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Abstract

Normalization and Disaggregation of Networked Generalized Extreme Value Models

Jeffrey P. Newman

Generalized extreme value (GEV) models provide a convenient way to model choice behavior

that is consistent with utility maximization theory, but the development of specific new models

within the GEV family has been slow, due to the difficulty of ensuring new formulations comply

with all the GEV rules. e network GEV structure (NetGEV) introduced by Daly and Bierlaire

(2006) provides a tool to verify that proposed newmodels satisfy theGEV conditions, without the

burdenof complex analysis of thenewmodel to ensure its properties. is dissertation further de-

velops and expands the NetGEV tool. It describes several methodologies for applying constraints

to correctly normalize the allocation parameters in such models, allowing parameter identifica-

tionwhile ensuring that utilities are not biased due to the network structure. esemethods vary

depending on the structure of the underlying network.

Additionally, amodification of the allocation parameters is presented, which transforms them

to create an alternative set of parameters that are unconstrained. is change also allows the

inclusion of data within the allocation formulations, which creates a new heterogeneous net-

workGEV (HeNGEV)model, with the opportunity for heterogeneous covariance structures, while

maintaining the closed form probabilities common to GEV models. Including the heterogeneity
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in the allocation structure, as opposed to the logsum parameters (as in Bhat, 1997a), allows vari-

ations in both the magnitude and structure of the covariance. is heterogeneity is useful in

sub-market analysis, where small differences in the competitive dynamic between alternatives in

a segment of the population may drive large changes for revenue management systems or en-

vironmental justice evaluations. Various derivatives and elasticities of the HeNGEV model are

derived, utilizing the network structure underlying the model to simplify the formulations.

e performance of the HeNGEVmodel is compared against a homogeneous NetGEVmodel,

using two different synthetic data sets. e first data set is designed to maximize the effect of

the heterogeneous error covariance, while the second reduces the effect to a more subtle level. In

each case, the HeNGEV model performs better than the NetGEV model, recovering parameters

that are closer to their (known) true values, and with improvements in log likelihoods well above

a statistically significant threshold.
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CHAPTER 1

Introduction

emodeling of choice processes is an important part of transportation demand forecasting,

as transportation system demand is derived from individual choices made by travelers. Travel

demand forecasting underlies every step of transportation planning, as the evaluation of policy

and planning initiatives requires the anticipation of how travelers will react to changes in the

transportation system.

Early demand forecasting models made assumptions about behavior that were unrealistic,

but allowed the models to be calculated relatively simply, using technology available at the time.

In particular, one of the earliest disaggregate choice models was the multinomial logit model,

which exhibited the property of independence from irrelevant alternatives (IIA). e resulting

choice probabilities, and in particular trade-offs between alternatives, were obviously not consis-

tent with realistic choices. Specifically, the probabilities of all other alternatives changed propor-

tionally in response to the inclusion, exclusion or change in any alternative. Yet the MNL model

was (and in some applications, continues to be) a popular tool, because of the ease of estimation

and application.

1.1. Generalized Extreme Value Models

e problems of the MNL model were well known early in its application, but the few quan-

titative alternatives were extremely complicated and extraordinarily difficult to estimate or to be

used for prediction. is impasse existed until the development of the generalized extreme value
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(GEV) structure for discrete choicemodels proposed byMcFadden (1978). is framework estab-

lished a set of rules that defined a family ofmodels, which included theMNL, but alsomany other

forms that were not impeded by the IIA property, by incorporating non-independent covariance

structures for the error terms.

Since the development of the GEV structure, substantial efforts have been put forth to find

new forms of GEV model, exhibiting more varied covariance structures. Progress was initially

slow, and for some time modelers were limited to the initial multinomial logit and nested logit

models, which both pre-dated the more general GEV formulation. Later, Chu (1989) added the

paired combinatorial logit, Vovsha (1997) the cross-nested logit, Small (1987) the ordered GEV,

and Bresnahan et al. (1997) the product differentiation model. Ultimately, Wen and Koppelman

(2001) proposed the generalized nested logit (GNL) model, which is a more general form which

encompasses all previous such models, with the exception of the multi-level nested logit model.

e GNL, unlike the nested logit model, is limited to only a single level of nests, and does not

allow hierarchical nesting.

e pace of discovery of new GEV models was impeded primarily because each new model

needed to be carefully constructed to ensure compliance with the GEV prerequisites, but also

becausemore complexmodels generally required substantial computational effort. Technological

advancements in computing power and data storage have thus made it possible to estimate ever

more detailed and complex models. For example, Coldren and Koppelman (2005) introduced a

three level weighted nested logit model, as well as a nested weighted nested logit model. Each of

these was essentially a multi-level expansion of the GNL model, but they were specific cases of

models, which lacked generalizability to more abstract multi-level forms.

While it is relatively easy to envisage a particular correlation structure among alternatives, it

is sometimes hard to translate that structure into a viable GEV formulation. In particular, the
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requirement that the generating function has alternating sign partial derivatives is not trivial

to check for most possible generating functions. In light of this, several authors have examined

methods of stitching together separate GEVmodels to create new ones, allowing modelers to use

these tools to develop models with new utility correlation structures on the fly. Such tools would

obviate the need to carefully analyze each newmodel structure to ensure it is compliant with the

GEV formulation. e finite mixture model developed by Swait (2003) merged together several

models to create a new GEVmodel. Daly and Bierlaire (2006), hereafter referred to as D&B, sepa-

rately expanded this idea to include not only connecting separatemodels, but also creating a new,

more flexible structure formaking newGEVmodel forms by connecting partial GEVmodels using

a network (NetGEV). D&B’s network formulation is one of the most general of GEVmodel struc-

tures discovered so far, as all other models mentioned above are specific forms of the NetGEV

model. Refining and expanding this model is the focus of this dissertation.

1.2. Advanced GEVModels

ere are, however, certain GEV constructs that are not specific forms of the NetGEV model.

Most notable is the mixed logit form, which is very flexible, and can approximate (to any arbi-

trarily close degree of precision) any possible GEV form (Revelt and Train, 1998; McFadden and

Train, 2000; Train, 1998, 2003). e primary drawback of mixed logit models is that they do not

have a closed form probability expression, as the various models mentioned above do. e lack of

a closed form means that finding probabilities requires calculating integrals, a task usually han-

dled through simulation. While the conceptual form of themixed logitmodel has been known for

many years, it has only been in the past decade or so that computational power has been available

for even the most rudimentary mixed logit models to be estimated (Train, 2003).

Mixed logit models have been used principally to allow heterogeneity of the utility functions

across individuals. is heterogeneity can be included in the systematic portion of utility (in a
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random coefficients formulation), or in the random portion of utility (in an error components

formulation). While these two forms are mathematically the same within the mixed logit frame-

work (Train, 2003, p. 144), their interpretation can be different, depending on what variables are

included in different terms of the utility.

Latent class models can incorporate heterogeneity for systematic utility into a closed form

model. ese models differ from what is traditionally considered as a mixed logit model by hav-

ing discrete distributions on the random parameters, instead of continuous distributions. Such

models have been used extensively in marketing (e.g. Kamakura and Russell, 1989; Chintagunta

et al., 1991; Swait, 1994; Schrevens et al., 2005), as well as transportation choices such as wilder-

ness recreation locations (Boxall and Adamowicz, 2002) and intercitymode choice (Bhat, 1997b).

While substantial work has been done to bring heterogeneity into the systematic portion of

utility, relatively little has beendone to incorporateheterogeneity into the randomportionof util-

ity. One of the reasons thatmodelers adopt amixed logit formulation is the ease of incorporating

differences in decisionmakers into the error component of utility. Bhat (1997a) showed that it is

possible to incorporate such differences in a closed form GEVmodel, which he eloquently named

“nested logit model which accommodates covariance heterogeneity”, by sub-parameterizing the

logsum parameters of a nested logit model. is model allowed differing amounts of covariance

across people, but required a single covariance nesting structure throughout the population; so

that there could be more or less covariance for different people, but not a different nesting struc-

ture entirely.

1.3. Motivation for Further Improvements

e most flexible discrete choice models available today are mixed logit models, which can

achieve any desired correlation structure among the random utilities of choices. However, using

such models requires simulation, an expensive computational process. e costs of simulation,
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while continually shrinking with advances in computer capabilities, are generally over burden-

some for more complex models, such as activity-based models (Planning Section MTC, 2005) or

integrated land use and transportation models (Waddell et al., 2007). Even larger models, such

as the travel models embedded in Epicast, a national-scale epidemiological simulation (Germann

et al., 2006), simply cannot handle the storage of individual-specific parameters that a mixed

logit model requires, even on the most advanced super computers in existence today. Such appli-

cations call for closed form models, which can generate choice probabilities without the costs of

simulation.

Nevertheless, it is desirable to incorporate into closed formmodels as many of the features of

the most flexible mixed logit models as possible. In particular, a heterogeneous error covariance

structure, which heretofore has been only available with amixed logit model, would allow a wider

array of inter-alternative interactions, and potentially better fitting models.

e information available in observed data is often limited, especially with shrinking budgets

for data collection. When data collection is relatively complete, the various ways in which alter-

natives are similar or different are captured in the systematic portion of utility, with the random

portion of utility left to represent only uncorrelated “white noise” in the choice process (Train,

2003, p. 39). It is when the data is incomplete that more sophisticated models can fill in some of

the gaps. e development of choicemodels withmore flexible correlation structures for the ran-

dom portion of utility allows for the capture of more information out of the unobserved portion

of utility.

1.4. Contributions

e focus of this dissertation is the development of a closed form GEV model which exhibits

covariance heterogeneity across decision makers, both in the quantity of covariance and in the
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structure of that covariance across alternatives. Using the NetGEV model introduced by D&B as

a jumping off point, this work provides several specific contributions:

• A demonstration is provided that shows that the correct normalization of allocation pa-

rameters in a NetGEV model, in the absence of a complete set of alternative specific

constants, depends on the structure of the network.

• For two particular network topologies of NetGEV models, non-biasing normalizations

for the allocation parameters are introduced. For networks not consistent with either of

these topologies and lacking a full set of alternative specific constants, a remedial trans-

formation is provided that still allows non-biasing normalization, although through the

use of complicated non-linear parametric constraints.

• An alternative functional form for the NetGEV model is proposed, that replaces con-

strained allocation parameters with unconstrained parameters, which are simpler to es-

timate using common maximum likelihood methods.

• Lastly, a new closed form heterogeneous covariance network GEV model (HeNGEV) is

presented, which incorporates decision maker characteristics into node allocations, al-

lowing such characteristics to drive not only the systematic utility of the alternatives,

but also the structure and magnitude of the error correlations.

1.5. Benefits

Improved behavioral realism. Amajor benefit of any relaxation in the assumptions required by

a choice model is an improvement in the potential behavioral realism of the model. e specifica-

tion of randomutilitymaximizationmodels requires some assumptions about the distribution of

utility across alternatives. e basicMNLmodelmakes some fairly restrictive assumptions about

that distribution, namely that the utilities for the alternatives are distributed identically and in-

dependently with a Gumbel distribution. e nested logit and generalized nested logit models
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each relax this assumption, allowing (respectively) hierarchical or overlapping sets of alterna-

tives to be non-independent, with homogeneous correlation across the population. e NetGEV

model allows correlation across both hierarchical and overlapping sets of alternatives simultane-

ously. e introduction of the HeNGEV model relaxes the homogeneity of correlation assump-

tion. Each relaxed assumption allows the models potential to more closely match the underlying

choice process.

Overcoming data deficiencies. Obviously, it is desirable to include in a random utility model as

many of the variables that determine utility as possible. In the ideal case, all such variables will be

included, and the remaining error would have a tiny variance, which would be uncorrelated across

alternatives. Such a model could be fully captured with a regular multinomial logit structure.

However, in practice we nearly always lack all the relevant variables that determine utility. Some

variables are unknown or difficult to quantify, and others are too expensive and time consuming

to collect for each sampled decision maker. e error term thus must encompass the effect of a

wide variety of unobserved attributes of the alternatives.

e covariance structure of the error terms in a random utility model represents the simi-

larities across alternatives in unobserved variables. Early members of the GEV family of models

allowed this covariance structure to differ from zero, but still imposed significant constraints on

the form and quantity of covariance, which translates to an implied constraint on the nature of

the similarities in the unobserved attributes of the alternatives. Relaxing that constraint will

allow models to more closely approximate the real underlying choice mechanism. e NetGEV

model is able to represent a wider array of possible correlation structures than the most general

previously known GEV models (for details, see Section 2.5 on page 28). is allows the incor-

poration into the model of more of the effect of these unobserved attributes of the alternatives,
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which can mitigate the loss of modeling predictive power that comes from not including those

unobserved attributes directly.

Enhancedmarket segmentation. eheterogeneous covariance introduced in this dissertation

is an extremely valuable tool for understanding the competitive dynamics among alternatives in

segments of the population. In traditional GEV models, various segments of the population can

reveal different preferences for alternatives though parameters within the systemic portion of

utility. is individual response function is the basic nature of disaggregate models. However,

the random portion of utility in these models is homogeneous, so that it cannot reflect differ-

ences among decision makers in the population. Allowing the error terms to have heterogeneous

covariance is a natural extension of disaggregate choice models.

is extension can be important in evaluating the effects of policy changes on particular sub-

segments of the population. It is well known that the change from a fixed (independent) covari-

ance structure to a parameterized structure, as whenmoving from amultinomial logit to a nested

logit, can change the resulting probabilities generated by the model across the entire population.

Incorporating a heterogeneous covariance is the functional equivalent of changing from the fixed

covariance to a parameterized covariance across a continuum of submodels spanning the values

of the variables that are included in the parameterization.

Changing from a homogeneous covariance to a heterogeneous covariance would not typically

be expected to reveal large changes in probability across the entire population, as the likelihood

maximizing parameters for the homogeneous model would provide a balance of the covariances,

even when the covariances differ across the population. However, as is demonstrated in this dis-

sertation, the heterogeneous covariance could result in very different probabilities in subsections

of the population, if the underlying covariance is indeed heterogeneous.
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is improvement in predictive ability for market segments will be of particular interest to

modelers that are focusing only on subsections of the population. Within revenue management

programs, which specialize in extracting rents frommarket niches, the heterogeneous covariance

structurewill be particularly appealing. Applying a heterogeneousmodel to itinerary choice could

reveal choice patterns and trade-offs among certain (especially high income) travelers that are not

reflected in more general choice models.

Heterogeneous covariance could also be relevant in environmental justice issues. e U.S.

federal government requires evaluation of proposed projects regarding their impact on disadvan-

taged groups. If individuals in these groups tend to see particular sets of alternatives as more,

or less, similar, when compared against the rest of the population, then the impact of projects

on such groups may be misrepresented by a homogeneous analysis. For example, if lower income

people tend to see bus and rail transit as very similar, while higher income people do not, then

a project to enhance rail service might have benefits that accrue more to higher income people

than would be predicted by a homogeneous model.

Closed form model. e various benefits described above could be achieved through the imple-

mentation of mixed logit models. However, the use of mixed logit models requires multidimen-

sional integration through simulation, which can be a computationally expensive process. e

closed form of the HeNGEV model requires substantially less computation.

Graphical representation. Additionally, the specification of a mixed logit model that captures a

complex covariance structure requires careful consideration of the functional form of parameters

and errors. e HeNGEV structure, on the other hand, inherently provides a graphical represen-

tation of the covariance structure, with well defined relationships. While not a straightforward

and simple as the nested logit form, it is still easier to grasp for a modeler than a completely

amorphous form.
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1.6. Outline

In the next chapter, the details of GEV models and the NetGEV structure proposed by D&B,

as well as a convenient mathematical reformulation of this structure, are reviewed. Topolog-

ical properties of NetGEV structures, and some possible normalizations of parameters in those

structures are then presented in Chapter 3. A useful transformation of the allocation parameters,

which results in a novel heterogeneous covariance network GEV model (HeNGEV) is introduced

in Chapter 4. is newHeNGEVmodel eases estimation by removing parametric constraints, and

creates the possibility of the inclusion of disaggregate data into the utility allocations, allowing

the structure of the network, and thus the nature of the underlying correlation structure of the

random utility values, to vary within the population. e various derivatives and the elasticity

of probability with respect to observed attributes of the choices and the decision maker for the

HeNGEV model are examined in Chapter 5. Finally, an operational application of the HeNGEV

model is demonstrated, using synthetically generated airline itinerary choice data in Chapter 6.

e final chapter provides a summary of the presented innovations, and some concluding re-

marks.
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CHAPTER 2

Modeling Structures

2.1. Random Utility Maximization

emost commonmethod formodeling such choices is through randomutilitymaximization,

a methodology formalized byManski (1977). is type of model is based on utility maximization

theory, where an individual is surmised to choose from any set of alternatives that which would

provide him with the maximum benefit, or utility. e choices actually made by an individual

are presumed to be deterministic: each person knows the potential utility of each alternative,

and chooses the best one. e modeler, however, cannot directly observe utility, but instead can

only observe some of the attributes of the alternatives that contribute to, but do not completely

determine, utility. ose attributes provide a modeler some inputs with which to determine a

probability density function representing the possible values of utility for the alternatives in an

individual choice. e resulting model yields choice probabilities such that

(2.1) Pti = Pr(Uti ≥ Utj, ∀j ∈ C),

with Pti as the probability that decision maker t chooses alternative i from choice set C. us

(2.2) Pti = ∫+∞
Uti=−∞∫Uti

Utj=−∞f (Ut) dUt

e details of the model then depend on the functional form of U . Generally, the utility of an

alternative in a model is separated into two components: a systematic, deterministic portion of

utility that is derived from the observed attributes of the alternatives and the decisionmaker (Vi);
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and a random component εi that is not attributable to observed attributes. us (2.1) becomes

Pti = Pr(Vti + εti ≥ Vtj + εtj, ∀j ∈ C).

2.2. Generalized Extreme Value Models

McFadden (1978) found that if the probability density function of the random portion of

utility is assumed to be a multivariate generalized extreme value (GEV) distribution adhering to

certain conditions, then the probability function can be reduced to a closed form expression. In

addition,McFadden demonstrated that such distributions could be generated by other functions,

when those generating functions G(y) adhered to a few simple rules, to wit:

• G(y) > 0, ∀y ∈ RJ
+,

• G is homogeneous of degree µ > 0,1

• limyi→+∞G(y) = +∞, and

• the mixed partial derivatives of G with respect to elements of y exist, are continuous,

and alternate in sign, with non-negative odd-order derivatives, and non-positive even-

order derivatives.

When y in such a generating function is replaced with exp(V ), then the resulting choice model

has a closed form probability expression, and is consistent with random utility maximization

theory. Different generating functionswill result in different probability density functionswithin

the generalized extreme value family. e primary benefit of varying the generating function is

that different generating functions will result in multivariate density functions with different

attributes, in particular with different covariance matrices. e ability to incorporate covariance

1McFadden (1978) originally required that G had to be homogeneous of degree 1, but this condition was relaxed by
Ben-Akiva and François (1983), such that G needs only be homogeneous of any positive degree.
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between the random portion of utility allows the modeler to partially account for relationships

between alternatives that are not expressed in the observed characteristics of those alternatives.

Since the development of the generalized extreme value (GEV) structure for discrete choice

models by McFadden (1978), substantial efforts have been put forth to find new forms of GEV

model, exhibiting more varied covariance structures. Progress was initially slow, and for some

time modelers were limited to the initial multinomial logit (with G(y) =
q

i yi) and nested logit

models (in their simplest form, G(y) =
q

n[(
q

i∈n y1/µn)µn]), which both pre-dated the more

general GEV formulation. Later, Chu (1989) added the paired combinatorial logit, Vovsha (1997)

the cross-nested logit, Small (1987) the ordered GEV, and Bresnahan et al. (1997) the product

differentiation model. Ultimately, Wen and Koppelman (2001) proposed the generalized nested

logit (GNL) model, which is a more general form which encompasses all previous such models,

with the exception of the multi-level nested logit model. e GNL is derived from the generating

function

G(y) =
ÿ

n

A

ÿ

i∈n

(αniyi)
1/µn

Bµn

,

with the conditions that αni ≥ 0, and
q

n αni = 1, ∀i. e GNL, unlike the nested logit model, is

limited to only a single level of nests, and does not allow hierarchical nesting. is process of dis-

covery of newGEVmodelswas initially slow, primarily because each newmodel needed to be care-

fully constructed to ensure compliance with the GEV prerequisites, but also because more com-

plex models generally required substantial computational effort. Technological advancements in

computing power and data storage have thus made it possible to estimate ever more detailed and

complex models. For example, Coldren and Koppelman (2005) introduced a three level weighted

nested logit model, as well as a nested weighted nested logit model.
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2.3. D&B’s Network GEV Formulation

Developing newmembers of the GEV family has been a difficult process, because the require-

ment that the generating functionhas alternating sign partial derivatives is not trivial to check for

most possible generating functions. However, D&B propose a method to build new GEV models

by combining other GEV models, based on the following functional form:

(2.3) Gi : RJi
+ → R+ : Gi (y) =

ÿ

j∈i↓

5

aij

1

Gj(y)
2µi/µj

6

,

where i is a node in a finite, directed, connected, circuit-free graph, i↓ is the set of successor nodes

to i, a is an allocation parameter associatedwith each edge in the network,µ is a scaling parameter

associated with each node in the network, and Ji is the number of alternatives of the choice at

i. e network is structured in such a way that there is a set of nodes with no successors, which

correspond to the alternatives, and a single root node with no predecessors, that will directly or

indirectly incorporate theG functions of all other nodes in the network, and thus theG function

of that node represents the complete choice model. At the nodes corresponding to the choice

alternatives (which have no successor nodes), equation (2.3) is replaced instead with

(2.4) Gi : RdimR(y)
+ → R+ : Gi(y) = yµi

i .

D&B show that if the allocation parameter a associated with each edge in the network is

greater than zero, and if the scaling parameter µ associated with each node i is smaller than or

equal to the scaling parameter of all successor nodes, then theG function at the root node will be

a valid GEV function. While the relative scaling of this formulation (logsumparameters that grow

whenmoving from themodel root toward the alternatives, instead of shrinking)may seem “back-

wards” compared to themore common ordering of logsum parameters in a nested logit model (as
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in Train, 2003), this is merely a technicality of the particular formulation chosen by D&B, and is

not mathematically limiting. Inverting the power of Gj in (2.3) and simultaneously inverting µ

for every node does not change the net power ofGj ; the resultingmodel is the same, but with the

restriction that µ decreases when moving from the root node to the elemental alternatives, in-

stead of increasing. e important criteria is that magnitude of the power scaling of the terms of

the summation in (2.3) must not shrink when moving from the root node towards the elemental

alternative nodes. e magnitude of the power of the terms contained in a G is inversely related

to the variance of the alternatives (or portions of alternatives) contained in thatG. For any set S

of alternatives (or portions of alternatives), any subset of S must have equal or smaller variance,

hence the required ordering of logsum parameter values.

2.4. An Alternative Mathematical Formulation

It will be useful to adjust this network structure, to aid in the simplification of the necessary

constraints for normalization. e adjustments are similar to those made on the cross-nested

logit model by Abbé et al. (2007).

Let G(Z, E) be a finite connected directed circuit-free graph, in which only one node R in Z

has no predecessor. Each edge in the graph is associated with a positive parameter aij > 0. We

consider the subsets of nodes: C is the set of nodes with no successor, and N is the set of nodes

with at least one successor, i.e. the complement of C inZ . Since G is connected,R is a member of

N . We associate with each node i in N a parameter µi > 0. Further, if a directed edge connects

from any node i to any other node j (i.e. i is a direct predecessor of j), then µi ≥ µj . If i ∈ C then

Gi : RdimR(y)
+ → R+ : Gi(y) = yi,
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otherwise i ∈ N and

(2.5) Gi : RdimR(y)
+ → R+ : Gi(y) =





ÿ

j∈i↓

5

1

aijG
j(y)

21/µi
6





µi

,

where i↓ is the set of successor nodes of i. Let such a network be called a scale-normalized GEV

network.

eorem 2.1. e function Gi associated with any node i of a scale-normalized GEV network is a

1-GEV function.2

P. By D&B’s eorem 4, Gi is a 1-GEV function if

H i(y) =
ÿ

j∈i↓

5

1

aijG
j(y)

21/µi
6

is a 1/µi-GEV function. By D&B’s eorem 1, H i is a 1/µi-GEV function if all the terms in the

summation are 1/µi-GEV functions. For each node j ∈ i↓, either j ∈ C or j ∈ N . If j ∈ C,

expanding that term of H i yields (aijyj)
1/µi , which is clearly a 1/µi-GEV function. If j ∈ N ,

expanding that term of H i yields a1/µi
ij (Hj(y))

µj/µi , which by D&B’s eorem 4 is a 1/µi-GEV

function if Hj(j) is a 1/µj-GEV function. By induction, all nodes i in the network have Gi as a

1-GEV function, and all nodes j ∈ N have an associated Hj , which is a 1/µj-GEV function. §

2Strictly interpreted, Gi for any node that does not contain the entire set of alternative nodes C is not exactly a GEV
generating function, but merely an asymptotic approximation of a GEV function. is is a result of the fact that for
any elemental alternative node j not in the successor set of i, limyj→+∞ Gi(y) ”= +∞, violating one of the formal
requirements of a GEV function. e result of this violation is that the function generated byGi is not strictly a CDF,
as what should be the marginal cumulative density function for the associated elemental alternative j is Fj = 1.
However, Fj is an asymptotic approximation the univariate extreme value distribution Fj = exp [− exp [µ − εj ]] as
µ → −∞, and thus Gi is an asymptotic approximation of a GEV generating function. Since the only model typically
used is themodel associated with the root node at the beginning of the network, and since this node by construction
will have all the elemental alternative nodes as eventual successor nodes and thus will have a fully compliant GEV
generating function, this distinction should be irrelevant in practice, but it is included here for completeness.
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e resulting model that is derived from this network is mathematically equivalent to the

model presented by D&B, as can be seen in the similarity betweeneorem 2.1 and D&B’s eo-

rems 7 and 10. ere are, however, a few useful differences:

• eGi function at every node is a 1-GEV function. Since the scale ofGi here is the same

at every node of the network, direct “apples to apples” comparisons ofGi values for any

two nodes can be made. While this has no impact on the resulting choice probabilities,

it canmake the interpretation of complex networks simpler, by allowing the direct iden-

tification of preferred network paths through simple numerical comparisons of utilities.

• e µ parameters attached to nodes in C are dropped from the model, as they are not

identifiable, as discussed in the next section. is is not the same as normalizing µ from

the choices end of the network, but rather because these parameters are not mathemat-

ically relevant.

• e allocation parameters, which D&B denote as α, have been denoted here as a, and

they have been applied to G before the µ power transformation, rather than after. is

change simplifies the normalization restrictions described in the next section, as a will

be a function of the ultimate parameters α, and will have different functional forms de-

pending on the structure of the network.

e relationship betweenGi and Vi, the systematic utility of the alternative, is simple when node

i is an elemental alternative (Gi = exp[Vi]). It is useful to conceptualize a similar relationship

between Gn and Vn for nesting nodes, even though those nodes do not have a direct systematic

utility per se. Vn for nesting nodes is still a relevant measure of utility. In the nested logit model,

Vn is the scale adjusted logsum value for the nest. It retains a similar function in the NetGEV

structure.
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Figure 2.1. One Bus, Two Bus, Red Bus, Blue Bus
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2.5. Advantage of NetGEV over GNL

e NetGEV model is more flexible than the GNL model, and is able to represent a greater

range of possible correlation structures between alternatives. In particular, the hierarchical nest-

ing structure allows strongly correlated alternatives to still be loosely correlated with other al-

ternatives. Wen and Koppelman (2001) begin to explore the differences between the GNL and

the hierarchical form as expressed in the NL model, but they conclude that the GNL can gener-

ally approximate an NL model. e NetGEV model, on the other hand, makes these differences

potentially more relevant.

For example, consider the famous red bus/blue bus problem. In the traditional scenario, a

decisionmaker is initially facedwith a choice between travelling in a car or in a red bus, as in theA

model in Figure 2.1.In the simplest case, these alternatives are considered equally appealing, and

each has a 50% probability of being chosen. When a new blue bus alternative is introduced, which
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is identical in every way to the red bus, we would expect the bus riders to split across the buses,

but car drivers would not move over to a bus alternative. In the MNL model, however, this does

not happen. Instead, as in the Bmodel in Figure 2.1, the buses draw extra probability compared

to the original case. e introduction of the nested logit model, as in the C model, allows the

error terms for the bus alternatives to be perfectly correlated, and we achieve the expected result.

However, in a revised scenario, the original case is not binary choice, but instead it is a three-

way choice, between a car, a bus, and a train. Further, we can construct the initial model as a GNL

model (shown in the D model in Figure 2.2), so that the car and bus alternatives are partially

nested together (both get stuck in traffic), and the bus and train alternatives are also partially

nested together (both are mass transit). In this model, the utility of the bus tends to fall between

car and train, so that its probability is slightly reduced relative to the others (a decision maker

chooses the alternative with maximum utility, and the bus tends to be most likely to come out

as #2 in this scenario). Again, the blue bus is introduced into the market, identical to the red

bus. If the blue bus is inserted into the GNL model with the same nesting setup as the existing

red bus, as in the E model in Figure 2.2, the probabilities of the car and train alternatives are

adversely affected. Anew “bus” nest could be introduced to induce the requiredperfect correlation

between the error terms of the buses, but under the constraints of theGNLmodel, the allocations

of the buses to the traffic and transit nests would need to be reduced (to zero), eliminating the

correlation between the buses and the other alternatives.

e NetGEV model removes that constraint of the GNL model, and allows hierarchical nest-

ing, as in a normal NL model. us, the nesting structure in the F model of Figure 2.2 can be

created, linking together the buses before allocating them to traffic and transit nests. e prob-

abilities for car and train can be preserved, with the red and blue buses splitting the bus market

only.
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Figure 2.2. e Blue Bus Strikes Again
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CHAPTER 3

Normalization of Parameters

eNetGEVmodel as formulated is over-specified, so that is not possible to identify a unique

likelihood-maximizing set of parameters. e over-specification is similar to that observed in

attempts to maximize f(x, y, z) = − (x + y)2 + (z/z). is problem cannot be solved to an

identifiable unique solution; any value for any individual parameter can be incorporated into a

maximizing solution. Some parameters are unidentified as a set (as are x and y), and can only be

identified if one of the set is fixed at some externally determined value (e.g. setting y = 1) or if

some externally determined relationship is applied (e.g. setting x = y). Other parameters are

intrinsically unidentified (in this example, z), and cannot be identified at all.

Mathematically, this is expressed in the derivatives of f with respect to its parameters. e

first derivative of f with respect to an intrinsically unidentified parameter is globally zero. Param-

eters unidentified in sets can individually have calculable first partial derivatives, but the Hessian

matrix of second derivatives is singular along the ridge of solutions.

In the D&B formulation, the µ parameters for the nodes associated with the elemental al-

ternatives are intrinsically unidentified. For Gi of a node i in N , the additive term relating to

any node j in C is aijGj(y)µi/µj = aij(yµj )µi/µj = aijyµi , which drops µj . is can be verified

by examining the derivatives of the D&B formulation. ey provide the derivative of Gi(y) with

respect to µk when k is a successor node of i:

(3.1)
∂Gi (y)

∂µk
= aik

1

Gk(y)
2(µi/µk)−1 µi

µk

A

∂Gk(y)

∂µk
− 1

µk
Gk(y) log

Ë

Gk(y)
È

B

.
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When k is associated with an elemental alternative, then ∂Gk (y) /∂µk = yµk
k log[yk]. In-

serting this into (3.1) will cause the term in parenthesis to collapse to zero, which will propagate

through the rest of the network, making the derivative of this parameter globally zero.

3.1. Topological Reductions

e topographical structure of the GEV network can create further over-specification, by in-

cluding extraneous nodes and edges that do not add useful information or interactions to the

choice model. Fortunately, these extraneous pieces can be removed from the network without

changing the underlying choice model.

3.1.1. Degenerate Nodes

A degenerate node is a node in the network that has exactly one successor. e G function for a

degenerate node d collapses to a single term:

(3.2) Gd (y) =





ÿ

j∈d↓

5

1

adjG
j(y)

21/µd
6





µd

= adjG
j(y).

µd drops out of the equation, and has no effect on Gd, and thus no effect on any other G in the

network, including GR. Since µd disappears from the calculation, it is intrinsically unidentified.

Degenerate nodes can, however, be removed from the network.

eorem 3.1. (Degenerate Node Collapse) Any degenerate node can be removed from the net-

work, along with the edge e connecting from it to its successor, by redirecting all incoming edges from

the degenerate node directly to the degenerate node’s successor, and setting the allocation parameter on

each such redirected edge equal to the product of the edge’s original allocation and the allocation on e.

is change will not affect the choice probabilities of the resulting model.
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P. In the original network, if d ∈ i↓ then

Gi =





Ó

aidGd
Ô1/µi

+
ÿ

m∈{i↓\d}

Ë

(aimGm)1/µi
È





µi

.

ReplacingGd with the rightmost side of (3.2) changes the term in curly braces to aidadjGj, result-

ing in an equation which exactly matches the correct form needed for the revised network, with

aij = aidadj . §

While certain non-normalized nested logit models may require degenerate nodes to correctly

normalize the model (Koppelman and Wen, 1998), the NetGEV model does not require such

nodes, and they can always be safely removed from the network. If they are not removed, it

will be necessary to externally identify the value of any degenerate node’s logsum parameter.

3.1.2. Vestigial Nodes

A vestigial node is a node which has no successors, but is not associated with an elemental alter-

native. While such nodes generally would not be expected in any practical application, the defi-

nition of a GEV network does not technically preclude their existence. e G function for such

a node would always equal zero, as the set of successor nodes in the summation term of (2.5)

is empty. e removal of such nodes from the network would obviously not affect the resulting

choice probabilities. As with degenerate nodes, if they are not removed, it will be necessary to

externally identify the value of their logsum parameters.

3.1.3. Duplicate Edges

Duplicate edges also add complexity to the network without providing any useful properties. A

duplicate edge is any edge in the network that shares the same pair of ends as another edge. As

the network is defined to be circuit free, all duplicate edges will always be oriented in the same
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direction. e allocation parameters on any set of duplicate edges are jointly unidentified, but the

extra edges can be removed without altering the underlying choice model.

eorem 3.2. (Duplicate Edge Removal) For any set of D duplicate edges e1, e2, ..., eD in the

network, which connect from node i to node k, e1, e2, ..., eD can be removed and replaced with a single

edge ê, with the allocation parameter on ê equal to
1

qD
d=1 a1/µi

ed

2µi
. is changewill not affect the choice

probabilities of the resulting model.

P. In order tomaintain themodel probabilities,Gi mustmaintain the same value before

and after the edge removal. So,





D
ÿ

d=1

5

1

aed
Gk

21/µi
6

+
ÿ

j∈{i↓\k}

5

1

aijG
j
21/µi

6





µi

=





1

aêG
k
21/µi

+
ÿ

j∈{i↓\k}

5

1

aijG
j
21/µi

6





µi

,

thus
D

ÿ

d=1

Ë

a1/µi
ed

È

= a1/µi
ê ,

and the result follows directly. §

When a GEV network has been stripped of degenerate and vestigial nodes, and duplicate

edges, it can be considered a concise GEV network. Each of these processes results in the removal

of nodes or edges from the network, and since any GEV network is finite, the process of reducing

any GEV network to its equivalent concise network must conclude after a finite number of trans-

formations. As it is not restrictive to do so, the remainder of this paper will assume that GEV

networks are concise.

3.2. Normalization of Logsum Parameters

It is well known that it is necessary to normalize logsum parameters in nested logit models,

as the complete set of logsum parameters is over-specified (Ben-Akiva and Lerman, 1985). As
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the NetGEV model is a generalization of the nested logit model, it follows that the logsum pa-

rameters in this model will also need to be normalized. In particular, as mentioned by D&B, the

logsum parameters are only relevant in terms of their ratios. is is not quite as obvious in the

mathematical formulation presented here as it is in the original formulation, but since they are

equivalent the condition still holds. Setting the logsum parameter for any single nest (excepting

the nodes associated with elemental alternatives, and degenerate nests) to any positive value will

suffice to allow the remaining logsum parameters to be estimated. Typically, it will be convenient

to fix the logsum parameter of the root node equal to 1.

e logsumparameters of degeneratenodes (and elemental alternatives) are intrinsically uniden-

tifiable, and thus cannot be used as anchors to identify the parameters on other nodes. If any de-

generate node is not removed from the network using eorem 3.1, then the associated logsum

parameter must be set externally.

3.3. Normalization of Allocation Parameters

It is also necessary to normalize the allocation parameters in a NetGEV model. Multiplying

all the a values in (2.5) by a constant remains equivalent to multiplying the G function by the

constant. More generally, for any network cut that divides the root node from all alternative

nodes,multiplying all the a values for all edges in the cut by a constant is equivalent tomultiplying

GR by that constant. is change would not affect the ratio ofGR and its derivatives with respect

to y, and thus would not affect the resulting probabilities of the model. In order to be able to

estimate the allocation parameters, some relationships between them must be fixed externally.

e imposition of these relationships between allocation parameters could potentially create

an undesired bias in themodel. An unbiasedmodel is one such that the expected value of the ran-

dom utility for any alternative i is equal to the systematic (observed) utility for that alternative,
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plus a constant with fixed value regardless of the alternative:

(3.3) Ūi = Vi + ε̄i = Vi + ξ,

and thus ε̄i = ξ. An unbiased model does not imply that actual observed choice preferences will

not be biased in favor of one or more alternatives, but rather indicates merely that a model will

not over- or under-predict the probability of an alternative due only to the structure of themodel.

e constant expected value of ε, as shown in (3.3), only applies to elemental alternatives.

While the log of the generating function G may create a value V which is analagous to the sys-

tematic utility of an elemental alternative, there is no explicit error term ε for a nesting node. If

one were to be assumed, its expected value could be any value, not necessarily ξ.

e constraint proposed by D&B in equation (52) will not allow the identification of the al-

location parameters on edges connected to elemental alternatives. is normalization involves

constraining the allocation parameters relative to a ratio of the node-related logsum parameters

of the nodes at either end of the associated edge. For elemental alternatives, the µ parameter

is intrinsically unidentified, as demonstrated earlier, so imposing a constraint on the allocation

parameters based on this parameter will not resolve the identification issue for the allocation

parameters.

Instead, Abbé et al. (2007) demonstrate that the proper normalization for a cross-nested logit

model (a particular form of a NetGEV with all nesting nodes having the root node as their sole

predecessor) is

(3.4)
ÿ

j∈i↑ (aji)
1/µR = κ
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when the cross-nested network is constructed according to equation (2.5), or

(3.5)
ÿ

j∈i↑ (aji)
µj/µR = κ

when the cross-nested network is constructed according to equation (2.3), with κ being any con-

stant that does not depend on i or j, typically 1. For convenience, the allocation parameters can

be transformed, such that αij = a1/µR
ij , resulting in a set of linear constraints on α:

(3.6)
ÿ

j∈i↑ αji = κ.

e Abbe, et al. normalization is not applicable in general to all NetGEV models. Consider the

network in Figure 3.1. e marginal distributions of the error terms associated with the three

alternatives are:

FεA(yA) = exp [− exp [− (yA − µR log [αRKαKA + αRLαLA])]] ,

FεB (yB) = exp [− exp [− (yB − µR log [αRKαKB + αRLαLMαMB])]] ,

FεC (yC) = exp
Ë

− exp
Ë

−
1

yC − µL log
Ë

(αRLαLC)µR/µL + (αRLαLMαMC)µR/µL
È2ÈÈ

.

Under (3.6), the allocation parameters on edges terminating at nodes with a single predecessor

would always be κ, in this case that includes αRK , αRL and αLM . is allows a simplification of

the marginal distributions:

(3.7) FεA(yA) = exp [− exp [− (yA − {µR log [κ (αKA + αLA)]})]] ,

(3.8) FεB (yB) = exp [− exp [− (yB − {µR log [κ (αKB + καMB)]})]] ,
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Figure 3.1. A sample network.

(3.9) FεC (yC) = exp
5

− exp
5

−
3

yC −
;

µL log
5

(καLC)µR/µL +
1

κ2αMC

2µR/µL
6<466

.

Each of (3.7), (3.8) and (3.9) represents an extreme value distribution (as expected for a GEV

model) with a scale parameter of 1 and a location parameter indicated by the curled braces. As the

scale parameters are all the same, it would be necessary for the location parameters to also be all

the same to create an unbiasedmodel. ese equations reveal two particular issues in normalizing

the allocation parameters for a NetGEV.

First, the possibility of different length paths to elemental alternatives from the root node

results in variable size “stack” of allocation values. is can be observed in comparing (3.7) and

(3.8), as the longer path R→L→M→B (compared against R→K→A, R→K→B, and R→L→A)

adds an extra unbalanced κ in (3.8). is means it is no longer appropriate to normalize using

just any constant. Only by setting κ = 1 will the variance in path lengths become irrelevant, as

the edge parameters will not scale against each other. Doing so will cause the location parameters

of both (3.7) and (3.8) to collapse to zero, as αKA + αLA = 1 and αKB + αMB = 1 by (3.6).

e second problem is more complex, as seen in the location parameter in (3.9). What is in

essence happening is that the variance of C is decomposed into two parts, which are allocated to
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the different paths from the root node, in a manner consistent with the decomposition described

in eorem 1 in Abbé et al. (2007). In that decomposition, the error term in the utility of any

alternative is represented as the maximum of a group of error terms associated with what might

be called “partial alternatives”. ese partial alternative errors all have a commonscale parameter,

but various smaller location parameters, such that the maximum of the partial alternative errors

is equal to the error of the “whole” alternative.

In the cross-nested model, these partial alternatives recombine at the root node (R) due to

the restricted two-level nature of the network, and the errors terms associated with each partial

alternative are thus not correlated among each other. In contrast, the two partial alternatives of

C in the network in Figure 3.1 “crash” at L, not R. When µL < µR, these two parts become posi-

tively correlated with each other. e resulting location parameter for the recombined marginal

distribution of C will be less than it was before (0), unless µL = µR, αLC = 0, or αMC = 0 . One

way to ensure that the NetGEVmodel can be normalized without introducing bias is to constrain

the topology of the network to prevent such crashes in the recombination of alternatives.

3.3.1. Crash Free Networks

e restriction necessary to ensure thatmultiple pieces of the same alternative recombine only at

the root node is that all paths to any alternative initially diverge at the root. at is, for any node

i ∈ C, no two distinct paths leading from R to i in may share the edge connected to R. All paths

must diverge separately from the root node, and while they may converge sooner than reaching

the elemental alternative node, they may not share an edge emanating from the root node and

diverge subsequently.

For example, the network on the left side of Figure 3.2 does not conform to this criterion,

because elemental alternative C has multiple path divergence points on paths from R. ere are

four distinct paths through the network from R to C: R → M → C, R → K → C, R → K →
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Figure 3.2. Making a GEV network crash-free.

N → C, and R → N → C. e paths R → K → C and R → K → N → C share a common

edge emanating from R, which is not allowed. e network on the right side of Figure 3.2 is a

different but similar network, with the only difference being that the edge fromK toC is missing,

eliminating the pathR → K → C. Of the three remaining paths, no two share an edge emanating

from R. is reduced network is crash free. Note that the crash free network in Figure 3.2 is

functionally different from from the original network, and removing an edge from a network can

potentially result in a radically different model. (A strategy to adjust a non-conforming network

is examined in Section 3.3.4.)

In a crash-free network, for any node except the root node there can be at most one unique

path from that node to any other node. If there were more than one path from any node i other

than the root node to any other node, then those multiple paths could be extended backwards

from i to the root node, sharing common edges, including the edge connecting to the root. Check-

ing this criteria requires building a directed tree from each node connected directly to the root

node. If any node in the completed tree has any outbound edges that are not included in the tree,
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then that edge must connect to another node in the tree, completing a second path to that node,

and violating the crash avoidance criterion. Multiple paths diverging fromnodes not directly con-

nected to the root node will be captured in the tree[s] of that node’s predecessor[s] in the set of

nodes connected to the root.

eorem 3.1. (Crash Free Normalization) For a GEV network that is crash free, setting the allo-

cation terms aij = αµR
ij and enforcing

q

i∈j↑ αij = 1 will ensure unbiased error terms.

P. e error terms in the 1-GEV model at any node k are defined by

F k
ε1,...,εJ

(y1, ..., yJ) = exp
Ë

−Gk(exp[−y1], ..., exp[−yJ ])
È

and, by the requirements for a 1-GEV model, the marginal CDF for any particular error term is

F k
εi(yi) = exp [− exp [− (yi − logΘi)]] ,

where Θk
i ≡ Gk(0

1
, . . . , 0

i−1
, 1
i
, 0
i+1

, . . . , 0
J
). is is the extreme value distribution, with location

parameter logΘk
i and a scale parameter of 1. Clearly, the expected value for all the error terms

will be equal if and only if ΘR
i is equal for all alternatives for the complete model, i.e. at the root

node. At the elemental alternative node for node j, Θj
j = 1 , while Θj

i = 0 where i ”= j . At other

nesting nodes n ∈ N ,

(3.10) Θn
i =





ÿ

j∈n↓

5

1

(αnj)
µR Θj

i

21/µn
6





µn

.

At the root node,

(3.11) ΘR
i =





ÿ

n∈R↓

Ë

αRn (Θn
i )1/µR

È





µR

.
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By the definition of a single path divergent network, any node n except the root node must have

not more that one unique path to the node i associated with any alternative i. us, for each such

n, at most one term of the summation in (3.10) will have non-zero α, so (3.10) reduces to

(3.12) Θj
i = (αjk)µR Θk

i ,

with k being the relevant successor node to j.

For any node n that is an immediate predecessors of i, Θn
i = (αni)

µR Θi
i . For any node m

other than R that is an immediate predecessor of n, Θm
i = (αmn)µR Θn

i = (αmnαni)
µR Θi

i . is

process continues, so that for any node n exceptR,Θn
i is expressed only in terms ofα parameters

and Θi
i ,

(3.13) Θn
i = (αnjαjkαkl · · · αmi)

µR Θi
i = ZµR

ni Θi
i ,

where Zni is the product of all the α parameters associated with all the edges on the unique path

through the network from n to i. Substituting (3.13) into (3.11) yields

(3.14) ΘR
i = Θi

i





ÿ

n∈R↓

[αRnZni]





µR

.

At each node j, the allocation parameters subdivide the combined path allocation of all the paths

that pass through j to the various predecessor nodes. e requirement that the set of allocation

parameters for each node add to 1 ensures that the total incoming allocation equals the total

outgoing allocation. ere is one path for each term in the summation in (3.14), and the structural

restriction ensures that the total allocation among paths equals 1, thus
q

n∈R↓ [αRnZni] = 1, and

since Θi
i = 1 is a constant across all alternatives i, ε̄i = κ . §
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e crash avoidance restriction is not the only way to allow an unbiased normalization of the

allocation parameters in a NetGEV model.

3.3.2. Crash Safe Networks

Crash safe normalization imposes a slightly different restriction on the graph that defines the

NetGEVmodel: for any node i ∈ C, no two distinct paths leading from R to i may share the edge

connected to i. at is, all paths must converge separately at the elemental alternative node, and

while they may diverge later than departing the root node, they may not share an edge arriving

at the elemental alternative node.

is condition is easier that crash avoidance to check, as only elemental alternative nodes

can have multiple predecessor nodes. Since the network is connected and has only one root node

without predecessors, every node in thenetworkmust have at least one path connecting to it from

the root node. If any node j has more than one predecessor node, then it must also have more

than one possible path from the root node, as there must be at least one path through each of

the predecessor nodes. ose paths would then converge at j. If j is not an elemental alternative

node, then the condition for crash safety would be violated.

For example, the network on the left side of Figure 3.3 does not conform to this criterion,

because elemental alternative C has multiple path convergence points. ere are three distinct

paths through the network from R to C: R → M → C, R → K → M → C, and R → K →

N → C. e paths R → M → C and R → K → M → C share a common edge terminating at

C, which is not allowed. e network on the right side of Figure 3.3 is the same, except the edge

from K to M is missing, eliminating the path R → K → M → C. e two remaining paths do

not share an edge terminating atC. is reduced network is crash safe. Again, the two networks

shown in Figure 3.3 represent two different models, with potentially different probabilities for

alternatives.



44

N

B D

Nesting Node

Elemental Alternative Node

C

M

K

R

A

N

B DC

M

K

R

A

Not Compliant Crash Safe

Figure 3.3. Making a GEV network crash safe.

e normalization of a network with this topology is different from that described above. In-

stead of ensuring that partial allocations of alternatives recombine at the root node (and thus

without any internal correlation), the partial alternatives are allowed to recombine at any arbi-

trary location, with possibly some correlation between the partial alternative’s error terms. How-

ever, the location of the distribution of the partial alternative error terms is augmented, so that

the location of the recombined error distribution will still be constant across alternatives.

In order to provide a general algorithm to ensure this augmentation can be done correctly for

each alternative without conflicting with the necessary corrections for other alternatives, all of

the splitting of partial alternatives under this topological condition is done on the edges connect-

ing to the elemental alternatives. Each allocation parameter on these edges is associated with one

and only one elemental alternative, so that each alternative’s partial alternatives can be adjusted

independently. It is not necessary that a network is crash safe in this way in order to achieve

an unbiased normalized model, if multiple alternatives are constrained such that the necessary
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adjustments on nesting nodes do not conflict, but it is sufficient and convenient if the criterion

described here holds.

e crash safe normalization is more complex that the crash free method, and will require the

introduction of some new network descriptors.

As described earlier, each node in N , excluding R, has exactly one predecessor. For any node

n in N , let ṅ be the predecessor of n, n̈ the predecessor of ṅ, ...n the predecessor of n̈, and so on

backwards through the network until ñ, which is an eventual predecessor of n and an immediate

successor of R.

For each elemental alternative node i, let Gi be a sub-graph constructed of only the nodes and

edges that have i as an eventual successor, excluding i itself.

If ajk = 1 for all k inN , then the allocation parameter for the edge connecting from any node

in N to a node i in C can also be considered as the allocation α̨pRi to the entire path pRi from R

to i that uses that edge.

For each node j in N , define T(R, j, i) as the set of all paths from R to i that pass through j,

and α̃Rji as the total allocation to those paths:

α̃Rji =
ÿ

p∈T (R,j,i)

α̨pRi ,

or alternatively

(3.15) α̃Rji = αji +
ÿ

k∈{Gi∩j↓}
α̃Rki.

eorem3.2. (Crash SafeNormalization)For aGEVnetworkwhich is consistentwith single path

convergence, setting ajk = 1 for all k in N and

ani = (αni)
µn (α̃Rni)

µṅ−µn (α̃Rṅi)
µn̈−µṅ (α̃Rn̈i)

µ...n −µn̈ · · · (α̃Rñi)
µR−µñ
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for all i in C, or equivalently,

(3.16) ani =
3

αni

α̃Rni

4µn
3

α̃Rni

α̃Rṅi

4µṅ 3

α̃Rṅi

α̃Rn̈i

4µn̈ 3

α̃Rn̈i

α̃R
...
n i

4µ...n

· · ·
3

α̃Rñi

α̃RRi

4µR

,

and enforcing
q

j∈i↑ αji = 1 will ensure unbiased error terms.

P. Let N↓
i (k) be the set of successor nodes to k in Gi. en for any node j ∈ Gi,

Θj
i =







1

ajiΘ
i
i

21/µj
+

ÿ

k∈N↓
i (j)

5

1

Θk
i

21/µj
6







µj

.

Let M be a subset of Gi , such that every node m in M has been shown to have Θm
i of the

form:

(3.17) Θm
i =

3

α̃Rmi

α̃Rṁi

4µṁ 3

α̃Rṁi

α̃Rm̈i

4µm̈ 3

α̃Rm̈i

α̃R
...
mi

4µ...m

· · ·
3

α̃Rm̃i

α̃RRi

4µR

Θi
i .

Let M Õ be the compliment of M in Gi. Initially, M is empty. Because Gi is connected, directed,

finite, and circuit-free, theremust be at least one node j inM Õ that has i as its only successor. For

any such node, Θj
i = ajiΘi

i , so replacing aji with the right hand side of (3.16) and dropping the

first term (as αni = α̃Rni) yields exactly the form of (3.17). us, all such nodes j can be added to

M . Consider any node n in M Õ such that all its successors are in M . Once M has been populated

as described above, there must always be at least one such node unless M Õ is empty. All of the

successor nodes m to n are known to have Θm
i of the form in (3.17). With the exception of the

first term in the product, the right hand side of (3.17) does not depend on m, so that portion can

be brought out of the summation, yielding

(3.18) Θn
i =

3

α̃Rni

α̃Rṅi

4µṅ 3

α̃Rṅi

α̃Rn̈i

4µn̈

· · ·
3

α̃Rñi

α̃RRi

4µR

Θi
i

I

αni +
q

m∈N↓
i (n) α̃Rmi

α̃Rni

Jµn

.
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From (3.15), the term in the curly braces in (3.18) equals 1 and can be dropped, leaving the exact

form of (3.17), so n can be added to M . Since Gi is finite, all nodes in Gi must therefore be in M ,

includingR. ΘR
i therefore follows the form of (3.17), soΘR

i = Θi
i . AsΘi

i = 1, which is a constant

across all alternatives i, so ε̄i = κ. §

3.3.3. Bias Constants

If neither topological condition applies to a GEV network, it is still possible to normalize the al-

location parameters and retain an “unbiased” model. One way to do this is to include a complete

set of alternative specific constants (except for one arbitrarily fixed reference alternative) in the

model. ismethod does not ensure unbiased systematic utility through constant expected value

for the error terms as in (3.3). Instead, ε̄i is allowed to vary from κ, but the necessary adjustment

(ε̄i − κ) is incorporated into Vi itself. Unfortunately, this is undesirable because it conflates the

model bias correction with the actual choice preference bias. is can cause problems in inter-

preting these model parameters, and in comparing the parameters between models, even when

those models are estimated with the same underlying data. Additionally, there are various rea-

sons why it might be undesirable to include a complete set of alternative specific constants in a

model, often because the number of alternatives can be vast for complex models.

3.3.4. Nonlinear Constrained Splitting

If the structure of the GEV network conforms to neither crash free nor crash safe forms, and

it is undesirable to include a full set of alternative specific constants, it may still be possible to

build an unbiasedmodel through constraints on the form of the allocation values, although these

constraints will typically be complex and nonlinear. e easiest way to find the necessary con-

straints is to decompose the network so that it has the structure needed to apply the crash safe

normalizations.
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eorem 3.3. (Node Decomposition) For any network node i ∈ N that has more than one in-

coming edge (i.e.
-

-

-i↑
-

-

- = z > 1 ), the network can be re-structured by replacing i with z new nodes

i1, i2, . . . , iz, each of which has the same µ value and the same set of outgoing edges to successor nodes,

but only a single incoming edge from a single predecessor node: j1 → i1, j2 → i2, . . . jz → iz. For each

successor node k, the incoming edge from i is replaced with z new incoming edges from i1, i2, . . . , iz.

Setting ainkn = ajniaikn and ajnin = 1 for all n ∈ {1, 2, ..., z} will ensure that all nodes in the model

excluding i will maintain the same G values, therefore preserving the model probabilities exactly.

P. In the original network, if i ∈ j↓
n then

(3.19) Gjn =







Ó

ajniG
i
Ô1/µjn

+
ÿ

m∈{j↓
n\i}

Ë

(ajnmGm)1/µjn
È







µjn

.

In the revised network, the term in the curly braces in (3.19) is replaced by Gin (as ajnin = 1).

Multiplying the components of the curly braces yields

ajniG
i =





ÿ

m∈i↓

Ë

(ajniaimGm)1/µi
È





µi

= Gin,

thus the replacement does not change the value of that term, and hence does not change the value

of Gjn . Since this applies for any jn, the result holds across the entire network. §

eorem 3.3 can be applied recursively through the network to split any node in N which

has multiple incoming edges. Since G is circuit free, and the splitting process can only increase

the number of incoming edges on successor nodes, the entire network can be restructured to the

desired form in a finite number of steps. In each node split, the number of edge allocation values

is increased (more edges are added than removed), but the relationship between the allocation

values of the additional edges is such that the number of values that can be independently deter-

mined remains constant. e final network can then be normalized according to the crash safe
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Figure 3.4. A simple network which is neither crash free nor crash safe.

algorithm, subject to the constraints developed in the network decomposition process. A simple

network is illustrative of the decomposition process as well as the potential complexity of the

non-linear constraints.

For example, consider the simple network depicted in Figure 3.4, which has two elemental

alternative nodes, A andB, a root nodeR, and two other intermediate nesting nodes, H and L.is

network conforms to neither the crash free form (R→H→L→B and R→H→B diverge from each

other at H, but diverge from R→L→B at R) nor the crash safe form (R→H→L→B and R→L→B

converge at L, before converging with R→H→B at B).

e network can be decomposed by splitting L into two new nodes, M and N. One of these

nodes inherits the incoming edge from R, while the other inherits the incoming edge from H.

Both M and N retain outbound edges to both A and B. e revised network is shown in Figure

3.5.

Unlike the original network in Figure 3.4, the revised network has some constraints imposed

on its parameters:

µM = µN ,
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Figure 3.5. A revised network which is crash safe.

aHN = 1,

aRM = 1,

(3.20) aMA/aNA = aMB/aNB.

e ratio constraint in (3.20) arises from the replacement of a single allocative split at L in Figure

3.4 with two such splits, atM andN, in Figure 3.5. ese two splits need to have the same relative

ratio, as they are both “controlled” by the ratio of the single split in the original network.

e revised network now meets the structural requirements for crash safe normalization, as

only nodes A and B have more than one incoming edge. is normalization replaces the a values

with the new values:

aHB =
3

αHB

αHB + αNB

4µH

(αHB + αNB)µR ,

aNB =
3

αNB

αHB + αNB

4µH

(αHB + αNB)µR ,

aMB = (1 − αHB − αNB)µR ,
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Figure 3.6. Constraint functions for various ratios of µH and µR.

aMA = αµR
MA,

aNA = (1 − αNA)µR .

But from (3.20), we have

αMA =





(αNB)µH/µR (αHB + αNB)1−(µH/µR)

1 − (αHB + αNB)
+ 1





−1

which is clearly a nonlinear constraint when 0 < µH < µR.

e shape of the constraint for various different values of µH/µR is depicted in Figure 3.6.

Each constraint surface is depicted inside a unit cube, as eachα parametermust fall inside the unit

interval, and each surface is defined exclusively in the left triangular region of the cube, because

αHB + αNB 6 1 . In the upper left cube, where µH/µR = 1.0, the contour lines of constant αMA

are straight, as in that scenarioαHB andαNB are linearly relatedwhenαMA is otherwise fixed. As

µH/µR approaches 0, the surface of the constraint asymptotically approaches the limiting planes

of αMA + αHB + αNB = 1 and αHB = 0.
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CHAPTER 4

Disaggregation of Allocation

4.1. Relaxing Allocation Parameter Constraints

As discussed earlier, the normalization of the NetGEV model requires that the allocation pa-

rameters sum to a constant independent of the source node, typically 1. In either the crash safe

or crash free conditions, the necessary constraint is
q

j∈i↑ αji = 1. Imposing this restriction di-

rectly on estimated parameters imposes additional complications, as the parameters are bounded

not only by fixed values but also by each other. However, this restriction can be relaxed by trans-

forming the parameters using the familiar logit structure:

(4.1) αji =
exp (φji)

q

k∈i↑
[exp (φki)]

.

Under this transformation, a new set of φ parameters replaces the α parameters throughout

the network on a one-for-one basis. Instead of the α parameters’ linear adding-up requirement

among the set of parameters associated with each node with more than one predecessor, the φ

parameters may vary unbounded across R, so long as one φ in each such group is fixed to some

constant value (typically zero). is is a significant advantage in parameter estimation, as nonlin-

ear optimization algorithms are substantially easier to implement when there are no (or fewer)

constraints on the parameters.

4.2. Subparameterization of Allocation

Replacing the α parameters with a logit formulation not only simplifies the process of esti-

mating the allocation parameters, it also opens up the possibility creating a much richer model.
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e logit structure for nest allocation allows for the incorporation of data into the correlation

structure of error terms:

(4.2) αtji =
exp

1

φ"
ji + φjiZt

2

q

k∈i↑
[exp (φ"

ki + φkiZt)]
,

where φ"
ji is the baseline parameter as in (4.1), Zt is a vector of data specific to decision maker

t, and φji is a vector of parameters to the model which are specific to the link from predecessor

node j to successor node i. If we assume that the first value in Zt is 1, we can simplify (4.2) to

(4.3) αtji =
exp (φjiZt)

q

k∈i↑
[exp (φkiZt)]

.

us the G function for nesting nodes becomes

Gi (y) =









ÿ

j∈i↓







exp (φjiZt)
q

k∈i↑
[exp (φkiZt)]

Gj(y)







1/µi








µi

.

e φ parameters are all arc specific parameters, analogous to alternative specific parameters

in an MNL model. As usual for “alternative” specific constants and variables logit models, one

of the vectors φji must be constrained to some arbitrary value, usually zeros. e remaining φ

vectors can vary unconstrained in both positive and negative regions of R. is formulation also

allows the addition of decision-maker attributes to be introduced as data to themodel, not only in

determining the systematic (observed) utility, but also in determining the correlation structure

for random (unobserved) utility.

is newmathematical form, a heterogeneous covariance network generalized extreme value

model (HeNGEV), is substantially different from any closed form model found in the literature.

Unlike the heterogeneous correlation nested model proposed by Bhat (1997a), which allows het-

erogeneous covariance values but requires a single covariance structure among alternatives, the
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HeNGEVmodel allows both the amount and the form of covariance to vary across decision mak-

ers.

For example, consider a network model of itinerary and fare class choice bifurcated into two

sub-structures, one with itinerary nested inside fare class, and the other with fare class nested

inside itinerary. e allocation parameters could then vary based on frequent flier status, with

programmember decisionmakers tending to choose based on one substructure, and nonmember

decision makers tending to choose based on the other.

Since the form of (4.3) is by construction strictly positive, the HeNGEV model inherits con-

sistency with utility maximization from the NetGEV formulation, as long as the same conditions

hold (in particular, non-increasing node parameters in the network). Achieving covariance het-

erogeneity through the allocation parameters is simpler than subparameterization of the node

parameters, as in Bhat (1997a). When nodes have a single parameter, as in a nested logit model,

the decreasing node parameter condition can be enforced with a single simple inequality con-

dition on each node (comparing it to its single predecessor). In a NetGEV model, on the other

hand, the decreasing node parameter condition requires a minimization process in addition to an

inequality (a node parametermust be smaller than the smallest of its predecessors). us, achiev-

ing such covariance heterogeneity in a NetGEVmodel using the node parameters would result in

amodel with a non-differentiable likelihood function, andmaximum likelihood estimationwould

be much more difficult.
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CHAPTER 5

Derivatives and Elasticity

Because of the flexible nature of the HeNGEV model, it is possible to create structures with

complex or unusual cross-elasticities. Unlike the MNL and NL models, representing the deriva-

tives and elasticities for HeNGEV models in general is inconvenient to do in a simple formula.

Instead, the they can be understood by mathematically localizing the derivatives, elasticities,

probabilities, and utilities withing the generating network.

5.1. Derivatives of Log Likelihood with Respect to Parameters

ederivatives of the log likelihood with respect to the parameters, just as in other GEVmod-

els, is
∂LL

∂Ξ
=

ÿ

t

ÿ

i∈C

C

δti
1

Pti

∂Pti

∂Ξ

D

,

with t indexing across decision makers, and Ξ as a vector of all model parameters. e derivative

of the log likelihood is thus a function of the derivative of the probabilities,

(5.1)
∂Pti

∂Ξ
=

ÿ

k∈i↑

C

Pti|k

A

∂Ptk

∂Ξ
+ PtkQΞtki

BD

with

QΞtki =
1

µk





∂Vti

∂Ξ
− ∂Vtk

∂Ξ
+

Vtk − Vti − logαtki

µk

∂µk

∂Ξ
+ Zt · ∂φki

∂Ξ
−

ÿ

m∈i↑

C

αtmi

A

Ztb · ∂φmib

∂Ξ

BD




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representing the network-localized perturbation of the probability for t along the edge from k to

i. Q can be simplified for each of the various parameter types:

(5.2) Qβtki =
1

µk

A

∂Vti

∂Ξ
− ∂Vtk

∂Ξ

B

,

(5.3) Qµtki =
1

µk

A

∂Vti

∂Ξ
− ∂Vtk

∂Ξ
+

A

Vtk − Vti − logαtki

µk

B

∂µk

∂Ξ

B

,

and

(5.4) Qφtki =
1

µk





∂Vti

∂Ξ
− ∂Vtk

∂Ξ
+

A

Zt · ∂φki

∂Ξ

B

−
ÿ

m∈i↑

C

αtmi

A

Ztb · ∂φmib

∂Ξ

BD



 .

Having isolated the localized perturbation in Q, the remaining portion of (5.1) serves to stack

that local perturbation with the derivatives of probability at the next higher level of nesting. Ex-

panding (5.1) at the next higher level yields

∂Pti

∂Ξ
=

ÿ

k∈i↑



Pti|k











ÿ

j∈k↑

C

Ptk|j

A

∂Ptj

∂Ξ
+ PtjQΞtjk

BD







+ PtkQΞtki









=
ÿ

k∈i↑









ÿ

j∈k↑

CA

Pti|kPtk|j
∂Ptj

∂Ξ
+ Pti|kPtk|jPtjQΞtjk

BD

+ Pti|kPtkQΞtki









=
ÿ

k∈i↑









ÿ

j∈k↑

CA

Pti|kPtk|j
∂Ptj

∂Ξ
+ Pti|kPtk|jPtjQΞtjk

BD

+ Pti|k
ÿ

j∈k↑

Ë

Ptk|jPtj

È

QΞtki









=
ÿ

k∈i↑

ÿ

j∈k↑

C

Pti|kPtk|j
∂Ptj

∂Ξ
+ Pti|kPtk|jPtj (QΞtjk + QΞtki)

D

.(5.5)

is expansion can be repeated all the way through the network, following the form of (5.5),

until reaching the root node, which has constant probability of 1 (and a derivative of 0), thus

eliminating the front term in (5.5). So the derivative of probability of an alternative with respect
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to the parameters becomes

∂Pti

∂Ξ
=

ÿ

p̨Ri∈T (R,i)



Ptip̨Ri

ÿ

jk∈p̨Ri

QΞtjk



 ,

the sum of arc effects on each path, multiplied by the path probability, summed over all paths.

5.2. Derivatives of Utility with Respect to Parameters

e arc effects on probability Q shown in (5.2-5.4) vary depending on the parameter type,

but all rely in part on the derivatives of the systematic utility with respect to the parameters. For

each of the different parameter types in the model, the derivatives of utility can be subdivided

into two classes: direct and indirect effects. Direct effects of a change in a parameter occur in

those nodes where the parameter appears specifically in the generation of that node’s utility. e

set of nodes that incur direct effects in utility for a parameterΞb are designatedDΞb
. Other nodes

(the compliment of DΞb
in Z) are in the set D̄Ξb

.

For β parameters, direct effects occur only in the elemental alternative nodes, soDβ = C. e

derivative of utility at those nodes, when utility is defined as a linear in parameters function, is

merely the data:
∂Vti

∂βb
= Xtib, i ∈ Dβb

.

For µ parameters, the direct effects occur only in the node associated with each individual µ,

so that Dµi = {i}, and

∂Vti

∂µi
=

1

µi



Vti −
ÿ

j∈i↓

Ë

Ptj|i (Vtj + log [αtij])
È



 .

For φ, the direct effects occur only in the set of predecessor nodes associated the the set of

φ’s, such that Dφik
= k↑. However, the form of the derivative of Vti with respect to φjk depends
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on whether i = j, i.e. whether i is the source of the edge associated with the φ. When i = j, then

∂Vti

∂φik
= Ptk|i(1 − αtik)Zt.

When i ”= j but i ∈ k↑,
∂Vti

∂φjk
= Ptk|i (−αtjk) Zt.

Indirect effects, as opposed to direct effects, occur when the utility of a node changes because

the utility of one of its successor nodes changes. Due to the formulation of the model, indirect

effects can only propagate upwards through the network (towards the root node, away from the

elemental alternatives). Once the impact on utility has been isolated from the initial cause, the

ripple effects upward through the network no longer rely on the parameter type or the location

of the source:

∂Vti

∂Ξb
=

ÿ

j∈i↓

C

Ptj|i

A

∂Vtj

∂Ξ

BD

, ∀i ∈ D̄Ξb
.

5.3. Elasticity with Respect to Utility Variables

Similar the the derivatives with respect to the parameters, elasticity with respect to variables

is best understood as a sequential layering of effects. Elasticity is a function of the probability,

and probability is a function of utility. e utility of the elemental alternatives forms the basic

foundation of the model, generally expressed as the linear form Vti = Xtiβ. From that founda-

tion, the utility of other nodes in the generating network is determined, with the utility of each

node determined only by the utilities of its immediate downstream neighbors. e determina-

tion of utility thus moves upstream from the elemental alternatives up through the network, to

the root node. en, conditional and unconditional probabilities for nodes can be calculated, with

each node allocating its probability to its immediate downstreamneighbors, based on the utilities
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of those neighbors. e probability cascades downstream from the root node, which by definition

always has a probability of 1.

e formula for point elasticity of demand with respect to attributes of the alternatives (Xtj)

is

(5.6) ηti,xtj =
∂Pti

∂Xtj

Xtj

Pti

In most logit models, this formula is usually partitioned, using the chain rule, to be

ηti,xtj =
∂Pti

∂Vtj

∂Vtj

∂Xtj

Xtj

Pti
.

is partition is useful whenVtj is a linear in parameters function (i.e. Vtj = Xtjβ), as thatmeans

∂Vtj/∂Xtjk = βk, so that the complexity of the formulation is quarantined inside ∂Pti/∂Vtj .

However, if Ptj in (5.6) is expanded instead of applying the chain rule, the derivative in the

elasticity formulation develops a structure that mirrors the natural partitioned mathematical

structure of the network:

∂Pti

∂Xtjk
=

∂

∂Xtjk

ÿ

n∈i↑

C

Ptk

3

αtniGti

Gtn

41/µn
D

=
ÿ

n∈i↑

C

Pti|n

A

∂Ptn

∂Xtjk
+

Ptn

µn

A

∂Vti

∂Xtjk
− ∂Vtn

∂Xtjk

BBD

so that the partial derivatives of probability at any particular node are a function of the partial

derivatives of probability at adjacent upstream nodes, as well as the partial derivatives of utility

at the node and its upstream neighbors. e component partial derivatives of probability flow

downstream from earlier nodes, just as probability flows downstream, with those derivatives an-

chored at the root node, where the derivative of probability is always 0 (since the probability at

the root is always 1).
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is form then relies not merely on the derivative of utility at the alternative, but also on the

derivatives of utility through the entire network. Like the derivatives of probability, whichmatch

the original flow of probability down from the root node, the derivatives of utility match the flow

of utility up from the elemental alternatives. e component partial derivatives of V are

∂Vti

∂Xtjk
=































βk i = j, i ∈ C

0 i ”= j, i ∈ C, j ∈ C
q

n∈i↓

Ë

Ptn|i (∂Vtn/∂Xtj)
È

i ∈ N , j ∈ C

Critically, these derivatives depend on probability but not the derivatives of probability. is

allows a sequential process of calculations: first utility flows up, then probability flows down,

then the derivatives of utility flow up, and finally the derivatives of probability can flow down

through the network.

5.4. Elasticity with Respect to Allocative Variables

When aHeNGEVmodel is createdwith data entering the allocation terms as well as the utility

terms, it is also useful to examine the elasticitywith respect to this seconddata pool. eelasticity

with respect to allocation follows a fairly similar functional form, as the propagating indirect

effects of a change in the data are transmitted through the network in the samemanner, through

the utility and probability. It is only in the direct effects on individual nodes that the elasticity of

allocation variables differs from the elasticity of utility variables.

e effect of allocative variables on the systematic utility of elemental alternative nodes is

always zero. Since the allocation parameters only appear in the formula for nesting nodes, they

can have a direct affect only on those nodes. Above the elemental alternatives, the utility of nodes

is responsive not only to indirect changes in utility through changes in immediate successors, but
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also to direct changes induced in the allocations on the attached edges,

∂Vti

∂Ztb
=



















0 i ∈ C
q

j∈i↓

C

Ptj|i

A

∂Vtj

∂Ztb
+ φijb − q

n∈j↑

Ë

αtnjφnjb

È

BD

i ∈ N
.

e indirect effects on utility propagate toward the root node, just as for utility variables. e

derivatives of probability similarly are responsive to changes in utility, as well as changes in at-

tached allocations,

∂Pti

∂Ztb
=

ÿ

n∈i↑



Pti|n





∂Ptn

∂Ztb
+

Ptn

µn



φnib −
ÿ

m∈i↑

[αtmiφmib] +
∂Vti

∂Ztb
− ∂Vtn

∂Ztb











 .

Just as for utility variables, the derivatives of probability at particular nodes are determined only

by the derivatives of utility and the derivatives of probability for immediate predecessor nodes.
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CHAPTER 6

Application

eHeNGEVmodel, by its nature, is resistant to testing using very simple data sets. Various

simple HeNGEVmode choice models were explored for work and shopping trips in the San Fran-

cisco metropolitan area, using small publicly available data sets published by the Metropolitan

Transportation Commission, but none provided a valid model with parameters consistent with

the necessary conditions for a NetGEV model. Instead, the benefits of complex heterogeneous

correlation structures are most likely to be visible when choice sets are larger, and correlations

are likely to occur across many dimensions. Rather than exploring many more data sets to find

one that would reveal such a correlation structure, the model can be tested using synthetically

generated data. is provides a good test to see if the HeNGEVmodel form can correctly recover

the model parameters that the homogeneous NetGEV form cannot, when the observed choices

are known a priori to have been made in a manner consistent with the HeNGEV structure and a

particular known set of parameters.

6.1. Data Generation

A data set was generated that would approximate the data that might be observed for a flight

itinerary choice. e flight itinerary choices were based on observed flight itineraries in 2001

for travel from Cincinnati-Northern Kentucky International Airport (CVG) to Albuquerque In-

ternational Sunport (ABQ), using data extracted from Coldren (2004). is airport pair was used

because it provided a variety of itinerary options (non-stop, single connect, and double connect

flights on five different carriers) within a relatively small number of total possible itineraries (28
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distinct itineraries). is allowed the creation of an interesting structural network of choices,

without the total number of available choices being overwhelmingly large. A much larger set of

alternatives should not cause behavior to be fundamentally different, but would increase comput-

ing time to estimate themodels in this experiment. From these observed itineraries, various data

attributes were used, including departure time, level of service (non-stop, single connect, double

connect), carrier (American, Continental, Delta, Northwest, United), fare ratio (the comparative

fare levels, on average, across the airlines serving this city pair), and distance ratio (the ratio of

itinerary flight distance to straight line distance). e data on the itineraries is shown in Table

6.1.

e advantage of the HeNGEV model introduced in this dissertation is that it can incorpo-

rate attributes of the decision maker (or of the choice itself) into the correlation structure. To

examine the usefulness of such enhanced tools, the synthetic data set also included data on the

annual income level of each decision maker, as well as the number of days in advance that the

ticket was purchased. Income was randomly generated for each traveler using a polynomial dis-

tribution, with values ranging from $30 thousand to $180 thousand. Advance purchase times

were generated using a uniform distribution ranging between 0 and 28 days, with a partial neg-

ative correlation to income (i.e. higher income tended to match with shorter advance purchase

time frames). ese attributes were generated for 100,000 simulated travelers.

Once the explanatory variables were created, a plausible HeNGEV choice model was created.

e structure of this model is depicted in Figure 6.1. e network depicted has numerous nodes

and arcs. If the associated parameters were each estimated independently, the parameter estima-

tion processwould become overwhelmed, and the resultingmodel would be virtuallymeaningless

as a descriptive or predictive tool. Instead, the nodes are grouped into four sections (upper and
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Table 6.1. Flight Itinerary Choices in Synthetic Data

Itinerary 
Number Airline

Departure 
Time

Distance 
Ratio

Fare 
Ratio Level of Service

1 BB 12:55 100 104 Non-stop
2 BB 21:05 100 104 Non-stop
3 AA 13:19 111 100 Single Connect
4 AA 16:47 111 100 Single Connect
5 AA 16:47 111 100 Single Connect
6 AA 8:20 111 100 Single Connect
7 AA 16:15 111 100 Single Connect
8 CC 18:20 127 55 Single Connect
9 CC 9:15 127 55 Single Connect

10 BB 16:45 132 104 Single Connect
11 BB 14:50 132 104 Single Connect
12 BB 7:20 132 104 Single Connect
13 BB 12:30 111 104 Single Connect
14 BB 17:05 111 104 Single Connect
15 BB 18:50 111 104 Single Connect
16 BB 7:45 111 104 Single Connect
17 DD 9:15 127 46 Single Connect
18 DD 18:20 127 46 Single Connect
19 CC 8:00 130 55 Single Connect
20 BB 9:00 132 104 Single Connect
21 AA 10:05 132 100 Double Connect
22 AA 16:15 132 100 Double Connect
23 AA 14:40 132 100 Double Connect
24 BB 11:00 153 104 Double Connect
25 DD 7:15 130 46 Double Connect
26 DD 14:40 130 46 Double Connect
27 EE 7:30 121 49 Double Connect
28 EE 7:30 121 49 Double Connect

lower nests on each side) with common logsumparameters, and the allocations between the sides

were grouped together so that all alternatives would have common allocation parameters.

A choice model was created, with utility parameters drawn from similar models estimated by

Coldren (2004) (see also Coldren and Koppelman, 2005). No similar structure model had been

estimated for the correlation across time of day and carrier, so values for those logsumparameters

were approximated. Nomodel has ever been estimated with allocation parameters on data in the
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Figure 6.1. Flight Itinerary Choice Model for Synthetic Data
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HeNGEVmodel, so values for those parameterswere selected such that the range of observed data

for income and advanced purchase would result in a broad range of allocation values across the

sample, with large densities near the extreme values (i.e. numerous simulated travelers choose

based almost exclusively on one sub-model or the other). e distribution of allocations for the

simulated travelers, based on the generating model, is shown in Figure 6.2.

Such an extreme bimodal distribution of the error covariance structure might not be often

observed in actual data, so the performance of the HeNGEVmodel was also tested using a second

dataset with a more unequal distribution of error covariance structures. is second dataset was

generated using all the same input values and utility parameters, but changing only the coefficient

on income in the allocation function, from -0.03 to -0.04. is small change created a large skew

in the resulting allocations for simulated travelers, as seen in Figure 6.3.
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Figure 6.2. Distribution of Allocation Weights in Bimodal Synthetic Data
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Figure 6.3. Distribution of Allocation Weights in Unimodal Synthetic Data
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6.2. Results

Overall, the HeNGEV model performs better than the matching NetGEV formulation in pre-

dicting the observed simulated choices, in both the bimodal and unimodal synthetic datasets.

6.2.1. Bimodal Dataset

e estimated parameters for the HeNGEV model for the bimodal dataset are shown in Table

6.2.1. None of the estimated parameters in thismodel differs from the known true parameters by

a statistically significant amount (although the lower level logsum parameter in the L sub-model

comes close to a statistically significant deviation).

e HeNGEV model can be compared to the NetGEV model which matches the same net-

work structure, but lacks the heterogeneous covariance made possible by the disaggregation of

the allocation parameters. e estimated parameters for the matching NetGEVmodel are shown

in Table 6.3.e NetGEV model also performs somewhat well, estimating most of the parame-

ters near their known true values. However, the performance of the HeNGEV model is generally
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Figure 6.1. Log Likelihoods and Relationships Between Models Estimated Using
Bimodal Dataset
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superior to the NetGEV model, as shown in Table 6.4. Of 13 utility and logsum parameters in

the models, 11 are closer to their true values in the HeNGEV model than in the NetGEV model,

mostly bymore than half theNetGEV’s error. e overall log likelihood is alsomuch better for the

HeNGEVmodel (270 higher than the NetGEV model), a statistically highly significant difference

for two degrees of freedom.

eutility function used to create thesemodels can also be used in regular nested logitmodels

(including only one of the submodels) or a regular multinomial logit model. e various results

for these models are summarized in Table 6.5. A graphical representation of the relationship be-

tween the various estimated models for the bimodal data is shown in Figure 6.1. In this dataset,

the nested logit models fit the data nearly as well as the NetGEV model. e difference between

theNetGEV and L-onlymodel, only 0.47 in log likelihood, is not statistically significant (χ2=0.94,

with 3 degrees of freedom, p=0.82). e B-only model fits somewhat worse, but returns param-

eter estimates for the logsum parameters that are out of the acceptable range.
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Table 6.2. HeNGEVModel for Bimodal Dataset

                    Log Likelihood at Convergence: -174263.42
                    Log Likelihood at Zeros:      -333220.45
                    Rho Squared w.r.t. Zeros:     0.477

True Value
Estimated 
Parameter    

Std. Error 
of Estimate

t Statistic 
vs. True

Departure Time
Before 08:00 0 0 n/a n/a
08:00-09:59 0.15 0.1775 0.0164 1.68
10:00-12:59 0.1 0.01935 0.1266 -0.64
13:00-15:59 0.05 0.08199 0.02451 1.31
16:00-18:59 0.1 0.1058 0.01836 0.32
19:00 or later -0.3 -0.3872 0.1264 -0.69

Level of Service
Nonstop 0 0 n/a n/a
Single Connect   -2.3 -2.415 0.1287 -0.89
Double Connect -5.8 -5.959 0.1588 -1.00

Flight Characteristics
Distance Ratio -0.01 -0.01159 0.0008905 -1.79
Fare Ratio -0.004 -0.004766 0.0004494 -1.70

Nesting Parameters
B Time of Day (Upper) Nest     0.8 0.8034 0.01364 0.25
B Carrier (Lower) Nest 0.2 0.2277 0.01736 1.60
L Carrier (Upper) Nest 0.7 0.7139 0.01714 0.81
L Time of Day (Lower) Nest 0.3 0.3144 0.007438 1.94

Allocation Parameters
Phi Constant L Side 1 1.05 0.499 0.10
Phi Income (000) L Side -0.04 -0.04159 0.007447 -0.21
Phi Advance Purchase L Side 0.2 0.2185 0.03331 0.56
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Table 6.3. NetGEV Model for Bimodal Dataset

                    Log Likelihood at Convergence: -174533.95
                    Log Likelihood at Zeros:      -333220.45
                    Rho Squared w.r.t. Zeros:     0.476

True Value
Estimated 
Parameter    

Std. Error 
of Estimate

t Statistic 
vs. True

Departure Time
Before 08:00 0 0 n/a n/a
08:00-09:59 0.15 0.2122 0.0208 2.99
10:00-12:59 0.1 0.05807 0.1495 -0.28
13:00-15:59 0.05 0.09039 0.09349 0.43
16:00-18:59 0.1 0.1213 0.06865 0.31
19:00 or later -0.3 -0.3594 0.1631 -0.36

Level of Service
Nonstop 0 0 n/a n/a
Single Connect   -2.3 -2.431 0.2356 -0.56
Double Connect -5.8 -6.013 0.4957 -0.43

Flight Characteristics
Distance Ratio -0.01 -0.01373 0.001208 -3.09
Fare Ratio -0.004 -0.005724 0.0006717 -2.57

Nesting Parameters
B Time of Day (Upper) Nest     0.8 0.8349 0.2855 0.12
B Carrier (Lower) Nest 0.2 0.3061 0.03978 2.67
L Carrier (Upper) Nest 0.7 0.7471 0.4955 0.10
L Time of Day (Lower) Nest 0.3 0.2776 0.118 -0.19

Allocation Parameters
Phi Constant L Side 1 0.1039 3.051 -0.29
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Table 6.4. Comparison of NetGEV and HeNGEVModels for Bimodal Data

Actual 
Error of 
Estimate

Standard 
Error of 
Estimate

Actual 
Error of 
Estimate

Standard 
Error of 
Estimate

Departure Time
Before 08:00 n/a n/a n/a n/a
08:00-09:59 0.0275 0.0164 0.0622 0.0208
10:00-12:59 -0.08065 0.1266 -0.04193 0.1495
13:00-15:59 0.03199 0.02451 0.04039 0.09349
16:00-18:59 0.0058 0.01836 0.0213 0.06865
19:00 or later -0.0872 0.1264 -0.0594 0.1631

Level of Service
Nonstop n/a n/a n/a n/a
Single Connect   -0.115 0.1287 -0.131 0.2356
Double Connect -0.159 0.1588 -0.213 0.4957

Flight Characteristics
Distance Ratio -0.00159 0.0008905 -0.00373 0.001208
Fare Ratio -0.000766 0.0004494 -0.001724 0.0006717

Nesting Parameters
B Time of Day (Upper) Nest     0.0034 0.01364 0.0349 0.2855
B Carrier (Lower) Nest 0.0277 0.01736 0.1061 0.03978
L Carrier (Upper) Nest 0.0139 0.01714 0.0471 0.4955
L Time of Day (Lower) Nest 0.0144 0.007438 -0.0224 0.118

Allocation Parameters
Phi Constant L Side 0.05 0.499 -0.8961 3.051
Phi Income (000) L Side -0.00159 0.007447
Phi Advance Purchase L Side 0.0185 0.03331

HeNGEV Model NetGEV Model
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Table 6.5. Summary of Various Models Estimated for Bimodal Dataset
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e use of the models for forecasting is evaluated by generating a secondary data set, using

the same generation algorithm, and comparing the performance of the probabilities of the mod-

els (and their predicted market shares) against the generated choices. e relative performance

of the HeNGEV model and the NetGEV model across the entire market are roughly similar, as

can be seen in Table 6.6, and depicted in the right side of Figure 6.2. e two models over- or

under-predict in roughly the same amounts for each itinerary. However, when the predictions

are segmented by income as in Table 6.7, the HeNGEVmodel can be seen to outperform the Net-

GEV model in the extreme (high and low) income segments. Figure 6.3 highlights this improved

performance, comparing the prediction errors in various income segments. In the top and bot-

tom fifths of income, the HeNGEV model provides notably smaller errors in prediction than the

NetGEVmodel. eNetGEV tends to predict larger but offsetting errors, with over prediction for

the higher incomes and under prediction for lower incomes, or vice versa, thus creating similar

performances at the market level, but inferior predictive performance in some income segments.

is advantage for the HeNGEV model is not surprising, as income is not reflected in the Net-

GEV model at all. However, it is interesting the note that the benefits of the HeNGEV model are

closely tied to the competitive dynamic of the alternatives. Alternatives 1 and 2 are the two avail-

able non-stop itineraries, but alternative 2 shows a much stronger income-related tilt in choice

probabilities, resulting fromadiffering competitive environment for itineraries compared against

the two non-stop time slots.
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Table 6.6. HeNGEV and NetGEV Market-Level Predictions for Bimodal Dataset

HeNGEV NetGEV HeNGEV NetGEV
1 44997 45280.64 45276.60 283.64 279.60
2 27580 27309.66 27311.60 -270.34 -268.40
3 2469 2559.70 2558.25 90.70 89.25
4 1418 1365.03 1358.40 -52.97 -59.60
5 1333 1365.03 1358.40 32.03 25.40
6 3395 3333.51 3330.60 -61.49 -64.40
7 1385 1365.03 1358.40 -19.97 -26.60
8 3073 2993.22 2995.20 -79.78 -77.80
9 2351 2459.39 2467.05 108.39 116.05
10 9 9.18 8.20 0.18 -0.80
11 4 4.00 2.95 0.00 -1.05
12 436 438.81 436.80 2.81 0.80
13 5 7.15 7.00 2.15 2.00
14 18 20.35 21.70 2.35 3.70
15 17 20.35 21.70 3.35 4.70
16 1160 1144.68 1158.45 -15.32 -1.55
17 3996 3929.32 3936.85 -66.68 -59.15
18 3294 3221.46 3226.20 -72.54 -67.80
19 2042 2161.66 2140.45 119.66 98.45
20 867 881.17 895.20 14.17 28.20
21 0 0.00 0.00 0.00 0.00
22 0 0.00 0.00 0.00 0.00
23 0 0.00 0.00 0.00 0.00
24 0 0.00 0.00 0.00 0.00
25 0 0.00 0.00 0.00 0.00
26 30 26.13 30.20 -3.87 0.20
27 55 52.26 49.85 -2.74 -5.15
28 66 52.26 49.85 -13.74 -16.15

Predictions DifferencesTotal 
ObservedItinerary
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Table 6.7. HeNGEV and NetGEV Predictions Segmented by Income for Bimodal Dataset

1 8866 8970 8992 9148 9021 100.3 47.6 62.0 -53.4 127.2 189.3 85.3 63.3 -92.7 34.3
2 5266 5342 5547 5593 5832 -64.9 8.0 -91.3 -19.3 -102.8 196.3 120.3 -84.7 -130.7 -369.7
3 536 505 511 463 454 25.5 28.2 2.1 27.7 7.2 -24.4 6.6 0.6 48.7 57.7
4 322 312 277 266 241 -13.3 -23.7 -3.1 -8.3 -4.5 -50.3 -40.3 -5.3 5.7 30.7
5 294 287 270 251 231 14.7 1.3 3.9 6.7 5.5 -22.3 -15.3 1.7 20.7 40.7
6 686 678 673 656 702 -12.0 -8.2 -6.1 7.6 -42.8 -19.9 -11.9 -6.9 10.1 -35.9
7 358 270 277 271 209 -49.3 18.3 -3.1 -13.3 27.5 -86.3 1.7 -5.3 0.7 62.7
8 683 645 625 571 549 -17.3 -17.6 -24.8 -1.1 -19.1 -84.0 -46.0 -26.0 28.0 50.0
9 509 511 447 452 432 17.2 -4.4 45.7 25.2 24.8 -15.6 -17.6 46.4 41.4 61.4

10 2 3 1 3 0 0.8 -0.8 0.9 -1.6 0.9 -0.4 -1.4 0.6 -1.4 1.6
11 1 1 0 1 1 0.3 0.0 0.8 -0.4 -0.7 -0.4 -0.4 0.6 -0.4 -0.4
12 74 72 90 104 96 4.1 11.6 -2.5 -12.1 1.7 13.4 15.4 -2.6 -16.6 -8.6
13 3 1 1 0 0 -0.8 0.8 0.5 1.1 0.6 -1.6 0.4 0.4 1.4 1.4
14 6 4 6 0 2 0.1 0.9 -1.9 3.2 0.0 -1.7 0.3 -1.7 4.3 2.3
15 3 6 2 4 2 3.1 -1.1 2.1 -0.8 0.0 1.3 -1.7 2.3 0.3 2.3
16 173 205 229 260 293 11.6 4.9 -1.1 -12.1 -18.6 58.7 26.7 2.7 -28.3 -61.3
17 837 838 811 763 747 -8.7 -33.9 -24.1 4.7 -4.6 -49.6 -50.6 -23.6 24.4 40.4
18 757 697 653 599 588 -34.1 -19.0 -6.8 11.6 -24.2 -111.8 -51.8 -7.8 46.2 57.2
19 423 466 397 397 359 44.9 -18.4 36.2 20.1 36.9 5.1 -37.9 31.1 31.1 69.1
20 158 149 165 170 225 -12.1 14.2 10.5 19.2 -17.7 21.0 30.0 14.0 9.0 -46.0
21 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
22 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
23 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
24 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
26 5 8 6 4 7 0.1 -2.8 -0.8 1.3 -1.6 1.0 -2.0 0.0 2.0 -1.0
27 14 15 9 13 4 0.0 -3.0 1.5 -4.1 2.8 -4.0 -5.0 1.0 -3.0 6.0
28 24 15 11 11 5 -10.0 -3.0 -0.5 -2.1 1.8 -14.0 -5.0 -1.0 -1.0 5.0

Total Absolute Deviation: 445 271.6 332.2 256.9 473.3 972.4 573.6 329.7 548.3 1046

Itin
Bottom 

Fifth
Middle 
Fifth

Top 
Fifth

Observed Choices HeNGEV Model NetGEV Model
Bottom 

Fifth
Middle 
Fifth

Top 
Fifth

Bottom 
Fifth

Middle 
Fifth

Top 
Fifth



76

Figure 6.2. Observations and Market-Level Prediction Errors, Bimodal Dataset



77

Figure 6.3. Prediction Errors, Segmented by Income, Bimodal Dataset
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6.2.2. Unimodal Dataset

e estimated parameters for the HeNGEV model for the unimodal dataset are shown in Table

6.8. Most of the parameters in this model closely match the known true parameters, although

three, with bolded t-statistics, show a statistically significant difference from the true values. at

these three parameters are not correctly finding their true values is explained in part by the high

correlation in their estimators, highlighted in Table 6.9.

As expected, the NetGEV model (shown in Table 6.10) performs relatively well on the uni-

modal dataset, as many more of the simulated travelers are concentrated in only one region of

allocation values, instead of two. is concentration means that the NetGEV structure can more

closely match the observed choice correlations without differentiating on the attributes of the

travelers. Nevertheless, the NetGEV model still performs worse than the HeNGEV model. e

NetGEV model has a log likelihood at convergence that is 240 smaller than the HeNGEV model,

a highly significant deterioration given that only two degrees of freedom are lost, even in light

of the large simulated dataset. e performance of the individual parameter estimates in the

NetGEV and HeNGEV models are compared in Table 6.11. For each parameter in the model, the

HeNGEV estimate is closer to the known true value than theNetGEV estimate, generally by about

half. Further, the standard errors of the estimates are all smaller for the HeNGEVmodel, also by

about half.

For amore complete picture, regular nested logitmodels were estimated using each of the two

sub-models, as well as a multinomial logit model that ignored the error covariance entirely. e

results of these models are shown in Table 6.12. A graphical representation of the relationship

between the various estimatedmodels for the unimodal data is shown in Figure 6.4. Not surpris-

ingly, theMNLmodel with similarly defined utility functions performs relatively poorly, with log

likelihood benefits in the thousands for a change to either nested structure.
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Figure 6.4. Log Likelihoods and Relationships Between Models Estimated Using
Unimodal Dataset

HeNGEV
LL= -176881

NetGEV
LL= -177121

NL (B) 
LL= -177244

NL (L)
LL= -177128

MNL
LL= -180964

2 Restrictions

!LL=241

2 Restrictions

!LL=3835

3 Restrictions

!LL=6.77

2 Restrictions

!LL=3719

3 Restrictions

!LL=123

improving log likelihood (not to scale)

eL-only structure has a better fit for the data than theB-onlymodel. is is consistentwith

the construction of this dataset, which is heavily weighted with decision makers exhibiting error

correlation structures that are nearly the same as the L-only model. is heavy weight towards

the L model is also reflected in the very small improvement (6.77) in log likelihood when moving

from the L-only model to the NetGEVmodel, which incorporates both L andB submodels. While

this change is still statistically significant (χ2=13.54, with 3 degrees of freedom, p=0.0036) it

is tiny compared to the changes observed between other models. In this instance, with most

travelers exhibiting similar L choice patterns, it appears that upgrading to the NetGEV model

alone does not provide much benefit. Far more improvement in the log likelihood is made when

the heterogeneous covariance is introduced, which allows the small portion of the population that

exhibits “B” choice patterns to follow that model, without adversely affecting the predictions for

the larger L population.
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Table 6.8. HeNGEVModel for Unimodal Dataset

                    Log Likelihood at Convergence: -176880.64
                    Log Likelihood at Zeros:      -333220.45
                    Rho Squared w.r.t. Zeros:     0.469

True Value
Estimated 
Parameter    

Std. Error 
of Estimate

t Statistic 
vs. True

Departure Time
Before 08:00 0 0 n/a n/a
08:00-09:59 0.15 0.1065 0.01796 -2.42
10:00-12:59 0.1 0.09257 0.09851 -0.08
13:00-15:59 0.05 0.02468 0.02453 -1.03
16:00-18:59 0.1 0.07013 0.01867 -1.60
19:00 or later -0.3 -0.2975 0.09828 0.03

Level of Service
Nonstop 0 0 n/a n/a
Single Connect   -2.3 -2.286 0.1019 0.14
Double Connect -5.8 -5.864 0.1354 -0.47

Flight Characteristics
Distance Ratio -0.01 -0.007141 0.001107 2.58
Fare Ratio -0.004 -0.003359 0.0005518 1.16

Nesting Parameters
B Time of Day (Upper) Nest     0.8 0.7994 0.01509 -0.04
B Carrier (Lower) Nest 0.2 0.1439 0.02585 -2.17
L Carrier (Upper) Nest 0.7 0.6746 0.01973 -1.29
L Time of Day (Lower) Nest 0.3 0.3075 0.006947 1.08

Allocation Parameters
Phi Constant L Side 1 1.066 0.389 0.17
Phi Income (000) L Side -0.03 -0.02912 0.005029 0.17
Phi Advance Purchase L Side 0.2 0.1772 0.02686 -0.85
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Table 6.9. Parameter Estimator Correlation, HeNGEVModel for Unimodal Data
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08:00-09:59 1.000  0.075  0.609  0.769  0.027  -0.901 -0.783 -0.124 -0.113 0.817  0.327  0.428  0.656  0.463  0.145  -0.411 
10:00-12:59 0.075  1.000  0.052  0.132  0.996  -0.049 -0.026 0.958  0.737  0.061  -0.030 -0.317 0.059  0.022  0.004  -0.023 
13:00-15:59 0.609  0.052  1.000  0.714  0.029  -0.547 -0.542 -0.050 0.006  0.561  -0.118 0.289  0.214  0.028  -0.075 -0.061 
16:00-18:59 0.769  0.132  0.714  1.000  0.100  -0.661 -0.567 0.000  0.064  0.628  -0.016 0.216  0.354  0.132  -0.044 -0.150 

19:00 or later 0.027  0.996  0.029  0.100  1.000  0.001  0.029  0.972  0.754  0.017  -0.070 -0.348 -0.007 -0.023 -0.011 0.016  
Distance Ratio -0.901 -0.049 -0.547 -0.661 0.001  1.000  0.870  0.133  0.141  -0.901 -0.336 -0.460 -0.685 -0.494 -0.168 0.439  

Fare Ratio -0.783 -0.026 -0.542 -0.567 0.029  0.870  1.000  0.198  0.220  -0.821 -0.409 -0.566 -0.723 -0.516 -0.155 0.461  
Single Connect -0.124 0.958  -0.050 0.000  0.972  0.133  0.198  1.000  0.800  -0.110 -0.230 -0.466 -0.185 -0.178 -0.075 0.146  

Double Connect -0.113 0.737  0.006  0.064  0.754  0.141  0.220  0.800  1.000  -0.112 -0.321 -0.419 -0.260 -0.265 -0.133 0.212  
B Carrier (Lower) Nest 0.817  0.061  0.561  0.628  0.017  -0.901 -0.821 -0.110 -0.112 1.000  0.264  0.409  0.592  0.437  0.136  -0.398 

B Time of Day (Upper) Nest 0.327  -0.030 -0.118 -0.016 -0.070 -0.336 -0.409 -0.230 -0.321 0.264  1.000  0.444  0.571  0.699  0.290  -0.598 
L Time of Day (Lower) Nest 0.428  -0.317 0.289  0.216  -0.348 -0.460 -0.566 -0.466 -0.419 0.409  0.444  1.000  0.395  0.338  0.086  -0.304 

L Carrier (Upper) Nest 0.656  0.059  0.214  0.354  -0.007 -0.685 -0.723 -0.185 -0.260 0.592  0.571  0.395  1.000  0.736  0.330  -0.598 
Phi Advance Purchase L Side 0.463  0.022  0.028  0.132  -0.023 -0.494 -0.516 -0.178 -0.265 0.437  0.699  0.338  0.736  1.000  0.244  -0.702 

Phi Constant L Side 0.145  0.004  -0.075 -0.044 -0.011 -0.168 -0.155 -0.075 -0.133 0.136  0.290  0.086  0.330  0.244  1.000  -0.811 
Phi Income (000) L Side -0.411 -0.023 -0.061 -0.150 0.016  0.439  0.461  0.146  0.212  -0.398 -0.598 -0.304 -0.598 -0.702 -0.811 1.000  
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Table 6.10. NetGEV Model for Unimodal Dataset

                    Log Likelihood at Convergence: -177121.27
                    Log Likelihood at Zeros:      -333220.45
                    Rho Squared w.r.t. Zeros:     0.468

True Value
Estimated 
Parameter    

Std. Error 
of Estimate

t Statistic 
vs. True

Departure Time
Before 08:00 0 0 n/a n/a
08:00-09:59 0.15 0.06687 0.03759 -2.21
10:00-12:59 0.1 0.03704 0.1177 -0.53
13:00-15:59 0.05 -0.03495 0.07088 -1.20
16:00-18:59 0.1 0.02141 0.05334 -1.47
19:00 or later -0.3 -0.3445 0.1120 -0.40

Level of Service
Nonstop 0 0 n/a n/a
Single Connect   -2.3 -2.331 0.1407 -0.22
Double Connect -5.8 -5.956 0.2530 -0.62

Flight Characteristics
Distance Ratio -0.01 -0.004372 0.002449 2.30
Fare Ratio -0.004 -0.002202 0.001068 1.68

Nesting Parameters
B Time of Day (Upper) Nest     0.8 0.8307 0.1022 0.30
B Carrier (Lower) Nest 0.2 0.07244 0.04395 -2.90
L Carrier (Upper) Nest 0.7 0.6519 0.08702 -0.55
L Time of Day (Lower) Nest 0.3 0.3078 0.01321 0.59

Allocation Parameters
Phi Constant L Side 1 0.5928 0.4722 -0.86
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Table 6.11. Comparison of HeNGEV and NetGEV Models for Unimodal Data

Actual 
Error of 
Estimate

Standard 
Error of 
Estimate

Actual 
Error of 
Estimate

Standard 
Error of 
Estimate

Departure Time
Before 08:00 n/a n/a n/a n/a
08:00-09:59 -0.0435 0.01796 -0.08313 0.03759
10:00-12:59 -0.00743 0.09851 -0.06296 0.1177
13:00-15:59 -0.02532 0.02453 -0.08495 0.07088
16:00-18:59 -0.02987 0.01867 -0.07859 0.05334
19:00 or later 0.0025 0.09828 -0.0445 0.1120

Level of Service
Nonstop n/a n/a n/a n/a
Single Connect   0.014 0.1019 -0.031 0.1407
Double Connect -0.064 0.1354 -0.156 0.2530

Flight Characteristics
Distance Ratio 0.002859 0.001107 0.005628 0.002449
Fare Ratio 0.000641 0.0005518 0.001798 0.001068

Nesting Parameters
B Time of Day (Upper) Nest     -0.0006 0.01509 0.0307 0.1022
B Carrier (Lower) Nest -0.0561 0.02585 -0.12756 0.04395
L Carrier (Upper) Nest -0.0254 0.01973 -0.0481 0.08702
L Time of Day (Lower) Nest 0.0075 0.006947 0.0078 0.01321

Allocation Parameters
Phi Constant L Side 0.066 0.389 -0.4072 0.4722
Phi Income (000) L Side 0.00088 0.005029
Phi Advance Purchase L Side -0.0228 0.02686

HeNGEV Model NetGEV Model
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Table 6.12. Summary of Various Models Estimated for Unimodal Dataset
Lo

g 
Li

ke
lih

oo
d 

at
 C

on
ve

rg
en

ce
:

Lo
g 

Li
ke

lih
oo

d 
at

 Z
er

os
:  

   
 

Rh
o 

Sq
ua

re
d 

w.
r.t

. Z
er

os
:  

   

Tr
ue

 
Va

lu
e

Es
ti

m
at

ed
 

Pa
ra

m
et

er
   

 St
d 

Er
r 

of
 E

st
Es

ti
m

at
ed

 
Pa

ra
m

et
er

   
 St

d 
Er

r 
of

 E
st

Es
ti

m
at

ed
 

Pa
ra

m
et

er
   

 St
d 

Er
r 

of
 E

st
Es

ti
m

at
ed

 
Pa

ra
m

et
er

   
 St

d 
Er

r 
of

 E
st

Es
ti

m
at

ed
 

Pa
ra

m
et

er
   

 St
d 

Er
r 

of
 E

st
D

ep
ar

tu
re

 T
im

e
Be

fo
re

 0
8:

00
0

0
n/

a
0

n/
a

0
n/

a
0

n/
a

0
n/

a
08

:0
0-

09
:5

9
0.

15
0.

10
65

0.
01

79
6

0.
06

68
7

0.
03

75
9

0.
16

15
0.

01
73

4
0.

83
23

0.
11

41
0.

26
68

0.
02

37
9

10
:0

0-
12

:5
9

0.
1

0.
09

25
7

0.
09

85
1

0.
03

70
4

0.
11

77
0.

09
44

5
0.

10
03

-1
.3

26
0.

41
97

-4
.6

84
0.

28
93

13
:0

0-
15

:5
9

0.
05

0.
02

46
8

0.
02

45
3

-0
.0

34
95

0.
07

08
8

-0
.0

21
1

0.
02

39
1

-1
.3

03
0.

32
31

0.
40

6
0.

02
83

4
16

:0
0-

18
:5

9
0.

1
0.

07
01

3
0.

01
86

7
0.

02
14

1
0.

05
33

4
0.

04
50

9
0.

01
89

6
-0

.8
21

9
0.

23
05

-0
.1

93
8

0.
02

28
2

19
:0

0 
or

 la
te

r
-0

.3
-0

.2
97

5
0.

09
82

8
-0

.3
44

5
0.

11
2

-0
.3

27
6

0.
10

01
-2

.2
53

0.
49

13
-5

.2
0.

28
94

Le
ve

l o
f S

er
vi

ce
N

on
st

op
0

0
n/

a
0

n/
a

0
n/

a
0

n/
a

0
n/

a
Si

ng
le

 C
on

ne
ct

   
-2

.3
-2

.2
86

0.
10

19
-2

.3
31

0.
14

07
-2

.4
55

0.
10

19
-6

.5
52

0.
88

12
-7

.3
55

0.
28

9
D

ou
bl

e 
Co

nn
ec

t
-5

.8
-5

.8
64

0.
13

54
-5

.9
56

0.
25

3
-6

.2
74

0.
13

24
-1

6.
19

2.
09

8
-1

2.
21

0.
30

15

Fl
ig

ht
 C

ha
ra

ct
er

is
ti

cs
D

is
ta

nc
e 

R
at

io
-0

.0
1

-0
.0

07
14

1
0.

00
11

1
-0

.0
04

37
2

0.
00

24
5

-0
.0

11
17

0.
00

08
1

-0
.0

48
09

0.
00

64
6

-0
.0

79
36

0.
00

13
6

Fa
re

 R
at

io
-0

.0
04

-0
.0

03
35

9
0.

00
05

5
-0

.0
02

20
2

0.
00

10
7

-0
.0

05
17

3
0.

00
04

5
-0

.0
26

19
0.

00
34

6
-0

.0
39

57
0.

00
04

6

N
es

ti
ng

 P
ar

am
et

er
s

B 
Ti

m
e 

of
 D

ay
 (U

pp
er

) N
es

t  
   

0.
8

0.
79

94
0.

01
50

9
0.

83
07

0.
10

22
2.

44
7

0.
31

28
B 

Ca
rr

ie
r (

Lo
w

er
) N

es
t

0.
2

0.
14

39
0.

02
58

5
0.

07
24

4
0.

04
39

5
0.

86
07

0.
11

1
L 

Ca
rr

ie
r (

U
pp

er
) N

es
t

0.
7

0.
67

46
0.

01
97

3
0.

65
19

0.
08

70
2

0.
81

93
0.

01
06

3
L 

Ti
m

e 
of

 D
ay

 (L
ow

er
) N

es
t

0.
3

0.
30

75
0.

00
69

5
0.

30
78

0.
01

32
1

0.
31

33
0.

00
61

Al
lo

ca
ti

on
 P

ar
am

et
er

s
Ph

i C
on

st
an

t L
 S

id
e

1
1.

06
6

0.
38

9
0.

59
28

0.
47

22
Ph

i I
nc

om
e 

(0
00

) L
 S

id
e

-0
.0

3
-0

.0
29

12
0.

00
50

3
Ph

i A
dv

an
ce

 P
ur

ch
as

e 
L 

Si
de

0.
2

0.
17

72
0.

02
68

6

M
N

L 
M

od
el

-1
80

96
3.

51
-3

33
22

0.
45

0.
45

7

N
L 

(L
) M

od
el

-1
77

24
4.

22
-3

33
22

0.
45

0.
46

8

-1
77

12
8.

04
-3

33
22

0.
45

0.
46

8

N
L 

(B
) M

od
el

H
eN

G
EV

 M
od

el
-1

76
88

0.
64

-3
33

22
0.

45
0.

46
9

N
et

G
EV

 M
od

el
-1

77
12

1.
27

-3
33

22
0.

45
0.

46
8



85

When applied for prediction, the models estimated from unimodal data perform in a similar

manner as the bimodal models. e predictions of the HeNGEV model and the NetGEV model

across the entire market are roughly similar, as can be seen in Table 6.13. e two models still

over- or under-predict in roughly the same amounts for each itinerary. Again, when the predic-

tions are segmented by income as in Table 6.14, the HeNGEV model can be seen to outperform

the NetGEV model in all income segments, especially in the extremes of the income range. e

errors for the whole market, on the right side of Figure 6.5, are roughly similar for both models.

However, within the extreme high and low income segments (especially in the high income seg-

ment), as shown in Figure 6.6, the errors in prediction for the HeNGEVmodel are generally much

smaller than those of the NetGEVmodel. ese predictions show a similar pattern as observed in

the bimodal dataset, with particularly large errors with offsetting signs appearing in the extreme

income segments.
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Table 6.13. HeNGEV and NetGEV Market-Level Predictions for Unimodal Dataset

HeNGEV NetGEV HeNGEV NetGEV
1 45067 44806.47 44824.55 -260.53 -242.45
2 26746 26769.61 26753.7 23.61 7.70
3 2633 2649.82 2650.9 16.82 17.90
4 1346 1439.44 1432.45 93.44 86.45
5 1415 1439.44 1432.45 24.44 17.45
6 3521 3328.98 3355.5 -192.02 -165.50
7 1452 1439.44 1432.45 -12.56 -19.55
8 3328 3273.62 3293.55 -54.38 -34.45
9 2374 2485.81 2466.85 111.81 92.85
10 13 13.63 16.25 0.63 3.25
11 4 5.91 7.05 1.91 3.05
12 432 481.71 480.35 49.71 48.35
13 10 12.00 12 2.00 2.00
14 24 22.22 21.9 -1.78 -2.10
15 20 22.22 21.9 2.22 1.90
16 1047 1055.51 1053.15 8.51 6.15
17 3983 4014.62 4001.65 31.62 18.65
18 3412 3506.99 3506 94.99 94.00
19 2221 2257.96 2264.9 36.96 43.90
20 819 834.07 831.55 15.07 12.55
21 0 0.00 0 0.00 0.00
22 0 0.00 0 0.00 0.00
23 0 0.00 0 0.00 0.00
24 0 0.00 0 0.00 0.00
25 1 0.00 0 -1.00 -1.00
26 16 21.71 20.65 5.71 4.65
27 61 59.41 60.15 -1.59 -0.85
28 55 59.41 60.15 4.41 5.15

Predictions Differences
Itinerary

Total 
Observed
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Table 6.14. HeNGEV and NetGEV Predictions Segmented by Income for Unimodal Dataset

1 8884 8958 9010 9139 9076 11.5 -27.3 -53.6 -152.0 -39.2 80.9 6.9 -45.1 -174.1 -111.1
2 5246 5211 5264 5423 5602 -128.2 33.0 72.5 23.3 23.0 104.7 139.7 86.7 -72.3 -251.3
3 572 565 533 500 463 -6.4 -18.5 -0.4 16.0 26.1 -41.8 -34.8 -2.8 30.2 67.2
4 275 285 280 277 229 48.0 19.2 10.5 -2.9 18.6 11.5 1.5 6.5 9.5 57.5
5 292 332 261 285 245 31.0 -27.8 29.5 -10.9 2.6 -5.5 -45.5 25.5 1.5 41.5
6 703 730 722 686 680 -37.0 -64.1 -56.2 -20.3 -14.4 -31.9 -58.9 -50.9 -14.9 -8.9
7 307 318 292 260 275 16.0 -13.8 -1.5 14.2 -27.4 -20.5 -31.5 -5.5 26.5 11.5
8 693 730 681 622 602 16.7 -49.7 -22.2 11.2 -10.4 -34.3 -71.3 -22.3 36.7 56.7
9 503 495 497 460 419 26.1 17.1 2.5 24.7 41.5 -9.6 -1.6 -3.6 33.4 74.4

10 6 3 0 1 3 -2.2 0.2 2.8 1.3 -1.6 -2.8 0.3 3.3 2.3 0.3
11 2 1 0 0 1 -0.3 0.4 1.2 1.0 -0.4 -0.6 0.4 1.4 1.4 0.4
12 78 78 84 95 97 12.7 15.7 11.9 3.6 5.8 18.1 18.1 12.1 1.1 -0.9
13 5 1 2 1 1 -1.6 1.9 0.5 1.0 0.3 -2.6 1.4 0.4 1.4 1.4
14 9 6 2 5 2 -2.8 -0.7 2.6 -1.3 0.4 -4.6 -1.6 2.4 -0.6 2.4
15 5 7 2 3 3 1.3 -1.7 2.6 0.7 -0.6 -0.6 -2.6 2.4 1.4 1.4
16 181 181 228 226 231 -11.2 10.9 -20.0 1.3 27.5 29.6 29.6 -17.4 -15.4 -20.4
17 842 803 822 761 755 -6.8 14.9 -16.7 29.3 10.9 -41.7 -2.7 -21.7 39.3 45.3
18 740 675 715 625 657 27.2 57.0 -8.7 50.7 -31.1 -38.8 26.2 -13.8 76.2 44.2
19 477 462 416 442 424 11.6 6.8 38.3 -4.9 -14.9 -24.0 -9.0 37.0 11.0 29.0
20 148 134 164 159 214 -7.3 20.7 0.9 18.0 -17.2 18.3 32.3 2.3 7.3 -47.7
21 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
22 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
23 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
24 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25 0 0 1 0 0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0
26 2 2 5 1 6 1.9 2.2 -0.7 3.5 -1.2 2.1 2.1 -0.9 3.1 -1.9
27 15 12 10 13 11 0.0 1.3 2.1 -2.3 -2.7 -3.0 0.0 2.0 -1.0 1.0
28 15 11 9 16 4 0.0 2.3 3.1 -5.3 4.3 -3.0 1.0 3.0 -4.0 8.0

Total Absolute Deviation: 407.9 407.2 361.9 399.5 321.9 530.6 519.2 369.9 564.4 884.2

Itin
Bottom 

Fifth
Middle 
Fifth

Top 
Fifth

Observed Choices HeNGEV Model NetGEV Model
Bottom 

Fifth
Middle 
Fifth

Top 
Fifth

Bottom 
Fifth

Middle 
Fifth

Top 
Fifth
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Figure 6.5. Observations and Market-Level Prediction Errors, Unimodal Dataset
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Figure 6.6. Prediction Errors, Segmented by Income, Unimodal Dataset
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6.3. Discussion

Overall, the HeNGEV models show a better fit for the synthetic data than the matching ho-

mogeneousNetGEVmodels. eHeNGEVmodels give significantly better log likelihoods in both

the bimodal and unimodal scenarios, indicating that this model type may be useful in a variety

of situations, even when the fraction of the population exhibiting “unusual” behavior is small.

Individual parameter estimates were generally improved by adopting the heterogeneous model,

often by half or more of the error in the estimate.

Better fitting models are obviously an positive attribute of the HeNGEV structure, but they

are not the only benefit. When used to predict choices of subsections of the population, the re-

sponsiveness of the correlation structure to data allows the HeNGEV to be a superior predictive

tool. Such benefits could be especially appealing in revenue management systems, which seek

specifically to segment markets in order to capture these types of differences in pricing and avail-

ability decisions.



91

CHAPTER 7

Summary and Conclusions

e research detailed in this dissertation refines and expands the Network GEV introduced

by Daly and Bierlaire (2006). In particular, the allocation parameters of the NetGEV model are

examined.

7.1. Normalization of Allocation Parameters

e allocation parameters of the NetGEVmodel must be normalized in order to be identified.

Ideally, this normalization should be done in a manner that does not alter the relative expected

values of the utilities of the alternatives, so that any preference or bias towards or against a partic-

ular alternative is expressed directly in the other model parameters. is dissertation introduces

two algorithms for normalizing the allocation parameters in such non-biasing ways. e choice

between these methods depends on the structure of the underlying network, with the crash-free

method appropriate for networks that do not allow alternatives to correlate with themselves,

and the crash-safe method appropriate for networks that allow independent adjustments to be

applied to each alternative. When neither structural condition holds, a network transformation

is shown to allow the crash-safe method to be implemented, although additional nonlinear con-

straints must be applied to the parameters.

It is generally preferable to avoid such constraints entirely. erefore, a transformation of the

allocationparameters is proposed, which relaxes even the linear constraints necessary for normal-

ization. is transformation also allows the introduction of data into the allocation parameters,

resulting in a error covariance matrix that is heterogeneous across decision makers.
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7.2. Heterogeneous Network GEVModels

e resulting HeNGEV model offers several advantages over other advanced choice models,

but suffers from some difficulties and limitations as well.

7.2.1. Advantages

Heterogeneous Covariance. eHeNGEV model can exhibit a heterogeneous covariance struc-

ture among alternatives, across decisionmakers. is is unusual in closed formmodels, but useful

when identifiably different segments of the population are apparently differentially affected in

their choices by unobserved attributes shared across sets of alternatives.

Closed Form. e HeNGEV model has a closed form probability expression, which does not re-

quire simulation to calculate. is is useful in both estimation and application of the models. In

estimation, the [log] likelihoods must be calculated at each iteration in the non-linear optimiza-

tion process. Since models require numerous such iterations to mind a maximum likelihood, the

direct calculation of probabilities at each iteration accrues substantial benefits.

In application, the closed form of probabilities can also be an asset. Generating choices in

a micro-simulation environment merely requires generating the alternative choice probabilities

and making a single random draw to make a choice. e correlation structure evinced in the

model is embedded in the probabilities, so that there is no need to generate multiple random

variables, especially multiple correlated random variables. ere is also no need (or opportunity)

to use or save individual parameters, as would be typical in amixed logit application. In very large

simulations, this limited memory requirement can be particularly appealing.
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7.2.2. Limitations

NetworkSpecification. enesting structure forHeNGEVmodels, while veryflexible, still needs

to be specified by the modeler. When there are a small number of possible structures that a mod-

eler hypothesizes may be valid and active, it is possible to construct a model to estimate that

contains them all. e resulting parameters of such a meta-model can be a guide to further re-

finements. However, when a modeler has no hypothesized structure to start with, the HeNGEV

model itself cannot be used to build a generating network from scratch. While estimated param-

eters can be reviewed to find candidate nodes and arcs for removal, there is no output from the

model to indicate where new nodes or arcs should be inserted to find a better model.

Parametric Explosion. ere canquickly be a very largenumber of parameters. Within aHeNGEV

model, there are separate parameters for each node, as well as potentially multiple separate pa-

rameters for each edge, all in addition to the parameters in the systematic utility. For most inter-

esting networks, this will become an overwhelming number of parameters to estimate. Modelers

will typically tackle this problem by grouping and restricting the values of the parameters, as seen

in Chapter 6. However, the process for defining those grouping will require the exercise of mod-

eler’s judgement.

Conceptualization. Despite the obvious graphical representation of the underlying network,

complex HeNGEV models can lack a simple conceptual form that modelers and policy makers

can easily grasp. When limited to the more restrictive forms of the NL or GNL models, it is easy

to translate the nesting structure into a conceptual form: nested alternatives are similar, deeper

nests are more similar.

It seems natural to map the GEV generating network of a HeNGEV model into a choice pro-

cess, with decision makers choosing an arc from each node progressively until reaching a final

choice. Unfortunately, this leap is not an appropriate interpretation. e generating network
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represents a correlation structure among the random terms in the model, but the actual decision

processes do not contain “error” in the same way. Decisionmakers are presumed to make choices

in a deterministic manner, selecting from a choice set the single alternative with maximum util-

ity. Instead of representing a choice process, the generating network is limited to expressing the

relationships between the unobserved portions of the modeler’s representation of utility. For a

single decision maker, all the various paths to each alternative in the GEV generating network

exist and operate simultaneously.

For example, within the model explored in Chapter 6, the “B” and “L” sub-models do not di-

rectly correspond to a business traveler and a leisure traveler respectively. Instead, they represent

the expected dominant portion of correlation for business and leisure travelers, but both cate-

gories draw somewhat from both models. A modeled business traveler would see same time, dif-

ferent carriers itineraries as more similar than same carrier, different time itineraries, but there

would be less but still some correlation among the latter sets.

7.3. e Future

Much research remains to be done within discrete choice modeling, and with the HeNGEV

model specifically. e obvious next steps are to explore the performance of HeNGEV models in

real applications, as opposed to synthetic data sets. But other issues also remain for exploration

in the theoretical understanding of the response in the networks.

Depending on the structure of the network, it is sometimes possible to create different mod-

els, with different joint probability density functions for the various error terms associated with

the utilities of various alternatives, but that nevertheless have the same correlation matrix be-

tween those error terms. at is, the mapping from GEV generating networks to correlation ma-

trices is a many-to-onemap, instead of a one-to-onemap. e joint probability density functions
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would still, however, differ in the higher moments. is implies that the mapping of correla-

tion matrices to generating networks is a one-to-many map, i.e. there is not necessarily a single

unique GEV generating network for any particular correlation matrix. is does not invalidate

such models, but careful consideration might be required in selecting and using such models.

More research is needed to fully understand the trade-offs between such allocative and inclusive

correlation structures, and whether the differences would matter in any practical application.
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APPENDIX A

Glossary of Mathematical Notation

A.1. Nodes and Choices

i, j An elemental discrete choice

i, j, k A node of the network, which can be associated with an elemental alternative, or any

nest level

R e root node of the network, i.e. the one node that has no predecessors

t A decision maker

A.2. Edges and Paths

ij−→ e edge connecting directly from i to j

p̨ij A particular path connecting from i to j

T(k, j, i) e set of all paths from k to i that pass through j

T (k, i) e set of all paths from k to i

A.3. Node Sets

C e set of nodes associated with elemental alternatives

N e set of network nodes excluding elemental alternatives

Z e set of all nodes in the network, Z = C ∪ N

i↑ e set of direct predecessor nodes to node i

i↓ e set of direct successor nodes from node i
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i⇓ e set of direct and indirect (eventual) successor nodes from node i

i⇓ =























i↓ ∪
I

t

j∈i↓
j⇓

J

i ∈ N

∅ i ∈ C
i⇑ e set of direct and indirect (eventual) predecessor nodes from node i

i⇑ =























i↑ ∪
I

t

j∈i↑
j⇑

J

i ”= R

∅ i = R

A.4. Choice Indicators

δ∗
ti Indicator variable for t choosing node i specifically

δ⇓
ti Indicator variable for t choosing any sub-node of i

δ⇓
ti =

q

j∈i↓
δtj

δti Indicator binary variable for t choosing node i or any sub-node of i

δti = δ⇓
ti + δ∗

ti

A.5. Parameters

µi Logsum parameter for network node i

β A vector of coefficients on attributes of alternatives, not associated with a node

φij Vector of parameters corresponding to the edge connecting from i to j

Ξ A generic vector of all model parameters

Ξ ≡ {β, φ, µ}

A.6. Data (Independent Variables)

Xti Vector of independent choice alternative attributes for alternative iof decisionmaker

t; optionally (but often) includes alternative specific constants
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Zt Vector of independent allocation-related variables for decision maker t; optionally

(but usually) includes a constant (i.e. Zt[0] = 1)

A.7. Allocation

αtij e edge allocative proportion corresponding to the connection from i to j for deci-

sion maker t

αtij = exp(φijZt)
q

k∈j↑
[exp(φkjZt)]

α̨pRi e path allocative proportion corresponding to the path p from R to i

α̃Rji e total of path allocative proportions corresponding to all paths from R to i which

pass through j

α̃Rji =
q

p∈T (R,j,i) α̨pRi

A.8. Utility

Vti e systematic utility of elemental alternative node i for decision maker t

Vti =























βXti ∀t, i ∈ C

µi log
Ë

q

j∈i↓

Ë

α1/µi
tij exp [Vtj/µi]

ÈÈ

∀t, i ∈ N
Gti e G factor of node i for t

Gti = exp [Vti]

A.9. Probability

Pti|k Conditional probability that t chooses node i given having chosen k ∈ i↑

Pti|k =
α

1/µk
tki exp[Vti/µk]

q

j∈k↓

Ë

α
1/µk
tkj exp[Vtj/µk]

È =
α

1/µk
tki exp[Vti/µk]

exp[Vtk/µk] =
exp[(Vti+log[αtki])/µk]

exp[Vtk/µk] =
1

αtkiGti

Gtk

21/µk

P̨tik Arc probability that t chooses node i after having chosen k ∈ i↑

P̨tik = PtkPti|k

Ptip̨Ri Path probability that t chooses node i using path p̨Ri
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Pti Unconditional probability that t chooses node i

Pti =
q

k∈i↑
PtkPti|k =

q

k∈i↑
P̨tik
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