quadrotor: Onboard implementation and experimental results,” in IEEE International

Conference on Robotics and Automation, 2012, pp. 279–284.

[69] X. Liu and X. Kong, “Nonlinear model predictive control for dfig-based wind power

generation,” IEEE Transactions on Automation Science and Engineering, vol. 11, no. 4,

pp. 1046–1055, 2014.

[70] L. Magni, G. De Nicolao, and R. Scattolini, “Output feedback and tracking of nonlinear

systems with model predictive control,” Automatica, vol. 37, no. 10, pp. 1601–1607,

2001.

[71] R. G. Sanfelice, “Input-output-to-state stability tools for hybrid systems and their inter-

connections,” IEEE Transactions on Automatic Control, vol. 59, no. 5, pp. 1360–1366,

2014.

195

[72] M. A. Müller and F. Allgöwer, “Improving performance in model predictive control:

Switching cost functionals under average dwell-time,” Automatica, vol. 48, no. 2, pp.

402–409, 2012.

[73] J. Hu, J. Shen, and W. Zhang, “A generating function approach to the stability of discrete-

time switched linear systems,” in ACM International Conference on Hybrid Systems:

Computation and Control, 2010, pp. 273–282.

[74] F. A. Fontes, “A general framework to design stabilizing nonlinear model predictive con-

trollers,” Systems & Control Letters, vol. 42, no. 2, pp. 127–143, 2001.

[75] R. Meyer, M. Žefran, and R. A. DeCarlo, “A comparison of the embedding method to

multi-parametric programming, mixed-integer programming, gradient-descent, and hy-

brid minimum principle based methods,” IEEE Transactions on Control Systems Tech-

nology, vol. 22, no. 5, pp. 1784–1800, 2014.

[76] K. A. Cunefare, S. De Rosa, N. Sadegh, and G. Larson, “State-switched absorber for

semi-active structural control,” Journal of Intelligent Material Systems and Structures,

vol. 11, no. 4, pp. 300–310, 2000.

[77] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J. Pappas, “Symbolic

planning and control of robot motion [grand challenges of robotics],” IEEE Robotics &

Automation Magazine, vol. 14, no. 1, pp. 61–70, 2007.

196

[78] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon temporal logic plan-

ning for dynamical systems,” in IEEE Conference on Decision and Control, 2009, pp.

5997–6004.

[79] P. Martin and M. B. Egerstedt, “Hybrid systems tools for compiling controllers for cyber-

physical systems,” Discrete Event Dynamic Systems, vol. 22, no. 1, pp. 101–119, 2012.

[80] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-RTL, power-

performance accelerator simulator enabling large design space exploration of customized

architectures,” in ACM/IEEE 41st International Symposium on Computer Architecture.

IEEE, 2014, pp. 97–108.

[81] A. R. Ansari and T. D. Murphey, “Sequential Action Control: Closed-form optimal con-

trol for nonlinear and nonsmooth systems,” IEEE Transactions on Robotics, vol. 32,

no. 5, pp. 1196–1214, 2016.

[82] A. Mavrommati, A. R. Ansari, and T. D. Murphey, “Optimal control-on-request: An

application in real-time assistive balance control,” in IEEE International Conference on

Robotics and Automation, 2015, pp. 5928–5934.

[83] A. Ansari, K. Flaßkamp, and T. D. Murphey, “Sequential action control for tracking

of free invariant manifolds,” in Conference on Analysis and Design of Hybrid Systems,

2015.

197

[84] E. Tzorakoleftherakis, A. R. Ansari, A. Wilson, J. Schultz, and T. D. Murphey, “Model-

based reactive control for hybrid and high-dimensional robotic systems,” IEEE Robotics

and Automation Letters, vol. 1, no. 1, pp. 431–438, 2016.

[85] M. Dellnitz, G. Froyland, and O. Junge, “The algorithms behind GAIO—Set oriented

numerical methods for dynamical systems,” in Ergodic theory, analysis, and efficient

simulation of dynamical systems. Springer, 2001, pp. 145–174.

[86] K. J. Åström and K. Furuta, “Swinging up a pendulum by energy control,” Automatica,

vol. 36, no. 2, pp. 287–295, 2000.

[87] A. J. Ijspeert, “Central pattern generators for locomotion control in animals and robots:

A review,” Neural Networks, vol. 21, no. 4, pp. 642–653, 2008.

[88] M. Egerstedt, Y. Wardi, and H. Axelsson, “Optimal control of switching times in hybrid

systems,” in IEEE International Conference on Methods and Models in Automation and

Robotics, 2003.

[89] J. Lygeros, K. H. Johansson, S. N. Simić, J. Zhang, and S. S. Sastry, “Dynamical prop-

erties of hybrid automata,” IEEE Transactions on Automatic Control, vol. 48, no. 1, pp.

2–17, 2003.

[90] D. F. Delchamps, “Stabilizing a linear system with quantized state feedback,” IEEE

Transactions on Automatic Control, vol. 35, no. 8, pp. 916–924, 1990.

[91] M. Ahmadi and M. Buehler, “Controlled passive dynamic running experiments with the

ARL-monopod II,” IEEE Transactions on Robotics, vol. 22, no. 5, pp. 974–986, 2006.

198

[92] G. E. Jan, C. Luo, L. P. Hung, and S. T. Shih, “A computationally efficient complete area

coverage algorithm for intelligent mobile robot navigation,” in 2014 International Joint

Conference on Neural Networks, July 2014, pp. 961–966.

[93] Y. Stergiopoulos and A. Tzes, “Spatially distributed area coverage optimisation in mobile

robotic networks with arbitrary convex anisotropic patterns,” Automatica, vol. 49, no. 1,

pp. 232–237, 2013.

[94] D. E. Soltero, M. Schwager, and D. Rus, “Decentralized path planning for coverage tasks

using gradient descent adaptive control,” The International Journal of Robotics Research,

vol. 33, no. 3, pp. 401–425, 2014.

[95] R. J. Meuth, E. W. Saad, D. C. Wunsch, and J. Vian, “Adaptive task allocation for search

area coverage,” in IEEE International Conference on Technologies for Practical Robot

Applications, 2009, pp. 67–74.

[96] M. Schwager, D. Rus, and J.-J. Slotine, “Decentralized, adaptive coverage control for

networked robots,” The International Journal of Robotics Research, vol. 28, no. 3, pp.

357–375, 2009.

[97] J.-M. Passerieux and D. Van Cappel, “Optimal observer maneuver for bearings-only

tracking,” Aerospace and Electronic Systems, IEEE Transactions on, vol. 34, no. 3, pp.

777–788, 1998.

199

[98] A. N. Bishop and P. N. Pathirana, “Optimal trajectories for homing navigation with bear-

ing measurements,” in Proceedings of the 2008 International Federation of Automatic

Control Congress, 2008.

[99] X. Liao and L. Carin, “Application of the theory of optimal experiments to adap-

tive electromagnetic-induction sensing of buried targets,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 26, no. 8, pp. 961–972, 2004.

[100] B. Grocholsky, A. Makarenko, and H. Durrant-Whyte, “Information-theoretic coordi-

nated control of multiple sensor platforms,” in IEEE International Conference on Robot-

ics and Automation, vol. 1, 2003, pp. 1521–1526.

[101] L. M. Miller, Y. Silverman, M. A. MacIver, and T. D. Murphey, “Ergodic exploration of

distributed information,” IEEE Transactions on Robotics, vol. 32, no. 1, pp. 36–52, 2015.

[102] R. O’Flaherty and M. Egerstedt, “Optimal exploration in unknown environments,” in

IEEE International Conference on Intelligent Robots and Systems, 2015, pp. 5796–5801.

[103] L. M. Miller and T. D. Murphey, “Optimal planning for target localization and cover-

age using range sensing,” in IEEE International Conference on Automation Science and

Engineering, 2015, pp. 501–508.

[104] “sphero robot,” http://www.sphero.com/, designed by Sphero.

[105] J. H. Lee, “Model predictive control: Review of the three decades of development,”

International Journal of Control, Automation and Systems, vol. 9, no. 3, pp. 415–424,

2011.

http://www.sphero.com/

200

[106] P. A. Plonski, P. Tokekar, and V. Isler, “Energy-efficient path planning for solar-powered

mobile robots,” Journal of Field Robotics, vol. 30, no. 4, pp. 583–601, 2013.

[107] J. A. Broderick, D. M. Tilbury, and E. M. Atkins, “Optimal coverage trajectories for a

UGV with tradeoffs for energy and time,” Autonomous Robots, vol. 36, no. 3, pp. 257–

271, 2014.

[108] M. Garzón, J. Valente, J. J. Roldán, L. Cancar, A. Barrientos, and J. Del Cerro, “A

multirobot system for distributed area coverage and signal searching in large outdoor

scenarios,” Journal of Field Robotics, vol. 33, no. 8, pp. 1087–1106, 2016.

[109] X. Tan, “Autonomous robotic fish as mobile sensor platforms: Challenges and potential

solutions,” Marine Technology Society Journal, vol. 45, no. 4, pp. 31–40, 2011.

[110] M. Quigley, M. A. Goodrich, S. Griffiths, A. Eldredge, and R. W. Beard, “Target acquisi-

tion, localization, and surveillance using a fixed-wing mini-UAV and gimbaled camera,”

in IEEE international conference on robotics and automation, 2005, pp. 2600–2605.

[111] K. Dogancay, “UAV path planning for passive emitter localization,” IEEE Transactions

on Aerospace and Electronic Systems, vol. 48, no. 2, 2012.

[112] S. M. Ross, R. G. Cobb, and W. P. Baker, “Stochastic real-time optimal control for

bearing-only trajectory planning,” International Journal of Micro Air Vehicles, vol. 6,

no. 1, pp. 1–27, 2014.

[113] J. Moore and R. Tedrake, “Control synthesis and verification for a perching UAV using

LQR-Trees,” in IEEE Conference on Decision and Control, 2012, pp. 3707–3714.

201

[114] C. Luo and S. X. Yang, “A bioinspired neural network for real-time concurrent map build-

ing and complete coverage robot navigation in unknown environments,” IEEE Transac-

tions on Neural Networks, vol. 19, no. 7, pp. 1279–1298, 2008.

[115] D. A. Shell and M. J. Matarić, “Ergodic dynamics for large-scale distributed robot sys-

tems,” in International Conference on Unconventional Computation. Springer, 2006,

pp. 254–266.

[116] Z. Tang and U. Ozguner, “Motion planning for multitarget surveillance with mobile sen-

sor agents,” IEEE Transactions on Robotics, vol. 21, no. 5, pp. 898–908, 2005.

[117] V. P. Jilkov and X. R. Li, “On fusion of multiple objectives for UAV search & track path

optimization.” Journal of Advances in Information Fusion, vol. 4, no. 1, pp. 27–39, 2009.

[118] R. R. Pitre, X. R. Li, and R. Delbalzo, “UAV route planning for joint search and track

missions An information-value approach,” IEEE Transactions on Aerospace and Elec-

tronic Systems, vol. 48, no. 3, pp. 2551–2565, 2012.

[119] C. Y. Wong, G. Seet, and S. K. Sim, “Multiple-robot systems for usar: key design at-

tributes and deployment issues,” International Journal of Advanced Robotic Systems,

vol. 8, no. 1, pp. 85–101, 2011.

[120] Y. Liu and G. Nejat, “Robotic urban search and rescue: A survey from the control per-

spective,” Journal of Intelligent & Robotic Systems, vol. 72, no. 2, pp. 147–165, 2013.

[121] A. Barrientos, J. Colorado, J. d. Cerro, A. Martinez, C. Rossi, D. Sanz, and J. Valente,

“Aerial remote sensing in agriculture: A practical approach to area coverage and path

202

planning for fleets of mini aerial robots,” Journal of Field Robotics, vol. 28, no. 5, pp.

667–689, 2011.

[122] A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser, “Efficient informative sensing using

multiple robots,” Journal of Artificial Intelligence Research, vol. 34, pp. 707–755, 2009.

[123] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,” Robotics

and Autonomous Systems, vol. 61, no. 12, pp. 1258–1276, 2013.

[124] H. H. Viet, V.-H. Dang, M. N. U. Laskar, and T. Chung, “BA*: An online complete

coverage algorithm for cleaning robots,” Applied intelligence, vol. 39, no. 2, pp. 217–

235, 2013.

[125] N. K. Yilmaz, C. Evangelinos, P. F. Lermusiaux, and N. M. Patrikalakis, “Path planning

of autonomous underwater vehicles for adaptive sampling using mixed integer linear

programming,” IEEE Journal of Oceanic Engineering, vol. 33, no. 4, pp. 522–537, 2008.

[126] L. Paull, S. Saeedi, M. Seto, and H. Li, “Sensor-driven online coverage planning for

autonomous underwater vehicles,” IEEE/ASME Transactions on Mechatronics, vol. 18,

no. 6, pp. 1827–1838, 2013.

[127] E. U. Acar, H. Choset, Y. Zhang, and M. Schervish, “Path planning for robotic demining:

Robust sensor-based coverage of unstructured environments and probabilistic methods,”

The International journal of robotics research, vol. 22, no. 7-8, pp. 441–466, 2003.

203

[128] C. W. Bac, E. J. Henten, J. Hemming, and Y. Edan, “Harvesting robots for high-value

crops: State-of-the-art review and challenges ahead,” Journal of Field Robotics, vol. 31,

no. 6, pp. 888–911, 2014.

[129] S. L. Smith, M. Schwager, and D. Rus, “Persistent robotic tasks: Monitoring and sweep-

ing in changing environments,” IEEE Transactions on Robotics, vol. 28, no. 2, pp. 410–

426, 2012.

[130] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in the study

of distributed multi-agent coordination,” IEEE Transactions on Industrial informatics,

vol. 9, no. 1, pp. 427–438, 2013.

[131] W. Ren, R. W. Beard, and T. W. McLain, “Coordination variables and consensus building

in multiple vehicle systems,” in Lecture Notes in Control and Information Sciences. New

York: Springer-Verlag, 2004, vol. 309, pp. 171–188.

[132] J. Cortes, S. Martinez, and F. Bullo, “Spatially-distributed coverage optimization and

control with limited-range interactions,” ESAIM: Control, Optimisation and Calculus of

Variations, vol. 11, no. 4, pp. 691–719, 2005.

[133] Y. Kantaros, M. Thanou, and A. Tzes, “Distributed coverage control for concave areas by

a heterogeneous Robot–Swarm with visibility sensing constraints,” Automatica, vol. 53,

pp. 195–207, 2015.

204

[134] S. Rutishauser, N. Correll, and A. Martinoli, “Collaborative coverage using a swarm

of networked miniature robots,” Robotics and Autonomous Systems, vol. 57, no. 5, pp.

517–525, 2009.

[135] A. Kwok and S. Martı́nez, “A distributed deterministic annealing algorithm for limited-

range sensor coverage,” IEEE Transactions on Control Systems Technology, vol. 19,

no. 4, pp. 792–804, 2011.

[136] M. Zhu and S. Martı́nez, “Distributed coverage games for energy-aware mobile sensor

networks,” SIAM Journal on Control and Optimization, vol. 51, no. 1, pp. 1–27, 2013.

[137] A. Y. Yazicioglu, M. Egerstedt, and J. S. Shamma, “Communication-free distributed

coverage for networked systems,” IEEE Transactions on Control of Network Systems,

vol. PP, no. 99, pp. 1–1, 2016.

[138] G. Mathew and I. Mezić, “Metrics for ergodicity and design of ergodic dynamics for

multi-agent systems,” Physica D: Nonlinear Phenomena, vol. 240, no. 4, pp. 432–442,

2011.

[139] D. E. Kirk, Optimal control theory: An introduction. Courier Corporation, 2012.

[140] L. M. Miller and T. D. Murphey, “Trajectory optimization for continuous ergodic explo-

ration,” in American Control Conference, 2013, pp. 4196–4201.

[141] G. D. L. Torre, K. Flaßkamp, A. Prabhakar, and T. D. Murphey, “Ergodic exploration

with stochastic sensor dynamics,” in American Control Conference, 2016, pp. 2971–

2976.

205

[142] D. Liberzon, Calculus of variations and optimal control theory: A concise introduction.

Princeton University Press, 2012.

[143] T. M. Caldwell and T. D. Murphey, “Projection-based iterative mode scheduling for

switched systems,” Nonlinear Analysis: Hybrid Systems, vol. 21, pp. 59–83, 2016.

[144] S. L. de Oliveira Kothare and M. Morari, “Contractive model predictive control for con-

strained nonlinear systems,” IEEE Transactions on Automatic Control, vol. 45, no. 6, pp.

1053–1071, 2000.

[145] E. Camponogara, D. Jia, B. H. Krogh, and S. Talukdar, “Distributed model predictive

control,” IEEE Control Systems, vol. 22, no. 1, pp. 44–52, 2002.

[146] F. Xie and R. Fierro, “First-state contractive model predictive control of nonholonomic

mobile robots,” in American Control Conference, 2008, pp. 3494–3499.

[147] G. Ferrari-Trecate, L. Galbusera, M. P. E. Marciandi, and R. Scattolini, “Model predictive

control schemes for consensus in multi-agent systems with single-and double-integrator

dynamics,” IEEE Transactions on Automatic Control, vol. 54, no. 11, pp. 2560–2572,

2009.

[148] L. Grüne and J. Pannek, Nonlinear model predictive control. Springer, 2011.

[149] H. Michalska and R. Vinter, “Nonlinear stabilization using discontinuous moving-

horizon control,” IMA Journal of Mathematical Control and Information, vol. 11, no. 4,

pp. 321–340, 1994.

206

[150] L. R. G. Carrillo, A. E. D. López, R. Lozano, and C. Pégard, “Modeling the quad-rotor

mini-rotorcraft,” in Quad Rotorcraft Control. Springer, 2013, pp. 23–34.

[151] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for

quadrotors,” in IEEE International Conference on Robotics and Automation, 2011, pp.

2520–2525.

[152] T. Luukkonen, “Modelling and control of quadcopter,” Independent research project in

applied mathematics, Espoo, 2011.

[153] C. Leung, S. Huang, G. Dissanayake, and T. Furukawa, “Trajectory planning for multiple

robots in bearing-only target localisation,” in 2005 IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2005, pp. 3978–3983.

[154] J. P. Helferty and D. R. Mudgett, “Optimal observer trajectories for bearings only track-

ing by minimizing the trace of the cramer-rao lower bound,” in IEEE Conference on

Decision and Control, 1993, pp. 936–939.

[155] N. Cao, K. H. Low, and J. M. Dolan, “Multi-robot informative path planning for active

sensing of environmental phenomena: A tale of two algorithms,” in Proceedings of the

2013 international conference on Autonomous agents and multi-agent systems. Inter-

national Foundation for Autonomous Agents and Multiagent Systems, 2013, pp. 7–14.

[156] B. J. Julian, M. Angermann, M. Schwager, and D. Rus, “Distributed robotic sensor net-

works: An information-theoretic approach,” The International Journal of Robotics Re-

search, vol. 31, no. 10, pp. 1134–1154, 2012.

207

[157] H. Yu, K. Meier, M. Argyle, and R. W. Beard, “Cooperative path planning for target

tracking in urban environments using unmanned air and ground vehicles,” IEEE/ASME

Transactions on Mechatronics, vol. 20, no. 2, pp. 541–552, 2015.

[158] S. Kim, H. Oh, and A. Tsourdos, “Nonlinear model predictive coordinated standoff track-

ing of a moving ground vehicle,” Journal of Guidance, Control, and Dynamics, vol. 36,

no. 2, pp. 557–566, 2013.

[159] R. Anderson and D. Milutinović, “A stochastic approach to Dubins feedback control

for target tracking,” in IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2011, pp. 3917–3922.

[160] J. R. Spletzer and C. J. Taylor, “Dynamic sensor planning and control for optimally

tracking targets,” The International Journal of Robotics Research, vol. 22, no. 1, pp.

7–20, 2003.

[161] S. Zhu, D. Wang, and C. B. Low, “Ground target tracking using uav with input con-

straints,” Journal of Intelligent & Robotic Systems, vol. 69, no. 1-4, pp. 417–429, 2013.

[162] U. Zengin and A. Dogan, “Real-time target tracking for autonomous UAVs in adversarial

environments: A gradient search algorithm,” IEEE Transactions on Robotics, vol. 23,

no. 2, pp. 294–307, 2007.

[163] P. Yao, H. Wang, and Z. Su, “Real-time path planning of unmanned aerial vehicle for

target tracking and obstacle avoidance in complex dynamic environment,” Aerospace

Science and Technology, vol. 47, pp. 269–279, 2015.

208

[164] P. Tokekar, J. Vander Hook, and V. Isler, “Active target localization for bearing based

robotic telemetry,” in IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, 2011, pp. 488–493.

[165] D. B. Barber, J. D. Redding, T. W. McLain, R. W. Beard, and C. N. Taylor, “Vision-based

target geo-location using a fixed-wing miniature air vehicle,” Journal of Intelligent and

Robotic Systems, vol. 47, no. 4, pp. 361–382, 2006.

[166] L. Ma and N. Hovakimyan, “Cooperative target tracking in balanced circular formation:

Multiple UAVs tracking a ground vehicle,” in American Control Conference, 2013, pp.

5386–5391.

[167] G. Gu, P. Chandler, C. Schumacher, A. Sparks, and M. Pachter, “Optimal cooperative

sensing using a team of UAVs,” IEEE Transactions on Aerospace and Electronic Systems,

vol. 42, no. 4, pp. 1446–1458, 2006.

[168] S. A. Quintero, M. Ludkovski, and J. P. Hespanha, “Stochastic optimal coordination of

small UAVs for target tracking using regression-based dynamic programming,” Journal

of Intelligent & Robotic Systems, vol. 82, no. 1, pp. 135–162, 2016.

[169] A. Emery and A. V. Nenarokomov, “Optimal experiment design,” Measurement Science

and Technology, vol. 9, no. 6, p. 864, 1998.

[170] B. R. Frieden, Science from Fisher information: A unification. Cambridge University

Press, 2004.

209

[171] D. Ucinski, Optimal measurement methods for distributed parameter system identifica-

tion. CRC Press, 2004.

[172] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of

basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[173] S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter to nonlinear systems,”

in AeroSense’97. International Society for Optics and Photonics, 1997, pp. 182–193.

[174] E. S. Jones and S. Soatto, “Visual-inertial navigation, mapping and localization: A scal-

able real-time causal approach,” The International Journal of Robotics Research, vol. 30,

no. 4, pp. 407–430, 2011.

[175] V. J. Aidala, “Kalman filter behavior in bearings-only tracking applications,” IEEE Trans-

actions on Aerospace and Electronic Systems, no. 1, pp. 29–39, 1979.

[176] T. Lee and S. Soatto, “Learning and matching multiscale template descriptors for real-

time detection, localization and tracking,” in IEEE Conference on Computer Vision and

Pattern Recognition, 2011, pp. 1457–1464.

[177] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,”

Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996.

[178] R. W. O’Flaherty, “A control theoretic perspective on learning in robotics,” 2015.

[179] F. Zhang and N. E. Leonard, “Cooperative filters and control for cooperative exploration,”

IEEE Transactions on Automatic Control, vol. 55, no. 3, pp. 650–663, 2010.

210

[180] I. Abraham, A. Prabhakar, M. J. Z. Hartmann, and T. D. Murphey, “Ergodic exploration

using binary sensing for nonparametric shape estimation,” IEEE Robotics and Automa-

tion Letters, vol. 2, no. 2, pp. 827–834, 2017.

[181] T. F. Cootes and C. J. Taylor, “A mixture model for representing shape variation,” Image

and Vision Computing, vol. 17, no. 8, pp. 567–573, 1999.

[182] M. Rousson and D. Cremers, “Efficient kernel density estimation of shape and inten-

sity priors for level set segmentation,” in International Conference on Medical Image

Computing and Computer-Assisted Intervention. Springer, 2005, pp. 757–764.

[183] J. A. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,”

Neural processing letters, vol. 9, no. 3, pp. 293–300, 1999.

[184] S. Chen, C. F. Cowan, and P. M. Grant, “Orthogonal least squares learning algorithm for

radial basis function networks,” IEEE Transactions on neural networks, vol. 2, no. 2, pp.

302–309, 1991.

[185] J. Platt et al., “Probabilistic outputs for support vector machines and comparisons to

regularized likelihood methods,” Advances in large margin classifiers, vol. 10, no. 3, pp.

61–74, 1999.

[186] M. C. Koval, N. S. Pollard, and S. S. Srinivasa, “Pose estimation for planar contact

manipulation with manifold particle filters,” The International Journal of Robotics Re-

search, vol. 34, no. 7, pp. 922–945, 2015.

211

[187] J. Borenstein and L. Feng, “Measurement and correction of systematic odometry errors

in mobile robots,” IEEE Transactions on robotics and automation, vol. 12, no. 6, pp.

869–880, 1996.

[188] S. Se, D. Lowe, and J. Little, “Mobile robot localization and mapping with uncertainty

using scale-invariant visual landmarks,” The international Journal of robotics Research,

vol. 21, no. 8, pp. 735–758, 2002.

[189] A. Eliazar and R. Parr, “DP-SLAM: Fast, robust simultaneous localization and mapping

without predetermined landmarks,” in IJCAI, vol. 3, 2003, pp. 1135–1142.

	ABSTRACT
	Acknowledgements
	List of Figures
	Chapter 1. Introduction
	1.1. Part 1: ACTION
	1.2. Part 2: EXPLORATION
	1.3. Part 3: SENSING

	Part 1. Acting with Symbols in Real Time
	Chapter 2. Real-Time Hybrid Control
	2.1. Introduction
	2.2. Review
	2.3. Single Integration Optimal Mode Scheduling
	2.4. Open-Loop Implementation and Evaluation
	2.5. Closed-Loop Simulation and Experimental Implementation

	Chapter 3. Control Alphabet Policies
	3.1. Introduction
	3.2. Symbolic Control Calculation
	3.3. Control Alphabet Policies
	3.4. Example: Cart-Pendulum Inversion
	3.5. Example: Two-Tank System
	3.6. Example: Planar SLIP Hopper

	Part 2. Real-Time Information-Driven Exploration for Symbols
	Chapter 4. Introduction
	4.1. Why Exploration?
	4.2. Exploration Challenges and Contribution
	4.3. Review of Exploration Strategies

	Chapter 5. Ergodic Exploration Algorithm
	5.1. Ergodicity
	5.2. Algorithm Derivation
	5.3. Stability
	5.4. Extension to Multi-Agent Control

	Chapter 6. Area Search and Coverage using Distribution-Driven Exploration
	6.1. Single-Agent Coverage
	6.2. Multi-Agent Coverage

	Part 3. Sensing Symbols in Real Time
	Chapter 7. Introduction: Abstract Sensing of Action Symbols
	Chapter 8. Tracking Symbols: Bearing-Only Localization of Targets
	8.1. Expected Information Density
	8.2. Results

	Chapter 9. Learning Symbols: Tactile Exploration and Estimation of Physical Object Shapes
	9.1. Symbol Identification using Ergodic Tactile Exploration
	9.2. Information Equivalence in Ergodic Exploration

	Chapter 10. Conclusion
	References

